Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (3): 265-276.doi: 10.17521/cjpe.2015.0300

• Research Articles • Previous Articles     Next Articles

Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China

CEN Yu1,2,WANG Cheng-Dong1,2,ZHANG Zhen3,REN Xia4,LIU Mei-Zhen1,2,*(),YANG Fan1,2   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2 University of the Chinese Academy of Sciences, Beijing 100049, China
    3 College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
    4 Ordos Soil and Water Conservation Bureau, Ordos, Nei Mongol 017010, China
  • Online:2017-06-16 Published:2018-03-20
  • Contact: Mei-Zhen LIU ORCID:0000-0003-3557-7777 E-mail:liumzh@ibcas.ac.cn
  • Supported by:
    Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences.(XDA0505040302);the National Natural Science Foundation of China.(41371056)

Abstract:

Aims Grassland is an important component of the global terrestrial ecosystem and plays a significant role in the global carbon cycle. Knowledge of the spatial distribution of biomass and carbon density and their constraining environmental factors in different types of grasslands is crucial for revealing the variations of grassland carbon pool and understanding the grassland ecosystem carbon sequestration in China. The objective of this study was to determine the spatial patterns of biomass and carbon density distribution in natural grasslands of Hebei Province, China.

Methods The aboveground biomass, root biomass, litter mass, and their carbon densities were investigated in 390 grassland plots from 78 sites representative of six different types of natural grasslands based on vegetation, soil and climate from 2011 to 2013. The grassland types include temperate steppe, temperate meadow, temperate mountain meadow, low-land saline meadow, warm-temperate tussock and warm-temperate shrub tussock.

Important findings There were significant differences (p < 0.05) in the total biomass among the six grassland types, with the highest value of 2770.2 g·m-2 in the low-land saline meadow and lowest value of 747.6 g·m-2 in the temperate steppe. The low-land saline meadow also had the highest value in the aboveground biomass (285.0 g·m-2), followed by the warm-temperate shrub tussock (235.1 g·m-2) and the temperate mountain meadow (203.1 g·m-2); the lowest value in aboveground biomass was found in the temperate steppe (110.6 g·m-2). The litter mass was largest in the lowland saline meadow (584.0 g·m-2), followed by the temperate mountain meadow (187.9 g·m-2) and the warm-temperate shrub tussock (91.0 g·m-2). The values of root biomass were 1.9-4.3 times greater than that of aboveground biomass across the six types of grasslands, resulting in average root:shoot ratio of 3.1. The root biomass was largest in the lowland saline meadow (1901.3 g·m-2), and smallest in the temperate steppe with only 1/3 of that in the former. In terms of carbon density, lowland saline meadow also displayed the largest values among all the types of grasslands. The values of carbon density in the aboveground vegetation, litter and root were respectively 132.7, 81.2, and 705.9 g C·m-2. In all grassland types, the biomass of aboveground vegetation and root, litter mass, and total biomass decreased initially and then increased with elevation (p < 0.05). With the increasing accumulative temperatures >10 °C, the root biomass and the total biomass decreased initially and then increased (p < 0.01). In this study, the warm-temperate shrub tussock mostly distributes in the rocky mountain area where the soil layer is very thin, leading to the lower biomass relatively to the temperate meadow. Therefore, climate, soil and geographical factors should be comprehensively considered when comparing the biomass among different grassland types in large area.

Key words: aboveground biomass, litter mass, root biomass, carbon density, environmental factor, natural grassland

Fig. 1

The distribution of sampling sites in the experiment in Hebei Province."

Table 1

Information on the number of plots and dominant species for different types of grasslands in Hebei Province"

草地类型
Grassland type
样本数
Sample size
优势种 Dominant species
温性草原
Temperate steppe
30 冰草、羊草、百里香、大针茅
Agropyron cristatum, Leymus chinensis, Thymus mongolicus, Stipa grandis
温性草甸
Temperate meadow
13 委陵菜、披针薹草、地榆
Potentilla chinensis, Carex lancifolia, Sanguisorba officinalis
温性山地草甸
Temperate mountain meadow
9 龙牙草、篷子菜、直穗披碱草
Agrimonia pilosa, Galium verum, Elymus gmelinii
低地盐化草甸
Low-land saline meadow
3 叉分蓼、白花马蔺、芨芨草
Polygonum divaricatum, Iris lacteal, Achnatherum splendens
暖性草丛
Warm-temperate tussock
4 阿拉伯黄背草、矮蒿
Themeda triandra, Artemisia lancea
暖性灌草丛
Warm-temperate shrub tussock
19 胡枝子、荆条、绣线菊、金色狗尾草
Lespedeza bicolor, Vitex negundo var. heterophylla, Spiraea salicifolia, Setaria glauca

Fig. 2

The aboveground biomass, litter mass and root biomass in different types of grasslands (mean ± SD). 1, temperate steppe; 2, temperate meadow; 3, temperate mountain meadow; 4, low-land saline meadow; 5, warm-temperate tussock; 6, warm- temperate shrub tussock. Different lower-case letters indicate significant differences in biomass among different types of grasslands (p < 0.05)."

Fig. 3

Proportions of aboveground biomass, litter mass and root biomass in different types of grasslands. 1, temperate steppe; 2, temperate meadow; 3, temperate mountain meadow; 4, low- land saline meadow; 5, warm-temperate tussock; 6, warm- temperate shrub tussock."

Fig. 4

The aboveground carbon density, litter carbon density and root carbon density in different types of grasslands (mean ± SD). 1, temperate steppe; 2, temperate meadow; 3, temperate mountain meadow; 4, low-land saline meadow; 5, warm- temperate tussock; 6, warm-temperate shrub tussock. Different lower-case letters indicate significant differences in carbon density among different types of grasslands (p < 0.05)."

Fig. 5

Proportions of aboveground carbon density, litter carbon density and root carbon density in different types of grasslands. 1, temperate steppe; 2, temperate meadow; 3, temperate mountain meadow; 4, low-land saline meadow; 5, warm- temperate tussock; 6, warm-temperate shrub tussock."

Fig. 6

Relationships of aboveground biomass, litter mass, root biomass, and total biomass with elevation in the grassland ecosystem."

Fig. 7

Relationships of aboveground biomass, litter mass, root biomass, and total biomass with precipitation in the grassland ecosystem. Here the precipitation is the mean of the annual precipitation of all sampling sites."

Fig. 8

Relationships of aboveground biomass, litter mass, root biomass, and total biomass with accumulative temperature in the grassland ecosystem. The accumulative temperature is the mean of the accumulative temperatures > 10 °C of all sampling sites."

[1] Animal Husbandry and Fishery Bureau of Hebei Province ( 1990). Grassland Resources in Hebei Province. Science and Technology Press of Hebei Province, Shijiazhuang.
河北省畜牧水产局 ( 1990). 河北草地资源. 河北科学技术出版社, 石家庄.
[2] Animal Husbandry Bureau of Hebei Province ( 1997). Grassland Construction in Hebei. Science and Technology Press of Hebei Province, Shijiazhuang.
河北省畜牧局 ( 1997). 河北草地建设. 河北科学技术出版社, 石家庄.
[3] Bai YF, Zhang LX, Zhang Y, Chen ZZ ( 2002). Changes in plant functional composition along gradients of precipitation and temperature in the Xilin River basin, Inner Mongolia. Acta Phytoecologica Sinica, 26, 308-316.
doi: 10.1088/1009-1963/11/5/313
白永飞, 张丽霞, 张炎, 陈佐忠 ( 2002). 内蒙古锡林河流域草原植物群落功能群植物组成沿水热梯度变化的样带研究. 植物生态学报, 26, 308-316.
doi: 10.1088/1009-1963/11/5/313
[4] Chang TJ, Wang JL, Li P, Cheng HH, Fang HL ( 2007). Carbon density and reserve of alpine grassland vegetation in northern Tibet. Ecological Science, 26, 437-442.
doi: 10.3969/j.issn.1008-8873.2007.05.009
常天军, 王建林, 李鹏, 成海宏, 方华丽 ( 2007). 藏北高寒草地植被的碳密度与碳贮量. 生态科学, 26, 437-442.
doi: 10.3969/j.issn.1008-8873.2007.05.009
[5] Chen ZZ, Wang SP ( 2000). Typical Grassland Ecosystem in China. Science Press, Beijing.
陈佐忠, 汪诗平 ( 2000). 中国典型草原生态系统. 科学出版社, 北京.]
[6] Deng L, Shangguan ZP ( 2012). Distribution of natural grassland biomass and its relationship with influencing factors in Shaanxi. Acta Prataculturae Sinica, 20, 825-835.
doi: 10.11733/j.issn.1007-0435.2012.05.006
邓蕾, 上官周平 ( 2012). 陕西省天然草地生物量空间分布格局及其影响因素. 草地学报, 20, 825-835.
doi: 10.11733/j.issn.1007-0435.2012.05.006
[7] Department of Animal Husbandry and Veterinary, the General Station of Animal Husbandry and Veterinary, the Ministry of Agriculture , China ( 1996). Rangeland Resources of China. China Science and Technology Press, Beijing.
中华人民共和国农业部兽医司, 全国畜牧兽医总站 ( 1996). 中国草地资源. 中国科学技术出版社, 北京.
[8] Du GZ, Tan GL, Li ZZ, Liu ZH, Dong GS ( 2003). Relationship between species richness and productivity in an alpine meadow plant community. Acta Phytoecologica Sinica, 27, 125-132.
doi: 10.17521/cjpe.2003.0019
杜国祯, 覃光莲, 李自珍, 刘正恒, 董高升 ( 2003). 高寒草甸植物群落中物种丰富度与生产力的关系研究. 植物生态学报, 27, 125-132.
doi: 10.17521/cjpe.2003.0019
[9] Ellis J ( 1992). Grasslands and Grassland Sciences in Northern China. National Academy Press, Washington.
[10] Fan JW, Zhong HP, Warwick Harris, Yu GR, Wang SQ, Hu ZM, Yue YZ ( 2008). Carbon storage in the grasslands of China based on field measurements of above- and below- ground biomass. Climatic Change, 86, 375-396.
doi: 10.1007/s10584-007-9316-6
[11] Fang JY, Liu GH, Xu SL ( 1996). Carbon pool of terrestrial ecosystem in China. In: Wang GC, Wen YP eds. Greenhouse gas Concentration and Emission Monitoring and Related Processes. China Environmental Science Press, Beijing.
方精云, 刘国华, 徐嵩龄 ( 1996). 中国陆地生态系统的碳库. 见:王庚辰, 温玉璞. 温室气体浓度和排放监测及相关过程. 中国环境科学出版社, 北京. 109-128.
[12] Fang JY, Yang YH, Ma WH, Mohammat A, Shen HH ( 2010). Ecosystem carbon stocks and their changes in China’s grasslands. Science China: Life Sciences, 53, 757-765.
doi: 10.1007/s11427-010-4029-x pmid: 20697865
[13] Han B, Fan JW, Zhong HP ( 2006). Grassland biomass of communities along gradients of the Inner Mongolia grassland transect. Journal of Plant Ecology (Chinese Version), 30, 553-562.
韩彬, 樊江文, 钟华平 ( 2006). 内蒙古草地样带植物群落生物量的梯度研究. 植物生态学报, 30, 553-562.
[14] Han YW, Gao JX ( 2005). Analysis of main ecological problems of grasslands and relevant countermeasures in China. Research of Environmental Sciences, 18(3), 60-62.
韩永伟, 高吉喜 ( 2005). 中国草地主要生态环境问题分析与防治对策. 环境科学研究, 18(3), 60-62.
[15] Li B ( 1997). The rangeland degradation in north China and its preventive strategy. Scientia Agricultura Sinica, 30(6), 1-9.
李博 ( 1997). 中国北方草地退化及其防治对策. 中国农业科学, 30(6), 1-9.
[16] Liao YT ( 1981). Grassland resources and utilization in Hebei. Journal of Hebei Agricultural University, 4(2), 1-11.
繆应庭 ( 1981). 河北草地资源与利用. 河北农业大学学报, 4(2), 1-11.
[17] Lu CQ, Sun SC ( 2004). A review on the distribution patterns of carbon density in terrestrial ecosystems. Acta Phytoecologica Sinica, 28, 692-703.
doi: 10.17521/cjpe.2004.0093
[18] Ma WH, Fang JY, Yang YH, Mohammat A ( 2010). Biomass carbon stocks and their changes in northern China’s grasslands during 1982-2006. Science China: Life Sciences, 53, 841-850.
doi: 10.1007/s11427-010-4020-6 pmid: 20697873
[19] Ma WH, Yang YH, He JS, Zeng H, Fang JY ( 2008). Relationship between biomass and environmental factors in temperate grassland in Inner Mongolia. Scientia Sinica Vitae, 38, 84-92.
doi: 10.3724/SP.J.1005.2008.01083
马文红, 杨元合, 贺金生, 曾辉, 方精云 ( 2008). 内蒙古温带草地生物量及其与环境因子的关系. 中国科学: 生命科学, 38, 84-92.
doi: 10.3724/SP.J.1005.2008.01083
[20] Ni J ( 2001). Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change. Climatic Change, 49, 339-358.
doi: 10.1023/A:1010728609701
[21] Ni J ( 2002). Carbon storage in grasslands of China. Journal of Arid Environments, 50, 205-218.
doi: 10.1006/jare.2001.0902
[22] Ni J ( 2004a). Forage yield-based carbon storage in grasslands of China. Climate Change, 67, 237-246.
doi: 10.1007/s10584-004-0070-8
[23] Ni J ( 2004b). Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecology, 174, 217-234.
doi: 10.1023/B:VEGE.0000049097.85960.10
[24] Piao SL, Fang JY, Zhou LM, Tan K, Tao S ( 2007). Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochemical Cycles, 21, GB2002, DOI: 10.1029/2005GB002634.
doi: 10.1029/2005GB002634
[25] Scurlock JMO, Hall DO ( 1998). The global carbon sink: A grassland perspective. Global Change Biology, 4, 229-233.
doi: 10.1046/j.1365-2486.1998.00151.x
[26] Song LM, Ma XH, Wei YL, Ma ZT, Ma FL, Wang JM ( 2009). Causes and countermeasures of degradation and desertification of natural meadow in Haibei District of Qinghai Province. Pratacultural Science, 26(7), 186-190.
宋理明, 马骁虹, 魏永林, 马忠泰, 马扶林, 王建民 ( 2009). 海北州天然草地退化沙化成因与对策. 草业科学, 26(7), 186-190.
[27] Xiao X, Ojima DS, Parton WJ, Chen Z, Chen D ( 1995). Sensitivity of Inner Mongolia grasslands to climate change. Journal of Biogeography, 22, 643-648.
doi: 10.2307/2845965
[28] Xie GD, Zhang YL, Lu CX, Zhen D, Cheng SK ( 2001). Study on valuation of rangeland ecosystem services of China. Journal of Natural Resources, 16, 47-53.
doi: 10.3321/j.issn:1000-3037.2001.01.009
谢高地, 张钇锂, 鲁春霞, 郑度, 成升魁 ( 2001). 中国自然草地生态系统服务价值. 自然资源学报, 16, 47-53.
doi: 10.3321/j.issn:1000-3037.2001.01.009
[29] Xin XP, Zhang BH, Li G, Zhang HB, Chen BR, Yang JX ( 2009). Variation in spatial pattern of grassland biomass in China from 1982 to 2003. Journal of Natural Resources, 24, 1582-1592.
辛晓平, 张保辉, 李刚, 张宏斌, 陈宝瑞, 杨桂霞 ( 2009). 1982-2003年中国草地生物量时空格局变化研究. 自然资源学报, 24, 1582-1592.
[30] Xu MY, Li YQ, Xie F, Wang K, Yu HL, Jing FJ, Li LS, Li JX, Li XF ( 2010). Dynamic monitoring of grassland production in Hebei. Acta Prataculturae Sinica, 19(1), 211-218.
doi: 10.11686/cyxb20100128
徐敏云, 李运起, 谢帆, 王堃, 于海浪, 景福军, 李连树, 李佳祥, 李雪枫 ( 2010). 河北省草地产量动态监测. 草业学报, 19(1), 211-218.
doi: 10.11686/cyxb20100128
[31] Xu MY, Li YQ, Wang K, Cao YF, Yu HL, Li XF, Li LS, Jing FJ, Li JX, Xie F ( 2009). Spatial distribution and dynamic characteristics of the grassland vegetation in Hebei. Acta Prataculturae Sinica, 18(6), 1-11.
doi: 10.11686/cyxb20090601
徐敏云, 李运起, 王堃, 曹玉凤, 于海浪, 李雪枫, 李连树, 景福军, 李佳祥, 谢帆 ( 2009). 河北省草地资源分布及植被特征动态. 草业学报, 18(6), 1-11.
doi: 10.11686/cyxb20090601
[32] Yan YC, Tang HP ( 2008). Differentiation of related concepts of grassland degradation. Acta Prataculturae Sinica, 17(1), 93-99.
doi: 10.3321/j.issn:1004-5759.2008.01.015
闫玉春, 唐海萍 ( 2008). 草地退化相关概念辨析. 草业学报, 17(1), 93-99.
doi: 10.3321/j.issn:1004-5759.2008.01.015
[33] Yang YH, Fang JY, Ma WH, Guo DL, Mohammat A ( 2010). Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecology and Biogeography, 19, 268-277.
doi: 10.1111/j.1466-8238.2009.00502.x
[34] Zhang PD, Jie XB ( 2007). Current situation of grassland degradation and its mechanism in the upstream of Yellow River in Gansu. Pratacultural Science, 24(9), 1-4.
doi: 10.3969/j.issn.1001-0629.2007.09.001
张培栋, 介小兵 ( 2007). 黄河上游甘肃段草地退化的现状及机理研究. 草业科学, 24(9), 1-4.
doi: 10.3969/j.issn.1001-0629.2007.09.001
[35] Zhao X, Zhang Q ( 1997). Fragile Ecological Environment and Regulation of Bashang, Hebei. China Environmental Science Press, Beijing.
赵雪, 张强 ( 1997). 河北坝上脆弱生态环境与整治. 中国环境科学出版社, 北京.
[1] Xinghui Lu Runguo Zang Yi Ding Jihong Huang Yue Xu. Habitat characteristics and its effects on seedling abundance of Hopea hainanensis, an endangered plant with small populations [J]. Biodiv Sci, 2020, 28(3): 0-0.
[2] MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565.
[3] ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511.
[4] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[5] TANG Li-Tao, LIU Dan, LUO Xue-Ping, HU Lei, WANG Chang-Ting. Forest soil phosphorus stocks and distribution patterns in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(12): 1091-1103.
[6] Rijin Jiang,Linlin Zhang,Kaida Xu,Pengfei Li,Yi Xiao,Ziwei Fan. Characteristics and diversity of nekton functional groups in the coastal waters of south-central Zhejiang Province [J]. Biodiv Sci, 2019, 27(12): 1330-1338.
[7] YANG Ji-Hong, LI Ya-Nan, BU Hai-Yan, ZHANG Shi-Ting, QI Wei. Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(10): 863-876.
[8] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plan Ecolo, 2018, 42(5): 585-594.
[9] Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(4): 430-441.
[10] YAN Bao-Long, WANG Zhong-Wu, QU Zhi-Qiang, WANG Jing, HAN Guo-Dong. Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(3): 327-336.
[11] YANG Hao-Tian, WANG Zeng-Ru, JIA Rong-Liang. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China [J]. Chin J Plan Ecolo, 2018, 42(3): 288-296.
[12] ZHANG Lu, HAO Bi-Tai, QI Li-Xue, LI Yan-Long, XU Hui-Min, YANG Li-Na, BAOYIN Taogetao. Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration [J]. Chin J Plan Ecolo, 2018, 42(3): 317-326.
[13] ZHANG Xin, XING Ya-Juan, YAN Guo-Yong, WANG Qing-Gui. Response of fine roots to precipitation change: A meta-analysis [J]. Chin J Plan Ecolo, 2018, 42(2): 164-172.
[14] Hongliang Wang, Siyi Guo, Pengtao Wang, Chunpeng Song. Research Progress in Stomatal Development Mechanism [J]. Chin Bull Bot, 2018, 53(2): 164-174.
[15] Guodong Yang, Xinyue Ji, Lin Chen, Yuqian Zhong, Feifei Zhai, Xiangui Yi, Xianrong Wang. Spatial distribution and environmental interpretation of wild Sinojackia xylocarpa communities based on self-organizing map (SOM) [J]. Biodiv Sci, 2018, 26(12): 1268-1276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . Studies on physiology of floral induction and zearalenone[J]. Chin Bull Bot, 1995, 12(专辑3): 18 -29 .
[2] Wu Jian-feng. Lichen Ptant in Langskan Area Nantong[J]. Chin Bull Bot, 1993, 10(01): 62 .
[3] . [J]. Chin Bull Bot, 2000, 17(05): 478 .
[4] WANG Zheng-Feng ZHANG Jun-Li LI Ming-Guang WANG Bo-Sun HE Xing-Jin PENG Shao-Lin. Advances of Plant Molecular Ecology (Ⅰ)—— Genetic Structure and Hybridization[J]. Chin Bull Bot, 2001, 18(06): 635 -642 .
[5] Zhao Yu-hua. Effect of the Plant Cold-resister on Overcoming Rice Seedling Decay in Low Temperature Stress in our County[J]. Chin Bull Bot, 1994, 11(特辑): 97 -99 .
[6] Danlong Jing, Jiang Ma, Bo Zhang, Yiyang Han, Zhixiong Liu, Faju Chen. Expression Analysis of MwAG in Different Organs and Developmental Stages of Magnolia wufengensis[J]. Chin Bull Bot, 2013, 48(2): 145 -150 .
[7] Li Xiang-gan. The Population Characteristics and determination of Biomass in the Quercus acutissima Forest Community on Mount Lao[J]. Chin J Plan Ecolo, 1987, 11(1): 21 -31 .
[8] MIAO Bao-He, LI Xiang-Dong, LIU Bo, HE Qi-Ping, ZHU Tao, LIU Xing-Tan, ZHU Qi-Yu, QIAO Guang-Fa, FAN Ting-An, CHEN Cheng-Jun, DONG Qing-Yu, YU Song-Lie. EFFECT OF WAVING-CANOPY CULTURAL TYPE ON ACTIVE OXYGEN AND MEMBRANE LIPID METABOLISM PEROXIDATION OF HIGH OIL SOYBEAN LEAVES[J]. Chin J Plan Ecolo, 2008, 32(3): 673 -680 .
[9] REN Jian-Yi, LIN Yue, YUE Ming. SEED GERMINATION CHARACTERISTICS OF BETULA ALBO-SINENSIS AT MOUNTAIN TAIBAI, CHINA[J]. Chin J Plan Ecolo, 2008, 32(4): 883 -890 .
[10] ZHOU Yong, ZHENG Lu-Yu, ZHU Min-Jie, LI Xia, REN An-Zhi, and GAO Yu-Bao. Effects of fungal endophyte infection on soil properties and microbial communities in the host grass habitat[J]. Chin J Plan Ecolo, 2014, 38(1): 54 -61 .