Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (4): 371-382.doi: 10.17521/cjpe.2015.0036

• Orginal Article • Previous Articles     Next Articles

Impact of Phyllostachys heterocycla ‘Pubescens’ expansion on mycorrhizal associations of the adjacent forests

PAN Lu1, MOU Pu1,*(), BAI Shang-Bin2, GU Mu1   

  1. 1College of Life Sciences, Beijing Normal University, Beijing 100875, China
    2School of Forestry & Bio-technology, Zhejiang A & F University, Lin’an, Zhejiang 311300, China
  • Received:2014-07-07 Accepted:2015-02-15 Online:2015-04-21 Published:2015-04-01
  • Contact: Pu MOU E-mail:ppmou@bnu.edu.cn
  • About author:

    # Co-first authors

Abstract: <i>Aims</i>

Phyllostachys heterocycla ‘Pubescens’, through its unique growth feature, is easy to encroach on, and replace surrounding evergreen broad-leaved forests or coniferous and broad-leaved mixed forests rapidly. The expansion leads to coniferous and broadleaved tree species withering and dying gradually, and inhibits the forest regeneration. Mycorrhizal weakening hypothesis suggests that expansion of P. heterocycla ‘Pubescens’ would interrupt the original mycorrhizal associations and causes the subsequence dieback of the forests. This study was to investigate the changes of mycorrhiza along a bamboo forest, bamboo-forest transition, mixed forest transect to examine the hypothesis.

<i>Methods</i>

A transect, perpendicular to the bamboo expansion direction, went through P. heterocycla ‘Pubescens’ forest (PPF), bamboo-forest transition (BFT), coniferous and broad-leaved mixed forest (CBF), and were sampled in the Tianmu Mountain National Reserve, Zhejiang Province. Six dominant tree and shrub species (Cunninghamia lanceolata, Liquidambar formosana, Cyclobalanopsis glauca, Cryptomeria fortune, Lindera chienii, Camellia fraterna) existing in both CBF and BFT, were chosen for collecting their root tips for measuring the frequency and intensity of arbuscular mycorrizal (AM) colonization for AM species, and frequency of ectomycorrhizal (EM) colonization for EM species. The AM colonization frequency and intensity of P. heterocycla ‘Pubescens’ in PPF and BFT were also measured and compared.

<i>Important findings</i>

1) Before and during the encroachment of P. heterocycla ‘Pubescens’, frequency of the mycorrhizal fungi root colonization of the six tree species were very high (>95%), and there was no significant difference between CBF and BFT (p > 0.1); 2) In BFT, intensity of the AM fungi root colonization of Cunninghamia lanceolata and Liquidambar formosana increased significantly than those in CBF (p < 0.1); 3) The frequency and intensity of the AM fungi root colonization of P. heterocycla ‘Pubescens’ were much lower than any other tree species, with no significant change during the expansion. The findings reject the mycorrhizal weakening hypothesis i.e., P. heterocycla ‘Pubescens’ realizing its population expansion and replacing surrounding forests IS NOT caused by destructing mycorrhizal associations of adjacent forests.

Key words: Phyllostachys heterocycla ‘Pubescens’, expansion of Phyllostachys heterocycla ‘Pubescens’ forest, coniferous and broad-leaved mixed forest, arbuscular mycorrhiza, ectomycorrhiza

Fig. 1

Diagram of belt transects in the experimental area. The altitude gradually increased from PPF to CBF. BFT, bamboo-forest transition; CBF, coniferous and broad-leaved mixed forest; PPF, Phyllostachys heterocycla ‘Pubescens’ forest."

Fig. 2

Morphology of arbuscular mycorrhiza, stained with ink. A, An infected root tip of Cunninghamia lanceolata. B, Arrow indicates intraradical hyphae in a root of Cunninghamia lanceolata. C, Arrow indicates arbuscules in a root of Cunninghamia lanceolata. D, A infected root tip of Camellia fraterna. E, Arrow indicates arbuscules in a root of Camellia fraterna. F, Arrow indicates a fungal spore in a root of Camellia fraterna. G, An infected root tip of Lindera chienii. H, Arrow indicates two fungal spores in a root of Lindera chienii. I, Arrow indicates arbuscules in a root of Lindera chienii."

Fig. 3

Morphology of ectomycorrhiza in Liquidambar formosana (A-C), Cryptomeria fortunei (D-F), and Cyclobalanopsis glauca (G-I)."

Fig. 4

Comparison of soil pH value (A), soil water content (B), NH4+-N (C), NO3--N (D), total available N (NH4+-N + NO3--N) (E) contents in three stands in the study site (mean ± SE). BFT, bamboo-forest transition; CBF, coniferous and broad-leaved mixed forest; PPF, Phyllostachys heterocycla ‘Pubescens’ forest. Different lowercase letters denote significant difference among soil nutrients due to the different distance to bamboo roots in the same forest stand (p < 0.1)."

Table 1

Available nitrogen contents in soil of three forest stands in experimental area near Chanyuan Temple, Tianmu Mountain, Zhejiang Province, China (mean ± SE)"

样地类型
Stand type
n 土壤有效氮含量 Soil available N content (mg·kg-1)
铵态氮
NH4+-N (mg·kg-1)
硝态氮1)
NO3--N (mg·kg-1)1)
铵态氮+硝态氮
NH4+-N + NO3--N (mg·kg-1)
毛竹纯林 Phyllostachys heterocycla ‘Pubescens’ forest 10 0.026 8 ± 0.002 0a 0.002 1 ± 0.000 3b 0.029 0 ± 0.002 1a
竹-林过渡带 Bamboo-forest transition 10 0.024 1 ± 0.002 2ab 0.005 2 ± 0.000 6a 0.029 3 ± 0.002 3a
针阔混交林 Coniferous and broad-leaved mixed forest 5 0.197 0 ± 0.000 5b 0.003 7 ± 0.000 2a 0.023 4 ± 0.000 4a

Fig. 5

Comparison of frequency and intensity of the arbuscular mycorrhizal fungi root colonization of Cunninghamia lanceolata (A), Camellia fraternal (B), Lindera chienii (C) at two sides of bamboo and broad-leaved forest interface in the study site (mean ± SE). BFT, bamboo-forest transition; CBF, coniferous and broad-leaved mixed forest. Different lowercase letters denote significant difference among different forest stands (p < 0.1)."

Fig. 6

Comparison of frequency of the ectomycorrhizal fungi root colonization in Liquidambar formosana, Cryptomeria fortune, Cyclobalanopsis glauca at two sides of bamboo and broad-leaved forest interface in the study site (mean ± SE). BFT, bamboo-forest transition; CBF, coniferous and broad- leaved mixed forest. Same lowercase letter denotes insignificant difference between the same species in different stands (p < 0.1)."

Fig. 7

Comparison of frequency and intensity of the arbuscular mycorrhizal fungi root colonization of Phyllostachys heterocycla ‘Pubescens’ at coniferous and broad-leaved mixed forest and coniferous and broad-leaved mixed forest in the study site (mean ± SE). BFT, bamboo-forest transition; PPF, Phyllostachys heterocycla ‘Pubescens’ forest. Same lowercase letter denotes insignificant difference between the same species in different stands (p < 0.1)."

Fig. 8

Morphology of arbuscular mycorrhiza of Phyllostachys heterocycla ‘Pubescens’ stained with ink. A, Arrow indicates arbuscules in the root cells. B, Arrow indicates a fungal spore in a bamboo root."

[35] Wu JS, Jiang PK, Wang ZL (2008). The effects of Phyllostachys pubescens expansion on soil fertility in national nature reserve of Mount Tianmu.Acta Agriculturae Universitatis Jiangxiensis, 30, 689-692.(in Chinese with English abstract)
[吴家森, 姜培坤, 王祖良 (2008). 天目山国家级自然保护区毛竹扩张对林地土壤肥力的影响. 江西农业大学学报, 30, 689-692.]
[36] Yang H, Li PX, Dai HT, Liu D, Yao XS (2010). Effects of Phyllostachys pubescens expansion on plant species diversity in Jigong Mountain and discussion of control measures.Journal of Xinyang Normal University Natural Science Edition, 23, 553-557.(in Chinese with English abstract)
[杨怀, 李培学, 戴慧堂, 刘丹, 姚贤胜 (2010). 鸡公山毛竹扩张对植物多样性的影响及控制措施. 信阳师范学院学报(自然科学版), 23, 553-557.]
[37] Yang QP, Wang B, Guo QR, Zhao GD, Fang K, Liu YQ (2011). Effects of Phyllostachys edulis expansion on carbon storage of evergreen broad-leaved forest in Dagangshan Mountain, Jiangxi.Acta Agriculturae Universitatis Jiangxiensis, 33, 529-536.(in Chinese with English abstract)
[杨清培, 王兵, 郭起荣, 赵广东, 方楷, 刘苑秋 (2011). 大岗山毛竹扩张对常绿阔叶林生态系统碳储特征的影响. 江西农业大学学报, 33, 529-536.]
[38] Zhang CS, Chen JH, Zhu F (2007). Survey and analysis on development law in Phyllostachys heterocycla cv. Pubescens.Nonwood Forest Research, 25(4), 74-76.(in Chinese with English abstract)
[张春生, 陈建华, 朱凡 (2007). 毛竹生长发育规律的调查分析. 经济林研究, 25(4), 74-76.]
[39] Zheng YS, Hong W (1998). A study on age structure model of bamboo stand and its application.Scientia Silvae Sinicae, 34(3), 34-41.(in Chinese with English abstract)
[郑郁善, 洪伟 (1998). 毛竹林丰产年龄结构模型与应用研究. 林业科学, 34(3), 34-41.]
[40] Zhou WW (1991). An analysis of the influence of precipitation on the growth of bamboo forest.Journal of Bamboo Research, 10(2), 33-39.(in Chinese with English abstract)
[周文伟 (1991). 降水对毛竹林生长的影响分析. 竹子研究汇刊, 10(2), 33-39.
[41] Zhu CL, Shangguan LP (2009). Preliminary study on the influence of the expansion edge on biodiversity of moso bamboo forest in Jinggang Mountain.Territory & Natural Resources Study, (3), 45-46.(in Chinese with English abstract)
[朱长龙, 上官林平 (2009). 井冈山毛竹林扩边对生物多样性的影响初探. 国土与自然资源研究, (3), 45-46.]
[1] Aerts R (2002). The role of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: van der Heijden MGA, Sanders IR eds. Mycorrhizal Ecology. Springer-Verlag, Berlin. 117-133.
[2] Bai SB, Zhou GM, Wang YX, Liang QQ, Chen J, Cheng YY, Shen R (2013). Allelopathic potential of Phyllostachys edulis on two dominant tree species of evergreen broad-leaved forest in its invasive process.Environmental Science, 34, 4066-4072.(in Chinese with English abstract)
[白尚斌, 周国模, 王懿祥, 梁倩倩, 陈娟, 程艳艳, 沈蕊 (2013). 毛竹入侵对常绿阔叶林主要树种的化感作用研究. 环境科学, 34, 4066-4072.]
[3] Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing.(in Chinese)
[鲍士旦 (2000). 土壤农化分析. 第三版. 中国农业出版社, 北京.]
[4] Becklin KM, Pallo ML, Galen C (2012). Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities.Journal of Ecology, 100, 343-351.
[5] Bormann FH, Likens GE (1979). Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York.
[6] Cai L, Zhang RL, Li CF, Ding Y (2003). A method to inhibit the expansion of Phyllostachys pubescens stands based on the analysis of underground rhizome.Journal of Northeast Forestry University, 31(5), 68-70.(in Chinese with English abstract)
[蔡亮, 张瑞霖, 李春福, 丁滪 (2003). 基于竹鞭状态分析的抑制毛竹林扩散的方法. 东北林业大学学报, 31(5), 68-70.]
[7] Chen XX, Chen LQ (1983). Investigation on mycorrhizae of main tree species my in subtropical area of China.Forest Science and Technology, (5), 8-12.(in Chinese)
[陈祥欣, 陈连庆 (1983). 我国亚热带主要树种菌根调查. 林业科技通讯, (5), 8-12.]
[8] Chou CH, Yang CM (1982). Allelopathic research of subtropical vegetation in Taiwan II. Comparative exclusion of understory by Phyllostachys edulis and Cryptomeria japonica.Journal of Chemical Ecology, 8, 1489-1507.
[9] Smith FA, Smith SE, Timonen (2003). Mycorrhizas. In: de Kroon H, Visser EJW eds. Root Ecology. Springer-Verlag, Berlin. 257-295.
[10] Ding LX, Wang ZL, Zhou GM, Du QZ (2006). Monitoring Phyllostachys pubescens stands expansion in national nature reserve of Mount Tianmu by remote sensing.Journal of Zhejiang Forestry College, 23, 297-300.(in Chinese with English abstract)
[丁丽霞, 王祖良, 周国模, 杜晴洲 (2006). 天目山国家级自然保护区毛竹林扩张遥感监测. 浙江林学院学报, 23, 297-300.]
[11] Dong M (1996). Plant clonal growth in heterogeneous habitats: risk-spreading.Acta Phytoecologica Sinica, 20, 543-548.(in Chinese with English abstract)
[董鸣 (1996). 异质性生境中的植物克隆生长: 风险分摊. 植物生态学报, 20, 543-548.]
[12] Fitter AH, Moyersoen B (1996). Evolutionary trends in root-microbe symbioses.Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 351, 1367-1375.
[13] Gong MQ, Chen YL, Zhong CL (1997). Mycorrhizal Research and Application. China Forestry Publishing House, Beijing.(in Chinese)
[弓明钦, 陈应龙, 仲崇禄 (1997). 菌根研究及应用. 中国林业出版社, 北京.]
[14] Hong W, Hu XS, Wu CZ, Yan SJ, Feng L, Lin YM (2004). Comparison study on community structure features of the mixed forest of Phyllostachys pubescences in Fujian Province.Journal of Plant Resources and Environment, 13(1), 37-42.(in Chinese with English abstract)
[洪伟, 胡喜生, 吴承祯, 闫淑君, 封磊, 林勇明 (2004). 福建省毛竹混交林群落结构特征的比较. 植物资源与环境学报, 13(1), 37-42.]
[15] Huang QT (2008). Effect of leaf and root allelochemicals of Phyllostachys heterocycla cv. pubescens on germination of Chinese fir seed.Journal of Fujian Forestry Science and Technology, 35(2), 75-77.(in Chinese with English abstract)
[黄启堂 (2008). 毛竹叶及其竹鞭生化物质对杉木种子的发芽效应. 福建林业科技, 35(2), 75-77.]
[16] Johnson NC, Graham JH (2013). The continuum concept remains a useful framework for studying mycorrhizal functioning.Plant and Soil, 363, 411-419.
[17] Johnson NC, Graham JH, Smith FA(1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum.New Phytologist, 135, 575-585.
[18] Li GC, Han XG, Huang JH, Tang JW (2001). A review of affecting factors of soil nitrogen mineralization in forest ecosystems.Acta Ecologica Sinica, 21, 1187-1195.(in Chinese with English abstract)
[李贵才, 韩兴国, 黄建辉, 唐建维 (2001). 森林生态系统土壤氮矿化影响因素研究进展. 生态学报, 21, 1187-1195.]
[19] Li SX (2008). Soil and Plant Nitrogen in Dryland Areas of China. Science Press, Beijing.(in Chinese)
[李生秀 (2008). 中国旱地土壤植物氮素. 科学出版社, 北京.]
[20] Li ZY (1993). Study on effect of soil on diameter eye-high growth of Phyllostachys pubescens.Journal of Bamboo Research, 12(3), 29-36.(in Chinese with English abstract)
[黎祖尧 (1993). 土壤对毛竹眉径生长影响的研究. 竹子研究汇刊, 12(3), 29-36.]
[21] Liang QQ, Bai SB, Zhou GM, Wang YX, Liao J (2012). Effect of aqueous extracts of Phyllostachys heterocycla cv. Pubescens on seed germination and seedling growth of Festuca arundinacea.Acta Agriculturae Zhejiangensis, 24, 434-439.(in Chinese with English abstract)
[梁倩倩, 白尚斌, 周国模, 王懿祥, 廖娟 (2012). 毛竹浸提液对高羊茅种子萌发及幼苗生长的影响. 浙江农业学报, 24, 434-439.]
[22] Liu J, Yang QP, Song QN, Yu DK, Yang GY, Qi HY, Shi JM (2013). Strategy of fine root expansion of Phyllostachys pubescens population into evergreen broad-leaved forest.Chinese Journal of Plant Ecology, 37, 230-238.(in Chinese with English abstract)
[刘骏, 杨清培, 宋庆妮, 余定坤, 杨光耀, 祁红艳, 施建敏 (2013). 毛竹种群向常绿阔叶林扩张的细根策略. 植物生态学报, 37, 230-238.]
[23] Liu S (2010). The Influence of the Changes of Light Environment on the Other Species in Phyllostachys edulis Stands. Master degree dissertation, Zhejiang A&F University, Lin’an, Zhejiang. 24-51.(in Chinese with English abstract)
[刘烁 (2010). 毛竹蔓延过程中林内光环境变化对其他树种的影响. 硕士学位论文, 浙江农林大学, 浙江临安. 24-51.]
[24] Okutomi K, Shinoda S, Fukuda H (1996). Causal analysis of the invasion of broad-leaved forest by bamboo in Japan.Journal of Vegetation Science, 7, 723-728.
[25] Smith FA, Smith SE (2013). How useful is the mutualism- parasitism continuum of arbuscular mycorrhizal functioning?Plant and Soil, 363, 7-18.
[26] Song QN, Yang QP, Liu J, Yu DK, Fang K, Xu P, He YJ (2013). Effects of Phyllostachys edulis expansion on soil nitrogen mineralization and its availability in evergreen broadleaf forest.Chinese Journal of Applied Ecology, 24, 338-344.(in Chinese with English abstract)
[宋庆妮, 杨清培, 刘骏, 余定坤, 方楷, 徐佩, 何宇娟 (2013). 毛竹扩张对常绿阔叶林土壤氮素矿化及有效性的影响. 应用生态学报, 24, 338-344.]
[27] Su LY, Cheng AX, Yu AL, Fu WQ, Zheng PY (1992). Investigation on mycorrhizae of forest trees in Natural Reserve of Mount Tianmu.Journal of Zhejiang Forestry College, 9, 263-276.(in Chinese with English abstract)
[苏琍英, 程爱兴, 喻爱林, 傅卫庆, 郑平谣 (1992). 天目山自然保护区林木菌根调查. 浙江林学院学报, 9, 263-276.]
[28] Suzuki S, Nakagoshi N (2008). Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions.Ecological Research, 23, 641-647.
[29] Suzuki T, Nakatsubo T (2001). Impact of the bamboo Phyllostachys bambusoides on the light environment and plant communities on riverbanks.Journal of Forest Research, 6, 81-86.
[30] The Editorial Board of Forest in China (2000). Forest in China Vol. 4. China Forestry Publishing House, Beijing.(in Chinese)
[《中国森林》编辑委员会 (2000). 中国森林. 第4卷. 中国林业出版社出版, 北京.]
[31] Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986). Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S eds. Physiological and Genetical Aspects of Mycorrhizae. INRA Press, Paris. 217-221.
[32] Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998). Ink and vinegar, a simple staining technique for arbuscular- mycorrhizal fungi.Applied and Environmental Microbiology, 64, 5004-5007.
[33] Vogelsang KM, Bever JD (2009). Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion.Ecology, 90, 399-407.
[34] Widden P (2001). The use of glycerin jelly for mounting stained roots for the observation and quantification of endomycorrhizal fungi.Mycologia, 93, 1026-1027.
[1] CUI Li, GUO Feng, ZHANG Jia-Lei, YANG Sha, WANG Jian-Guo, MENG Jing-Jing, GENG Yun, LI Xin-Guo, WAN Shu-Bo. Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae [J]. Chin J Plant Ecol, 2019, 43(8): 718-728.
[2] GAO Wen-Tong, ZHANG Chun-Yan, DONG Ting-Fa, XU Xiao. Effects of arbuscular mycorrhizal fungi on the root growth of male and female Populus cathayana individuals grown under different sexual combination patterns [J]. Chin J Plant Ecol, 2019, 43(1): 37-45.
[3] XU Li-Jiao, HAO Zhi-Peng, XIE Wei, LI Fang, CHEN Bao-Dong. Transmembrane H + and Ca 2+ fluxes through extraradical hyphae of arbuscular mycorrhizal fungi in response to drought stress [J]. Chin J Plan Ecolo, 2018, 42(7): 764-773.
[4] LIU Hai-Yue, LI Xin-Mei, ZHANG Lin-Lin, WANG Jiao-Jiao, HE Xue-Li. Eco-geographical distribution of arbuscular mycorrhizal fungi associated with Hedysarum scoparium in the desert zone of northwestern China [J]. Chin J Plan Ecolo, 2018, 42(2): 252-260.
[5] CHEN Bao-Ming, WEI Hui-Jie, CHEN Wei-Bin, ZHU Zheng-Cai, YUAN Ya-Ru, ZHANG Yong-Long, LAN Zhi-Gang. Effects of plant invasion on soil nitrogen transformation processes and it’s associated microbial [J]. Chin J Plant Ecol, 2018, 42(11): 1071-1081.
[6] Li-Jiao XU, Xue-Lian JIANG, Zhi-Peng HAO, Tao LI, Zhao-Xiang WU, Bao-Dong CHEN. Arbuscular mycorrhiza improves plant adaptation to phosphorus deficiency through regulating the expression of genes relevant to carbon and phosphorus metabolism [J]. Chin J Plan Ecolo, 2017, 41(8): 815-825.
[7] Liang-Hua CHEN, Juan LAI, Xiang-Wei HU, Wan-Qin YANG, Jian ZHANG, Xiao-Jun WANG, Ling-Jie TAN. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution [J]. Chin J Plan Ecolo, 2017, 41(4): 480-488.
[8] YAO Jie,YAN Yan,ZHANG Chun-Yu,PI Tian-Hui,ZHAO Xiu-Hai. Composition and monthly dynamics of tree seedlings in a coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, China [J]. Chin J Plan Ecolo, 2015, 39(7): 717-725.
[9] YANG Hai-Shui,WANG Qi,GUO Yi,XIONG Yan-Qin,XU Ming-Min,DAI Ya-Jun. Correlation analysis between arbuscular mycorrhizal fungal community and host plant phylogeny [J]. Chin J Plan Ecolo, 2015, 39(4): 383-387.
[10] YAN Jiao, HE Xue-Li, ZHANG Ya-Juan, XU Wei, ZHANG Juan, and ZHAO Li-Li. Colonization of arbuscular mycorrhizal fungi and dark septate endophytes in roots of desert Salix psammophila [J]. Chin J Plan Ecolo, 2014, 38(9): 949-958.
[11] LIU Ting and TANG Ming. Effects of arbuscular mycorrhizal fungi on growth and anatomical properties of stomata and xylem in poplars [J]. Chin J Plan Ecolo, 2014, 38(9): 1001-1007.
[12] WANG Qiang, WANG Qian, DONG Mei, WANG Xiao-Juan, ZHANG Liang, and JIN Liang. Application and progress of split-compartment facility in studies of arbuscular mycorrhizal fungi [J]. Chin J Plan Ecolo, 2014, 38(11): 1250-1260.
[13] ZHU Xiao-Qin, WANG Chun-Yan, SHENG Min, CHEN Hui, and TANG Ming. Effects of arbuscular mycorrhizal fungi on calorific value and contents of carbon and ash in Robinia pseudoacacia [J]. Chin J Plan Ecolo, 2013, 37(11): 1028-1034.
[14] LI Tao and CHEN Bao-Dong. Arbuscular mycorrhizal fungi improving drought tolerance of maize plants by up-regulation of aquaporin gene expressions in roots and the fungi themselves [J]. Chin J Plan Ecolo, 2012, 36(9): 973-981.
[15] HUANG Yi, WANG Dong-Wei, CAI Jia-Liang, ZHENG Wei-Shuang. Review of glomalin-related soil protein and its environmental function in the rhizosphere [J]. Chin J Plan Ecolo, 2011, 35(2): 232-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[3] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chin Bull Bot, 2001, 18(06): 727 -734 .
[4] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chin Bull Bot, 2010, 45(05): 566 -578 .
[5] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chin Bull Bot, 2017, 52(2): 218 -224 .
[6] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chin Bull Bot, 2017, 52(2): 235 -240 .
[7] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[8] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[9] WEI Jie, YU Hui, KUANG Ting-Yun, BEN Gui-Ying. Ultrastructure of Polygonum viviparum L. Grown at Different Elevations on Qinghai Plateau[J]. Chin J Plan Ecolo, 2000, 24(3): 304 -307 .
[10] CHEN Jin, LI Yang, HUANG Jian-Hui. Decomposition of mixed litter of four dominant species in an Inner Mongolia steppe[J]. Chin J Plan Ecolo, 2011, 35(1): 9 -16 .