Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (9): 909-916.doi: 10.17521/cjpe.2015.0087

• Orginal Article • Previous Articles     Next Articles

Responses of photosynthesis and growth to weak light regime in four legume species

ZOU Chang-Ming1, WANG Yun-Qing2,*(), LIU Ying2, ZHANG Xiao-Hong1, TANG Shan2   

  1. 1Anhui Science and Technology University, Fengyang, Anhui 233100, China
    2Institute of Soils and Fertilizers, Anhui Academy of Agricultural Sciences, Hefei 230031, China
  • Received:2015-04-09 Accepted:2015-07-23 Online:2015-09-23 Published:2015-09-03
  • Contact: Yun-Qing WANG E-mail:yunqingw@126.com
  • About author:

    # Co-first authors

Abstract: <i>Aims</i>

In order to determine the adaptability of legumes as the interplanting crops in fruit yards, field and pot experimental treatments with full natural light and weak light (48% of full natural light) regimes were conducted in 2014 to test the shade tolerance and physiological mechanisms of four legume species.

<i>Methods</i>

The leaf photosynthetic characteristic parameters, photosynthetic pigments contents and the activities of ribulose-1,5-bisphosphate carboxylase (RuBPCase) were measured during the first bloom stage. The responses of growth to weak light were likewise studied.

<i>Important findings</i>

The results showed that the maximum net photosynthetic rate, light saturation point, light compensation point, apparent quantum yield and dark respiration rate of the four legume species changed into those of shade-tolerant plants under the weak light stress. The weak light reduced the net photosynthetic rate, stomatal conductance, transpiration rate, water use efficiency and RuBPCase activity of the legumes. In contrast, the weak light increased intercellular CO2 concentration significantly. Contents of chlorophyll (Chl) a and Chl b in leaves of Vigna cylindrica (VCS) and Vigna radiata (VR) increased significantly, while Chl a/b in the leaves decreased dramatically after shading. Other two species changed photosynthetic pigments contents after shading. The weak light changed the growth of the four legume species, such as reducing stem diameter and branching quantity, reducing root nodule and root-shoot ratio, decreasing dry matter yield and dry matter accumulation efficiency, debasing leaf area and leaf thickness, reducing leaf quantity and leaf area index. Crotalaria assamica (CA) can not bloom under the weak light stress. Flowers were not strong enough to seed for Senna occidentalis (SO) under the weak light. The weak light also changed reproductive growth of VCS and VR significantly, such as debasing flowers quantity and flowering time, as well as decreasing seed yield. In conclusion, according to the responses of photosynthesis and growth to weak light regime in the legumes, we concluded that the shade tolerance ranking of four legume species from high to low is as follows: VCS, VR, SO and CA. VCS and VR are suitable for orchard interplanting. However, SO and CA are not suitable for orchard interplanting.

Key words: legume, shading, photosynthetic characteristics, photosynthetic pigments, growth, yield

Table 1

Characteristic values of Pn-PAR fit lines for the legumes in the pot experiment (mean ± SE, n = 3)"

种 Species 处理 Treatment 最大净光合速率 Pnmax
(μmol CO2∙m-2∙s-1)
光饱和点 LSP
(μmol∙m-2∙s-1)
光补偿点 LCP
(μmol∙m-2∙s-1)
表观量子效率 AQY (mol∙mol-1) 暗呼吸速率 Rd
(μmol CO2∙m-2∙s-1)
绿豆
Vigna radiata
对照 CK 21.09 ± 0.51a 1 041 ± 30a 42.6 ± 3.1a 0.025 1 ± 0.012b 1.069 ± 0.078a
遮阴 Shading 13.63 ± 0.84b 806 ± 48b 30.9 ± 2.9b 0.031 4 ± 0.011a 0.969 ± 0.073a
乌豇豆
Vigna cylindrica
对照 CK 25.52 ± 0.33a 1 130 ± 24a 38.2 ± 1.7a 0.031 3 ± 0.015b 1.196 ± 0.052a
遮阴 Shading 19.52 ± 0.45b 958 ± 37b 23.7 ± 1.3b 0.038 4 ± 0.009a 0.911 ± 0.047b
大猪屎豆
Crotalaria assamica
对照 CK 24.36 ± 0.41a 1 116 ± 41a 49.2 ± 3.2a 0.026 5 ± 0.013a 1.304 ± 0.065a
遮阴 Shading 11.46 ± 0.93b 761 ± 66b 43.8 ± 3.4a 0.028 2 ± 0.015a 1.236 ± 0.081a
望江南
Senna occidentalis
对照 CK 21.87 ± 0.42a 1 113 ± 39a 46.9 ± 0.5a 0.027 1 ± 0.005a 1.272 ± 0.069a
遮阴 Shading 11.75 ± 0.59b 767 ± 74b 40.8 ± 1.8b 0.028 4 ± 0.023a 1.158 ± 0.111a

Table 2

Gas exchange parameters of the legumes in the pot experiment (mean ± SE, n = 3)"


Species
处理
Treatment
净光合速率 Pn
(μmol CO2∙m-2∙s-1)
气孔导度 Gs
(mol H2O∙m-2∙s-1)
胞间CO2浓度 Ci
(μmol CO2 ∙mol-1)
蒸腾速率 Tr
(µmol H2O∙m-2∙s-1)
水分利用效率
WUE (mol∙mol-1)
绿豆
Vigna radiata
对照 CK 17.55 ± 0.56a 0.221 ± 0.017a 222.9 ± 5.7b 3.98 ± 0.18a 4.41 ± 0.18a
遮阴 Shading 10.12 ± 0.33b 0.138 ± 0.011b 244.4 ± 5.1a 2.73 ± 0.12b 3.71 ± 0.14b
乌豇豆
Vigna cylindrica
对照 CK 19.16 ± 0.25a 0.257 ± 0.015a 194.0 ± 4.2b 4.45 ± 0.08a 4.31 ± 0.21a
遮阴 Shading 14.11 ± 0.33b 0.203 ± 0.005b 224.6 ± 2.1a 3.52 ± 0.05b 4.01 ± 0.20a
大猪屎豆
Crotalaria assamica
对照 CK 20.26 ± 0.70a 0.328 ± 0.023a 188.7 ± 4.8b 4.66 ± 0.17a 4.35 ± 0.36a
遮阴 Shading 10.24 ± 0.34b 0.205 ± 0.018b 222.6 ± 9.3a 3.74 ± 0.19b 2.74 ± 0.29b
望江南
Senna occidentalis
对照 CK 17.72 ± 0.39a 0.228 ± 0.012a 201.9 ± 7.4b 4.24 ± 0.21a 4.18 ± 0.22a
遮阴 Shading 10.85 ± 0.43b 0.158 ± 0.006b 234.1 ± 3.9a 3.15 ± 0.14b 3.44 ± 0.13b

Table 3

Content of photosynthetic pigments and activities of ribulose-1, 5-bisphosphate carboxylase (RuBPCase) in fresh leaves of the legumes in the pot experiment (mean ± SE, n = 3)"


Species
处理
Treatment
叶绿素a
Chl a (mg∙g-1)
叶绿素b
Chl b (mg∙g-1)
叶绿素总量
Chl (a + b) (mg∙g-1)
类胡萝卜素
Car (mg∙g-1)
Chl a/b RuBPCase活性
RuBPCase activity (µmol∙g-1∙min-1)
绿豆
Vigna radiata
对照 CK 1.87 ± 0.14b 0.40 ± 0.12b 2.27 ± 0.26b 0.42 ± 0.05a 4.68 ± 0.55a 45.6 ± 2.2a
遮阴 Shading 3.16 ± 0.17a 1.74 ± 0.23a 4.90 ± 0.35a 0.42 ± 0.10a 1.82 ± 0.35b 36.7 ± 1.6b
乌豇豆
Vigna cylindrica
对照 CK 1.83 ± 0.02b 0.35 ± 0.01b 2.18 ± 0.03b 0.58 ± 0.02a 5.23 ± 0.47a 48.3 ± 1.9a
遮阴 Shading 3.38 ± 0.20a 2.14 ± 0.25a 5.53 ± 0.54a 0.37 ± 0.08b 1.58 ± 0.32b 40.2 ± 1.3b
大猪屎豆
Crotalaria assamica
对照 CK 2.19 ± 0.08a 0.63 ± 0.08a 2.82 ± 0.16a 0.75 ± 0.14a 3.50 ± 0.23b 52.8 ± 1.7a
遮阴 Shading 1.59 ± 0.14b 0.34 ± 0.05b 1.93 ± 0.23b 0.59 ± 0.04a 4.68 ± 0.31a 23.5 ± 3.1b
望江南
Senna occidentalis
对照 CK 1.12 ± 0.08b 0.28 ± 0.04b 1.40 ± 0.12b 0.51 ± 0.06a 4.00 ± 0.38a 50.1 ± 1.5a
遮阴 Shading 2.08 ± 0.11a 0.54 ± 0.09a 2.62 ± 0.20a 0.54 ± 0.11a 3.84 ± 0.49a 31.4 ± 2.3b

Table 4

Effect of shading on roots, stem and root nodules of the legumes in the pot experiment (mean ± SE, n = 3)"


Species
处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter (cm)
侧枝数
Branching
quantity
地下部鲜质量
Fresh mass underground part (g∙pot-1)
地上部鲜质量
Fresh mass overground part (g∙pot-1)
根/冠比
Root-shoot
ratio
每盆根瘤质量Mass of root nodule per pot (g)
绿豆
Vigna radiata
对照 CK 37.4 ± 1.8a 0.62 ± 0.03a 7 ± 1a 22.7 ± 1.6a 116.2 ± 9.1a 0.195 ± 0.013a 3.43 ± 0.28a
遮阴 Shading 39.6 ± 2.0a 0.41 ± 0.04b 4 ± 0b 10.9 ± 1.0b 82.1 ± 5.3b 0.133 ± 0.009b 0.39 ± 0.09b
乌豇豆
Vigna cylindrica
对照 CK 45.7 ± 2.1a 0.75 ± 0.06a 8 ± 1a 29.6 ± 1.1a 144.8 ± 8.2a 0.204 ± 0.017a 2.76 ± 0.17a
遮阴 Shading 48.3 ± 2.6a 0.48 ± 0.02b 5 ± 0b 14.8 ± 0.8b 108.1 ± 4.7b 0.137 ± 0.008b 0.47 ± 0.06b
大猪屎豆
Crotalaria assamica
对照 CK 67.7 ± 3.3a 0.88 ± 0.05a 19 ± 3a 34.9 ± 1.3a 173.7 ± 9.4a 0.201 ± 0.015a 1.94 ± 0.19a
遮阴 Shading 41.3 ± 1.9b 0.33 ± 0.03b 5 ± 1b 6.3 ± 0.7b 52.0 ± 4.5b 0.121 ± 0.007b 0.25 ± 0.04b
望江南
Senna occidentalis
对照 CK 63.5 ± 2.0a 1.00 ± 0.08a 15 ± 1a 38.3 ± 1.4a 192.7 ± 9.8a 0.199 ± 0.012a 2.39 ± 0.31a
遮阴 Shading 55.8 ± 1.4b 0.51 ± 0.01b 6 ± 1b 8.4 ± 0.6b 67.2 ± 5.6b 0.125 ± 0.006b 0.33 ± 0.10b

Table 5

Effect of shading on leaves and yields of the legumes in the field experiment (mean ± SE, n = 3)"


Species
处理
Treatment
单株叶片数
Leaves quantity
叶片厚度
Leaf thickness (mm)
单片叶面积
Leaf area (cm2)
叶面积指数
Leaf area index
鲜草产量
Fresh-grass yield (kg∙hm-2)
干物质产量
Dry matter yield (kg∙hm-2)
干物质积累效率
Efficiency of dry matter accumulation (kg∙hm-2·d-1)
绿豆
Vigna radiata
对照 CK 67 ± 5a 0.34 ± 0.03a 58.3 ± 3.3a 3.91 ± 0.22a 12 070 ± 483a 2 076 ± 83a 49.4 ± 2.2a
遮阴 Shading 41 ± 4b 0.26 ± 0.01b 29.7 ± 1.7b 1.22 ± 0.11b 8 503 ± 344b 1 386 ± 56b 35.5 ± 1.4b
乌豇豆
Vigna cylindrica
对照 CK 91 ± 6a 0.29 ± 0.02a 51.2 ± 2.9a 4.66 ± 0.26a 15 411 ± 614a 2 435 ± 97a 60.9 ± 2.7a
遮阴 Shading 51 ± 2b 0.21 ± 0.01b 39.4 ± 1.4b 2.01 ± 0.13b 11 562 ± 451b 1 769 ± 69b 44.2 ± 2.0b
大猪屎豆
Crotalaria assamica
对照 CK 89 ± 6a 0.33 ± 0.02a 36.0 ± 1.9a 3.20 ± 0.18a 18 135 ± 785a 2 956 ± 128a 46.2 ± 3.8a
遮阴 Shading 39 ± 3b 0.16 ± 0.01b 12.9 ± 1.0b 0.50 ± 0.10b 5 487 ± 308b 856 ± 48b 13.4 ± 1.2b
望江南
Senna occidentalis
对照 CK 168 ± 9a 0.17 ± 0.01a 23.6 ± 1.6a 3.96 ± 0.19a 19 379 ± 706a 4 089 ± 149a 54.5 ± 3.8a
遮阴 Shading 82 ± 8b 0.13 ± 0.01b 14.0 ± 1.5b 1.15 ± 0.15b 7 020 ± 322b 1 397 ± 64b 15.9 ± 1.0b

Table 6

Effect of shading on reproductive growth of the legumes in the field experiment (mean ± SE, n = 3)"


Species
处理
Treatment
出苗-初花天数Emerging to first bloom (d) 花期持续天数
Flowering continuously time (d)
全生育期
Whole growth stage (d)
每株开花数
Flowers per plant
每株荚数
Pods per plant
荚长
Pod length (cm)
千粒重
Thousand-grain weight (g)
种子产量
Seed yield (kg∙hm-2)
绿豆
Vigna radiata
对照 CK 42 ± 0a 21 ± 1a 68 ± 1a 35 ± 2a 33 ± 2a 9.2 ± 0.7a 43.2 ± 2.0a 757 ± 43a
遮阴 Shading 39 ± 1b 12 ± 0b 60 ± 1b 9 ± 1b 7 ± 1b 6.9 ± 0.5b 34.6 ± 1.6b 125 ± 12b
乌豇豆
Vigna
cylindrica
对照 CK 40 ± 0a 37 ± 1a 83 ± 1a 34 ± 2a 30 ± 2a 15.8 ± 0.6a 99.5 ± 2.2a 1595 ± 87a
遮阴 Shading 40 ± 1a 33 ± 0b 82 ± 1a 11 ± 1b 8 ± 1b 13.1 ± 0.5b 90.9 ± 1.5b 341 ± 26b
大猪屎豆
Crotalaria
assamica
对照 CK 64 ± 0 27 ± 1 107 ± 1 238 ± 15 225 ± 15 5.0 ± 0.3 16.2 ± 0.6 969 ± 61
遮阴 Shading - - - - - - - -
望江南
Senna
occidentalis
对照 CK 75 ± 0b 36 ± 0a 123 ± 0 280 ± 14a 264 ± 14 11.7 ± 0.9 17.7 ± 0.9 2326 ± 105
遮阴 Shading 88 ± 1a 11 ± 0b - 5 ± 1b - - - -
[1] Awal MA, Koshi H, Ikeda T (2006). Radiation interception and use by maize/peanut intercrop canopy.Agricultural and Forest Meteorology, 139, 74-83.
[2] Bloor JMG, Grubb PJ (2003). Growth and mortality in high and low light: Trends among 15 shade-tolerant tropical rain forest tree species.Journal of Ecology, 91, 77-85.
[3] Chen Y, Yang ZM, Li ZH (2006). Review of studies on turfgrass shade-tolerance.Chinese Journal of Grassland, 28(3), 71-76.(in Chinese with English abstract)
[陈煜, 杨志民, 李志华 (2006). 草坪草耐荫性研究进展. 中国草地学报, 28(3), 71-76.]
[4] Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis.Annual Review of Plant Physiology, 33, 317-345.
[5] Harrison WG, Platt T (1986). Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations.Polar Biology, 5, 153-164.
[6] Jiang W, Jiang WB, Li ZG (2007). Advance of researches on germplasm differences and genetic expression of photosynthetic traits in horticultural crops.Nonwood Forest Research, 25(4), 102-108.(in Chinese with English abstract)
[姜武, 姜卫兵, 李志国 (2007). 园艺作物光合性状种质差异及遗传表现研究进展. 经济林研究, 25(4), 102-108.]
[7] Knox J, Morris J, Hess T (2010). Identifying future risks to UK agricultural crop production: Putting climate change in context.Outlook on Agriculture, 39, 249-256.
[8] Li GH, Wan YS, Liu FZ, Zhang K (2014). Photosynthetic characteristics in different peanut cultivars under conditions of drought and re-watering at seedling stage.Chinese Journal of Plant Ecology, 38, 729-739.(in Chinese with English abstract)
[厉广辉, 万勇善, 刘风珍, 张昆 (2014). 苗期干旱及复水条件下不同花生品种的光合特性. 植物生态学报, 38, 729-739.]
[9] Li L, Tang CX, Rengel Z, Zhang FS (2003). Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source.Plant and Soil, 248, 297-303.
[10] Li L, Tang C, Rengel Z, Zhang FS (2004a). Calcium, magnesium and microelement uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea.Plant and Soil, 261, 29-37.
[11] Li SM, Li L, Zhang FS, Tang C (2004b). Acid phosphatase role in chickpea/maize intercropping.Annals of Botany, 94, 297-303.
[12] Liu YM, Ai XZ, Yu XC (2010). Effects of ALA on photosynthesis of cucumber seedlings under suboptimal temperature and light intensity.Acta Horticulturae Sinica, 37, 65-71.(in Chinese with English abstract)
[刘玉梅, 艾希珍, 于贤昌 (2010). 5-氨基乙酰丙酸对亚适宜温光条件下黄瓜幼苗光合特性的影响. 园艺学报, 37, 65-71.]
[13] Qi J, Shi SL, Xu CL, Yan WH, Zhang XJ (2013). A comparison of photosynthesis responses to light of four Elymus species.Acta Prataculturae Sinica, 22(6), 100-107.(in Chinese with English abstract)
[祁娟, 师尚礼, 徐长林, 闫伟红, 张小娇 (2013). 4种披碱草属植物光合作用光响应特性的比较. 草业学报, 22(6), 100-107.]
[14] Stitt M, Schulze D (1994). Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology.Plant, Cell & Environment, 17, 465-487.
[15] Tanwar SPS, Rao SS, Regar PL, Datt S, Kumar P, Jodha BS, Santra P, Kumar R, Ram R (2014). Improving water and land use efficiency of fallow-wheat system in shallow Lithic Calciorthid soils of arid region: Introduction of bed planting and rainy season sorghum-legume intercropping.Soil and Tillage Research, 138, 44-55.
[16] Wang XK (2006). Principles and Techniques of Plant Physiological Biochemical Experiment. Higher Education Press, Beijing. 134-139, 195-201.
(in Chinese) [王学奎 (2006). 植物生理生化实验原理和技术. 高等教育出版社, 北京. 134-139, 195-201.]
[17] Wen MX, Shi XJ, Nie ZP, Liu WF, Zhou XB (2011). Effect of summer green manure in Pankan tangerine orchard.Journal of Fruit Science, 28, 1077-1081.(in Chinese with English abstract)
[温明霞, 石孝均, 聂振朋, 刘文峰, 周鑫斌 (2011). 椪柑果园种植夏季绿肥的效应. 果树学报, 28, 1077-1081.]
[18] Wu H, Dai HF, Zhang JS, Jiao XL, Liu C, Shi JY, Fan ZC, Aliyan R (2014). Responses of photosynthetic characteristics to low temperature stress and recovery treatment in cotton seedling leaves.Chinese Journal of Plant Ecology, 38, 1124-1134.(in Chinese with English abstract)
[武辉, 戴海芳, 张巨松, 焦晓玲, 刘翠, 石俊毅, 范志超, 阿丽艳·肉孜 (2014). 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应. 植物生态学报, 38, 1124-1134.]
[19] Zhang CP, Meng P, Li JZ, Wan XC (2014). Interactive effects of soil acidification and phosphorus deficiency on photosynthetic characteristics and growth in Juglans regia seedlings.Chinese Journal of Plant Ecology, 38, 1345-1355.(in Chinese with English abstract)
[张翠萍, 孟平, 李建中, 万贤崇 (2014). 磷元素和土壤酸化交互作用对核桃幼苗光合特性的影响. 植物生态学报, 38, 1345-1355.]
[20] Zhang JX, Yan Y, Fang YM (2013). Effect of shading on growth and photosynthetic characteristics of Clerodendrum bungei.Journal of Plant Resources and Environment, 22(1), 88-93.(in Chinese with English abstract)
[张建新, 颜赟, 方炎明 (2013). 遮光对臭牡丹生长和光合特性的影响. 植物资源与环境学报, 22(1), 88-93.]
[21] Zhang Y, Xia GH, Ma K, Dai GY, Dai YC, Yan CX (2014). Effects of shade on photosynthetic characteristics and chlorophyll fluorescence of Ardisia violacea.Chinese Journal of Applied Ecology, 25, 1940-1948.(in Chinese with English abstract)
[张云, 夏国华, 马凯, 李根有, 代英超, 严彩霞 (2014). 遮阴对堇叶紫金牛光合特性和叶绿素荧光参数的影响. 应用生态学报, 25, 1940-1948.]
[1] Qianqian Guo Wenbin Zhou. Advances in the Mechanism Underlying Plant Response to Stress Combination(Revised) [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[2] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[3] Ma Hongxiu,Wang Kaiyong,Zhang Kaixiang,Meng Chunmei,An Mengjie. Effect of Cottonseed Meal on Cotton Physiology and Growth Compensation Under Salinity-alkalinity Stress [J]. Chin Bull Bot, 2019, 54(2): 208-216.
[4] Xian Yang, Dong Xin, Xie Xiaoman, Wu Dan, Han Biao, Wang Yan. Effect of Conservation Conditions on Restricting Conservation of Acer rubrum cv. ‘Somerset’ [J]. Chin Bull Bot, 2019, 54(1): 64-71.
[5] Zhen Xiaoxi, Liu Haoran, Li Xin, Xu Fan, Zhang Wenzhong. Heterologous Overexpression of Autophagy-related Gene OsATG8b from Rice Confers Tolerance to Nitrogen/Carbon Starvation and Increases Yield in Arabidopsis [J]. Chin Bull Bot, 2019, 54(1): 23-36.
[6] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[7] WU Xiao-Qi, YANG Sheng-He, HUANG Li, LI Xiao-Han, YANG Chao, QIAN Shen-Hua, YANG Yong-Chuan. Effects of forest canopy condition on the establishment of Castanopsis fargesii seedlings in a subtropical evergreen broad-leaved forest [J]. Chin J Plant Ecol, 2019, 43(1): 55-64.
[8] GAO Wen-Tong, ZHANG Chun-Yan, DONG Ting-Fa, XU Xiao. Effects of arbuscular mycorrhizal fungi on the root growth of male and female Populus cathayana individuals grown under different sexual combination patterns [J]. Chin J Plant Ecol, 2019, 43(1): 37-45.
[9] Zhang Xuhong, Wang Di, Liang Zhenxu, Sun Meiyu, Zhang Jinzheng, Shi Lei. Callus Induction and Establishment of a Plant Regeneration System with Lilium martagon [J]. Chin Bull Bot, 2018, 53(6): 840-847.
[10] Du Kangxi, Shen Wenhui, Dong Aiwu. Advances in Epigenetic Regulation of Abiotic Stress Response in Plants [J]. Chin Bull Bot, 2018, 53(5): 581-593.
[11] Hao Tian,Wanjin Liao. Consequences of clonal growth on pollinator visitation in flowering plants [J]. Biodiv Sci, 2018, 26(5): 468-475.
[12] ZHONG Qiao-Lian,LIU Li-Bin,XU Xin,YANG Yong,GUO Yin-Ming,XU Hai-Yang,CAI Xian-Li,NI Jian. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China [J]. Chin J Plan Ecolo, 2018, 42(5): 562-572.
[13] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plan Ecolo, 2018, 42(5): 585-594.
[14] Wei Hua, Wang Yan, Liu Baohui, Wang Lei. Deciphering the Underlying Mechanism of the Plant Circadian System and Its Regulation on Plant Growth and Development [J]. Chin Bull Bot, 2018, 53(4): 456-467.
[15] Zhou Zhi, Zhang Yongli, Wang Bianbian, Gai Shujie, Wang Ruozhong, Lu Xiangyang, Li Ruilian. The Effects of Different Phosphor Excitation-type LED Lighting on the Growth and Development of Arabidopsis [J]. Chin Bull Bot, 2018, 53(4): 502-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QI Xin, CAO Kun-Fang, FENG Yu-Long. Photosynthetic Acclimation to Different Growth Light Environments in Seedlings of Three Tropical Rainforest Syzygium Species[J]. Chin J Plan Ecolo, 2004, 28(1): 31 -38 .
[2] TIAN Han-Qin, WAN Shi-Qiang, MA Ke-Ping. [J]. Chin J Plan Ecolo, 2007, 31(2): 173 -174 .
[3] Li Ling;Luo Yun-xiu;He Jian-hui and Pan Rui-chi. Promoting the Formation of Adventitious Roots in Cutting of Some Woody Plants by GL Reagent[J]. Chin Bull Bot, 1996, 13(增刊): 63 -65 .
[4] Xingguang Dong, Yufen Cao, Kun Wang, Luming Tian, Ying Zhang, Dan Qi. Comparison of the Characters and Distribution of Vessel Elements in Xylem Among Three Main Pear Rootstocks in China[J]. Chin Bull Bot, 2015, 50(2): 227 -233 .
[5] Yimo Zhang, Qing Wang, Meng Lu, Xin Jia, Yupeng Geng, Bo Li. Variation and phenotypic plasticity in life history traits of Spartina al-terniflora along the east coast of China[J]. Biodiv Sci, 2008, 16(5): 462 -469 .
[6] Lin Peng. A Brief Note on “The Research for Development Seminar on the Mangrove Ecosystem”[J]. Chin J Plan Ecolo, 1986, 10(1): 76 -78 .
[7] Yongmei Che, Dandan Zhang, Lixia Hou, Lanxiang Wang, Xin Liu. Extracellular Adenosine Triphosphate Functions Downstream of Hydrogen Sulfide in Ethylene-induced Stomatal Closure in Arabidopsis thaliana[J]. Chin Bull Bot, 2015, 50(1): 22 -31 .
[8] Ximei Zhang, Zhichao Pu, Yuanheng Li, Xingguo Han. Stochastic processes play more important roles in driving the dynamics of rarer species[J]. J Plant Ecol, 2016, 9(3): 328 -332 .
[9] LIU Su-Xia, XING Bo, YUAN Guo-Fu, MO Xing-Guo, and LIN Zhong-Hui. Relationship analysis between soil moisture in root zone and top-most layer in China[J]. Chin J Plan Ecolo, 2013, 37(1): 1 -17 .
[10] MIAO Yu, CHEN Yue-Lin, LI Xian-Wei, FAN Chuan, LIU Yun-Ke, YANG Zheng-Ju, ZHANG Jun, and CAI Xin-Li. Effects of fertilization on Alnus formosana fine root morphological characteristics, biomass and issue content of C, N under A. formosana-Hemarthria compressa compound mode[J]. Chin J Plan Ecolo, 2013, 37(7): 674 -683 .