Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (2): 159-166.DOI: 10.17521/cjpe.2015.0015
Special Issue: 生态化学计量
• Orginal Article • Previous Articles Next Articles
MA Yu-Zhu1,2, ZHONG Quan-Lin1,2, JIN Bing-Jie1,2, LU Hong-Dian1,2, GUO Bing-Qiao1,2, ZHENG Yuan1,2, LI Man1,2, CHENG Dong-Liang1,2,*()
Received:
2014-09-16
Accepted:
2014-12-17
Online:
2015-02-01
Published:
2015-03-10
Contact:
Dong-Liang CHENG
About author:
# Co-first authors
MA Yu-Zhu,ZHONG Quan-Lin,JIN Bing-Jie,LU Hong-Dian,GUO Bing-Qiao,ZHENG Yuan,LI Man,CHENG Dong-Liang. Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China[J]. Chin J Plan Ecolo, 2015, 39(2): 159-166.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0015
因变量 Dependent variable | n | 最小值 Min (%) | 最大值 Max (%) | 平均值 Mean (%) | 标准差 Standard deviation | |
---|---|---|---|---|---|---|
细根 Fine root | C | 33 | 37.09 | 58.91 | 47.39 | 5.07 |
N | 146 | 0.24 | 2.97 | 0.92 | 0.43 | |
P | 123 | 0.01 | 0.47 | 0.10 | 0.08 | |
N:P | 123 | 1.63 | 63.87 | 14.27 | 9.88 | |
C:N | 33 | 23.09 | 116.02 | 59.15 | 27.11 | |
C:P | 17 | 166.08 | 1 118.00 | 522.10 | 289.86 | |
粗根 Coarse root | C | 59 | 34.80 | 54.49 | 45.65 | 4.42 |
N | 182 | 0.07 | 2.18 | 0.59 | 0.33 | |
P | 149 | 0.01 | 0.54 | 0.06 | 0.05 | |
N:P | 149 | 1.58 | 35.07 | 11.67 | 6.86 | |
C:N | 55 | 24.27 | 560.00 | 121.98 | 95.50 | |
C:P | 41 | 318.15 | 2 407.22 | 957.27 | 551.18 |
Table 1 Summary of carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in fine roots and coarse roots
因变量 Dependent variable | n | 最小值 Min (%) | 最大值 Max (%) | 平均值 Mean (%) | 标准差 Standard deviation | |
---|---|---|---|---|---|---|
细根 Fine root | C | 33 | 37.09 | 58.91 | 47.39 | 5.07 |
N | 146 | 0.24 | 2.97 | 0.92 | 0.43 | |
P | 123 | 0.01 | 0.47 | 0.10 | 0.08 | |
N:P | 123 | 1.63 | 63.87 | 14.27 | 9.88 | |
C:N | 33 | 23.09 | 116.02 | 59.15 | 27.11 | |
C:P | 17 | 166.08 | 1 118.00 | 522.10 | 289.86 | |
粗根 Coarse root | C | 59 | 34.80 | 54.49 | 45.65 | 4.42 |
N | 182 | 0.07 | 2.18 | 0.59 | 0.33 | |
P | 149 | 0.01 | 0.54 | 0.06 | 0.05 | |
N:P | 149 | 1.58 | 35.07 | 11.67 | 6.86 | |
C:N | 55 | 24.27 | 560.00 | 121.98 | 95.50 | |
C:P | 41 | 318.15 | 2 407.22 | 957.27 | 551.18 |
因变量 Dependent variable | 截距 Intercept | 斜率 Slope | R2 | p | n | |
---|---|---|---|---|---|---|
细根 Fine root | C | 1.74 | -0.002 | 0.102 | 0.070 | 33 |
N | -0.36 | 0.009 | 0.133 | <0.001 | 146 | |
P | -1.54 | 0.013 | 0.097 | <0.001 | 123 | |
N:P | 1.21 | -0.005 | 0.016 | 0.161 | 123 | |
C:N | 2.20 | -0.015 | 0.259 | 0.003 | 33 | |
C:P | 2.95 | -0.009 | 0.085 | 0.256 | 17 | |
粗根 Coarse root | C | 1.71 | -0.002 | 0.099 | 0.015 | 59 |
N | -0.21 | -0.003 | 0.006 | 0.316 | 182 | |
P | -1.45 | 0.005 | 0.020 | 0.084 | 149 | |
N:P | 1.37 | -0.012 | 0.095 | <0.001 | 149 | |
C:N | 2.13 | -0.004 | 0.015 | 0.373 | 55 | |
C:P | 2.89 | 0.001 | 0.001 | 0.863 | 41 | |
细根+粗根 Fine root + coarse root | C | 1.71 | -0.002 | 0.081 | 0.006 | 92 |
N | -0.29 | 0.003 | 0.008 | 0.101 | 328 | |
P | -1.50 | 0.009 | 0.051 | <0.001 | 272 | |
N:P | 1.29 | -0.008 | 0.047 | <0.001 | 272 | |
C:N | 2.26 | -0.012 | 0.097 | 0.003 | 88 | |
C:P | 3.04 | -0.007 | 0.034 | 0.167 | 58 |
Table 2 Latitudinal patterns of carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in roots
因变量 Dependent variable | 截距 Intercept | 斜率 Slope | R2 | p | n | |
---|---|---|---|---|---|---|
细根 Fine root | C | 1.74 | -0.002 | 0.102 | 0.070 | 33 |
N | -0.36 | 0.009 | 0.133 | <0.001 | 146 | |
P | -1.54 | 0.013 | 0.097 | <0.001 | 123 | |
N:P | 1.21 | -0.005 | 0.016 | 0.161 | 123 | |
C:N | 2.20 | -0.015 | 0.259 | 0.003 | 33 | |
C:P | 2.95 | -0.009 | 0.085 | 0.256 | 17 | |
粗根 Coarse root | C | 1.71 | -0.002 | 0.099 | 0.015 | 59 |
N | -0.21 | -0.003 | 0.006 | 0.316 | 182 | |
P | -1.45 | 0.005 | 0.020 | 0.084 | 149 | |
N:P | 1.37 | -0.012 | 0.095 | <0.001 | 149 | |
C:N | 2.13 | -0.004 | 0.015 | 0.373 | 55 | |
C:P | 2.89 | 0.001 | 0.001 | 0.863 | 41 | |
细根+粗根 Fine root + coarse root | C | 1.71 | -0.002 | 0.081 | 0.006 | 92 |
N | -0.29 | 0.003 | 0.008 | 0.101 | 328 | |
P | -1.50 | 0.009 | 0.051 | <0.001 | 272 | |
N:P | 1.29 | -0.008 | 0.047 | <0.001 | 272 | |
C:N | 2.26 | -0.012 | 0.097 | 0.003 | 88 | |
C:P | 3.04 | -0.007 | 0.034 | 0.167 | 58 |
因变量 Dependent variable | 截距 Intercept | 斜率 Slope | R2 | p | n | |
---|---|---|---|---|---|---|
细根 Fine root | C | 1.76 | -0.000 7 | 0.024 | 0.386 | 33 |
N | -0.60 | 0.004 5 | 0.028 | 0.042 | 146 | |
P | 0.35 | -0.013 0 | 0.059 | 0.007 | 123 | |
N:P | -0.46 | 0.013 4 | 0.078 | 0.002 | 123 | |
C:N | 2.44 | -0.006 3 | 0.098 | 0.075 | 33 | |
C:P | 2.15 | 0.004 7 | 0.037 | 0.462 | 17 | |
粗根 Coarse root | C | 1.81 | -0.001 3 | 0.097 | 0.016 | 59 |
N | -1.24 | 0.008 4 | 0.125 | <0.001 | 182 | |
P | -1.27 | -0.000 2 | <0.001 | 0.932 | 149 | |
N:P | 0.13 | 0.007 6 | 0.083 | <0.001 | 149 | |
C:N | 2.76 | -0.006 9 | 0.060 | 0.071 | 55 | |
C:P | 2.19 | 0.006 8 | 0.056 | 0.138 | 41 | |
细根+粗根 Fine root + coarse root | C | 1.78 | -0.001 1 | 0.057 | 0.021 | 92 |
N | -1.13 | 0.008 2 | 0.090 | <0.001 | 328 | |
P | -0.94 | -0.002 5 | 0.005 | 0.232 | 272 | |
N:P | -0.01 | 0.009 0 | 0.077 | <0.001 | 272 | |
C:N | 2.80 | -0.008 2 | 0.084 | 0.006 | 88 | |
C:P | 2.24 | 0.005 6 | 0.033 | 0.172 | 58 |
Table 3 Longitudinal patterns of carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in roots
因变量 Dependent variable | 截距 Intercept | 斜率 Slope | R2 | p | n | |
---|---|---|---|---|---|---|
细根 Fine root | C | 1.76 | -0.000 7 | 0.024 | 0.386 | 33 |
N | -0.60 | 0.004 5 | 0.028 | 0.042 | 146 | |
P | 0.35 | -0.013 0 | 0.059 | 0.007 | 123 | |
N:P | -0.46 | 0.013 4 | 0.078 | 0.002 | 123 | |
C:N | 2.44 | -0.006 3 | 0.098 | 0.075 | 33 | |
C:P | 2.15 | 0.004 7 | 0.037 | 0.462 | 17 | |
粗根 Coarse root | C | 1.81 | -0.001 3 | 0.097 | 0.016 | 59 |
N | -1.24 | 0.008 4 | 0.125 | <0.001 | 182 | |
P | -1.27 | -0.000 2 | <0.001 | 0.932 | 149 | |
N:P | 0.13 | 0.007 6 | 0.083 | <0.001 | 149 | |
C:N | 2.76 | -0.006 9 | 0.060 | 0.071 | 55 | |
C:P | 2.19 | 0.006 8 | 0.056 | 0.138 | 41 | |
细根+粗根 Fine root + coarse root | C | 1.78 | -0.001 1 | 0.057 | 0.021 | 92 |
N | -1.13 | 0.008 2 | 0.090 | <0.001 | 328 | |
P | -0.94 | -0.002 5 | 0.005 | 0.232 | 272 | |
N:P | -0.01 | 0.009 0 | 0.077 | <0.001 | 272 | |
C:N | 2.80 | -0.008 2 | 0.084 | 0.006 | 88 | |
C:P | 2.24 | 0.005 6 | 0.033 | 0.172 | 58 |
N | P | ||||||
---|---|---|---|---|---|---|---|
斜率 Slope | R2 | n | 斜率 Slope | R2 | n | ||
年平均气温 MAT | -6.8E-3 | 0.105*** | 146 | -8.3E-3 | 0.056** | 123 | |
年降水量 MAP | -8.4E-5 | 0.061** | 146 | -1.6E-4 | 0.077** | 123 | |
年平均气温+年降水量 MAT + MAP | 0.109*** | 146 | 0.077** | 123 | |||
土壤N Soil N | 0.17 | 0.112** | 80 | ||||
土壤P Soil P | 0.36 | 0.154** | 65 | ||||
气候+土壤N Climate + soil N | 0.154** | 80 | |||||
气候+土壤P Climate + soil P | 0.250** | 65 |
Table 4 Linear regression relationship between fine root nitrogen (N) and phosphorus (P) contents and the influencing factors
N | P | ||||||
---|---|---|---|---|---|---|---|
斜率 Slope | R2 | n | 斜率 Slope | R2 | n | ||
年平均气温 MAT | -6.8E-3 | 0.105*** | 146 | -8.3E-3 | 0.056** | 123 | |
年降水量 MAP | -8.4E-5 | 0.061** | 146 | -1.6E-4 | 0.077** | 123 | |
年平均气温+年降水量 MAT + MAP | 0.109*** | 146 | 0.077** | 123 | |||
土壤N Soil N | 0.17 | 0.112** | 80 | ||||
土壤P Soil P | 0.36 | 0.154** | 65 | ||||
气候+土壤N Climate + soil N | 0.154** | 80 | |||||
气候+土壤P Climate + soil P | 0.250** | 65 |
年平均气温 MAT | 年降水量 MAP | 土壤N Soil N | 土壤P Soil P | n | R2 | p | |
---|---|---|---|---|---|---|---|
细根N Fine root N | -0.047 | -0.106 | 0.283 | 80 | 0.154 | 0.005 | |
细根P Fine root P | -0.336 | 0.228 | 0.419 | 65 | 0.250 | 0.001 | |
细根N Fine root N | -0.226 | 0.062 | 146 | 0.109 | <0.001 | ||
细根P Fine root P | -0.008 | -0.147 | 123 | 0.077 | 0.008 |
Table 5 Table of partial correlation coefficients of factors influencing fine root nitrogen (N) and phosphorus (P) contents
年平均气温 MAT | 年降水量 MAP | 土壤N Soil N | 土壤P Soil P | n | R2 | p | |
---|---|---|---|---|---|---|---|
细根N Fine root N | -0.047 | -0.106 | 0.283 | 80 | 0.154 | 0.005 | |
细根P Fine root P | -0.336 | 0.228 | 0.419 | 65 | 0.250 | 0.001 | |
细根N Fine root N | -0.226 | 0.062 | 146 | 0.109 | <0.001 | ||
细根P Fine root P | -0.008 | -0.147 | 123 | 0.077 | 0.008 |
1 | Ågren GI (2004). The C:N:P stoichiometry of autotrophs- theory and observations.Ecology Letters, 7, 185-191. |
2 | Beyer F, Hertel D, Leuschner C (2013). Fine root morphological and functional traits in Fagus sylvatica and Fraxinus excelsior saplings as dependent on species, root order and competition.Plant and Soil, 373, 143-156. |
3 | Bloom AJ, Chapin F III, Mooney HA (1985). Resource limitation in plants: An economic analogy.Annual Review of Ecology and Systematics, 16, 363-392. |
4 | Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests.Oecologia, 125, 389-399. |
5 | Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999). Changing sources of nutrients during four million years of ecosystem development.Nature, 397, 491-497. |
6 | Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995). Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii.Ecology, 76, 1407-1424. |
7 | Dipesh KC, Schuler JL (2013). Estimating fine-root production and mortality in the biomass plantations.Communications in Soil Science and Plant Analysis, 44, 2514-2523. |
8 | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan.Advances in Ecological Research, 27, 1-60. |
9 | Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996). Organism size, life history, and N:P stoichiometry: Towards a unified view of cellular and ecosystem processes.Bioscience, 46, 674-684. |
10 | Elser JJ, Sterner RW, Corokhova E, Fngan WF, Markow TA, Conter JB, Hanrrison JF, Hobbie SE, Odell GM, Weider LW (2000). Biological stoichiometry from genes to ecosystems.Ecology Letters, 3, 540-550. |
11 | Foulds W (1993). Nutrient concentrations of foliage and soil in South-western Australia.New Phytologist, 125, 529-546. |
12 | Geng Y, Wang L, Jin DM, Liu HY, He JS (2014). Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits.Oecologia, 175, 445-455. |
13 | Gordon WS, Jackson RB (2000). Nutrient concentrations in fine roots.Ecology, 81, 275-280. |
14 | Guo LB, Halliday MJ, Gifford RM (2006). Fine root decomposition under grass and pine seedlings in controlled environmental conditions.Applied Soil Ecology, 33, 22-29. |
15 | Han WX, Fang JX, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China.Ecology Letters, 14, 788-796. |
16 | Hao YR, Peng SL (2009). Roots of different dominant tree species in zonal vegetation in southern subtropical China.Journal of Beijing Forestry University, 31(2), 25-30.(in Chinese with English abstract) |
[郝艳茹, 彭少麟 (2009). 南亚热带地带性植被优势树种根系的研究, 北京林业大学学报, 31(2), 25-30.] | |
17 | He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310. |
18 | Hedin LO, Vitousek PM, Matson PA (2003). Nutrient losses over four million years of tropical forest development.Ecology, 84, 2231-2255. |
19 | Hendrick RL, Pregitzer KS (1993). The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems.Canadian Journal of Forest Research, 23, 2507-2520. |
20 | Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000). Nitrogen controls on fine root substrate quality in temperate forest ecosystems.Ecosystems, 3, 57-69. |
21 | Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents.Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366. |
22 | Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant allometry, stoichiometry and the temperature-dependence of primary production.Global Ecology and Biogeography Letters, 14, 585-598. |
23 | Kitajima K, Anderson KE, Allen MF (2010). Effect of soil temperature and soil water content on fine root turnover rate in a California mixed conifer ecosystem.Journal of Geophysical Research, 115, G04032, doi: 10.1029/2009JG001210. |
24 | Kochsiek A, Tan S, Russo SE (2013). Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils.Plant Ecology, 214, 869-882. |
25 | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450. |
26 | Korner C, Diemer M (1987). In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude.Functional Ecology, 1, 179-194. |
27 | Lin CF, Yang YS, Guo JF, Chen GS, Xie JS (2011). Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: Dynamics of dry mass, nutrient and organic fractions.Plant and Soil, 338, 311-327. |
28 | Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China.Nature, 494, 459-462. |
29 | Lu HZ, Sha LQ (2009). A decomposition dynamics study of different-size roots between a tropical rainforest and a rubber plantation in Xishuangbanna, Yunnan, SW China. Journal of Yunnan University (Natural Science Edition), 31, 528-533.(in Chinese with English abstract) |
[卢华正, 沙丽清 (2009). 西双版纳热带季节雨林与橡胶林不同径级根分解. 云南大学学报(自然科学版), 31, 528-533.] | |
30 | Makino W, Cotner JB (2004). Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: Implications for growth- and resource-dependent variations.Aquatic Microbial Ecology, 34, 33-41. |
31 | Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009). Fine root morphological traits determine variation in root respiration of Quercus serrata.Tree Physiology, 29, 579-585. |
32 | McCormack ML, Guo DL (2014). Impacts of environmental factors on fine root lifespan.Frontiers in Plant Science, 5, 205. |
33 | Montagnoli A, Terzaghi M, Iorio AD, Stefania G, Scippa S, Chiatante D (2012). Fine-root morphological and growth traits in a Turkey-oak stand in relation to seasonal changes in soil moisture in the Southern Apennines, Italy.Ecological Research, 27, 1015-1025. |
34 | Nadelhoffer KJ (2000). The potential effects of nitrogen deposition on fine-root production in forest ecosystems.New Phytologist, 147, 131-139. |
35 | Odum HT, Pinkerton RC (1955). Time’s speed regulator: The optimum efficiency for maximum power output in physical and biological systems.The American Naturalist, 43, 331-343. |
36 | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
37 | Ruess RW, Hendriek RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF, Maurer GE (2003). Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska.Ecological Monographs, 73, 643-662. |
38 | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA. 145-177. |
39 | Sun T, Mao ZJ, Han YY (2013). Slow decomposition of very fine roots and some factors controlling the process: A 4-year experiment in four temperate tree species.Plant and Soil, 372, 445-458. |
40 | Tjoelker MG, Reich PB, Oleksyn J (1999). Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species.Plant, Cell & Environment, 22, 767-778. |
41 | Trumbore SE, Gaudinski JB (2003). The secret lives of roots.Science, 302, 1344-1345. |
42 | Uriankhai T, Liu MS, Huang Z, Chen B, Zhang MJ, Xu C (2009). Distribution pattern of root biomass and inter- specific relationship in Achnatherum splendens-sophora alopecuroides community in Northwest China.Chinese Journal of Plant Ecology, 33, 748-754.(in Chinese with English abstract) |
[晨乐木格, 刘茂松, 黄峥, 陈斌, 张明娟, 徐驰 (2009). 我国西北地区芨芨草-苦豆子群落根系分布与种间关系. 植物生态学报, 33, 748-754.] | |
43 | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests.Advances in Ecological Research, 15, 303-377. |
44 | Wang QC (2004). Fine roots responses of manchurian ash and Korean larch to soil nutrients heterogeneity. PhD dissertation, College of Forestry, Northeast Forestry University, Harbin.(in Chinese) |
[王庆成 (2004). 水曲柳落叶松细根对土壤养分空间异质性的反应. 博士学位论文, 东北林业大学林学院, 哈尔滨.] | |
45 | Weih M, Karlsson PS (2001). Growth response of mountain birch to air and soil temperature: Is increasing leaf-nitro- gen content an acclimation to lower air temperature?New Phytologist, 150, 147-155. |
46 | Wilcox CS, Ferguson JW, Fernandez GCJ, Nowak RS (2004). Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite.Journal of Arid Environments, 56, 129-148. |
47 | Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ (2003). Temperature and the chemical composition of poikilothermic organisms.Functional Ecology, 17, 237-245. |
48 | Yuan ZY, Chen HYH (2012). A global analysis of fine root production as affected by soil nitrogen and phosphorus.Proceedings of the Royal Society B: Biological Sciences, 279, 3796-3802. |
49 | Yuan ZY, Chen HYH, Reich PB (2011). Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus.Nature Communications, 2, 344. |
50 | Zhang XQ, Wu KH (2001). Fine-root production and turnover for forest ecosystems.Scientia Silvae Sinicae, 37(3), 126-138. |
[张小全, 吴可红 (2001). 森林细根生产和周转研究. 林业科学, 37(3), 126-138.] |
[1] | Wei-Wei SHE Qin shugao Yan-Gui QIAO Yuqing Zhang. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of dominant species in an Artemisia ordosica community [J]. Chin J Plant Ecol, 2024, 48(5): 590-600. |
[2] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[3] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[4] | LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes [J]. Chin J Plant Ecol, 2023, 47(9): 1310-1321. |
[5] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[6] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[7] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[8] | LI Wei-Ying, ZHANG Zheng-Ren, XIN Ya-Xuan, WANG Fei, XIN Pei-Yao, GAO Jie. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya [J]. Chin J Plant Ecol, 2023, 47(6): 833-846. |
[9] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[10] | WANG Xiao-Yue, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation [J]. Chin J Plant Ecol, 2023, 47(4): 479-490. |
[11] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[12] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[13] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[14] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[15] | YE Jie-Hong, YU Cheng-Long, ZHUO Shao-Fei, CHEN Xin-Lan, YANG Ke-Ming, WEN Yin, LIU Hui. Correlations of photosynthetic heat tolerance with leaf morphology and temperature niche in Magnoliaceae [J]. Chin J Plant Ecol, 2023, 47(10): 1432-1440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn