Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (3): 236-245.doi: 10.17521/cjpe.2015.0364

• Research Articles • Previous Articles     Next Articles

Characteristics of soil organic carbon mineralization at different temperatures in severely eroded red soil

Xi Qiu1,2, Mao-Kui LÜ1,2, Jin-Xue HUANG1,2, Wei LI1,2, Ben-Jia ZHAO1,2, Hao ZHANG1,2, En-Xi WANG1,2, Jin-Sheng XIE1,2,3,*()   

  1. 1School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China

    2State Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology, Fuzhou 350007, China

    3Institute of Geography, Fujian Normal University, Fuzhou 350007, China
  • Received:2015-10-13 Revised:2016-01-18 Online:2016-03-25 Published:2016-04-11
  • Contact: Jin-Sheng XIE E-mail:jshxie@163.com

Abstract: Aims It is crucial to study the soil organic matter decomposition and its temperature sensitivity for in-depth understanding of soil organic carbon (SOC) dynamic changes in severely eroded red soil. Methods We selected the severely eroded red soil on the bare land from Hetian town of Changting County as the research object. To study the influences of temperature on SOC mineralization and their temperature sensitivity (Q10), the SOC mineralization rate, the associated soil microbial biomass carbon (MBC), and dissolved organic carbon (DOC) under different incubation temperatures (10, 20 and 30 °C) were measured.Important findings The results showed that the incubation temperature significantly influenced the SOC mineralization. The mineralization ratio and the cumulative SOC mineralization rate increased with temperature. During the incubation period, the cumulative SOC mineralization was positively and significantly correlated with the soil MBC, and negatively correlated with soil DOC, indicating that soil microbes and C availability can significantly influence the SOC mineralization. During the 180 days incubation period, the accumulation mineralization rate of the severely eroded red soil was as high as 22.2%-33.3% under the conditions of the SOC content being only 1.54 g·kg-1, which indicates that the eroded red soil is easily mineralized. For the severely eroded red soil, its SOC temperature sensitivity (Q10) value was 1.41 at low temperatures (10-20 °C), but decreased to 1.06 at high temperatures (20-30 °C). The relatively low Q10 value at low temperatures was partly attributed to the low soil SOC quality. Furthermore, the long-time exposure to sunshine for the severely eroded red soil in the summer leads to the soil microbial adaptability to high temperature. As a result, its Q10 value is close to 1 at high temperatures. This study implies that it is of great significance to restore vegetation to minimize loss SOC caused by mineralization of the eroded red soil under climate changes in the future.

Key words: cumulative C mineralization, temperature sensitivity, soil organic carbon (SOC), microbial quotients, soil metabolic quotients

Fig. 1

Cumulative mineralization of soil organic carbon under different temperatures in severely eroded red soil (mean ± SD)."

Fig. 3

The relationship cumulative soil organic carbon (SOC) mineralization and microbial biomass carbon (MBC) and dissolved organic carbon (DOC) in different incubation temperature of severely eroded red soil."

Fig. 4

Change of microbial quotients and soil metabolic quotients in different incubation temperatures during incubation period (mean ± SD). Different capital letters indicate significant differences between temperature at the same time. Different lowercase letters indicate significant differences between time at the same temperature at p < 0.05."

Table 1

Physical and chemical characteristics of soil samples (mean ± SD)"

实验地
Sample plot
有机碳
Organic C
(g·kg-1)
全氮
Total
N (g·kg-1)
可溶性有机碳
Dissolved organic carbon
(mg·kg-1)
微生物生物量碳
Microbial biomass carbon
(mg·kg-1)
砂粒
Sand
(%)
粉粒
Silt
(%)
黏粒
Clay
(%)
酸碱度
pH value
土壤含水量
Soil moisture
(%)
饱和持水量
Saturation
moisture
capacity (%)
长汀侵蚀地Changting’s eroded land 1.54 ± 0.06 0.35 ± 0.03 3.05 ± 0.22 19.59 ± 0.96 43.24 ±
3.00
37.85 ±
2.00
18.91 ±
3.00
4.74 ±
0.20
15.00 ±
0.25
43.00 ±
1.33

Table 2

Mineralization rate respired in different study area"

地点
Site
土壤类型
Soil type
土地利用类型
Land use type
培养时间
Incubation
time (d)
有机碳含量
Organic C
(g·kg-1)
矿化率
Mineralization
rate (%)
文献来源
Literature
resources
福建长汀
Changting, Fujian
红壤 Red soil
侵蚀地 Eroded land
7 1.54 0.80 (20 ℃) 本研究
This study
21 1.54 3.76 (20 ℃)
30 1.54 5.61 (20 ℃)
60 1.54 9.87 (20 ℃)
90 1.54 16.84 (20 ℃)
120 1.54 22.30 (20 ℃)
180 1.54 29.68 (20 ℃)
江苏宜兴
Yixing, Jiangsu
棕红壤
Brown-red soil
裸地 Bare land 20 9.23 4.12 (28 ℃) Li et al., 2007
杉木人工林
Cunninghamia lanceolata plantation
20 9.49 2.49 (28 ℃)
浙江
Zhejiang

红壤 Red soil

裸地 Bare land 365 2.21 4.98 (25 ℃) Xie & Zhang,
2014
裸地 Bare land 365 4.36 2.98 (25 ℃)
裸地 Bare land 365 13.78 1.74 (25 ℃)
林地 Forest land 365 29.17 3.71 (25 ℃)
林地 Forest land 365 35.32 3.91 (25 ℃)
福建泉头
Quantou, Fujian
红壤 Red soil 果园 Garden land 85 13.21 3.91 (25 ℃) Wang et al., 2012
湖南会同
Huitong, Hunan
红壤 Red soil 杉木人工林
Cunninghamia lanceolata plantation
21 17.00 0.09 (9 ℃) Wang et al., 2007
常绿阔叶林
Evergreen broad-leaved forest
21 31.90 0.12 (9 ℃)
福建三明
Sanming, Fujian
红壤 Red soil 杉木人工林
Cunninghamia lanceolata plantation
28
19.23
0.92 (28 ℃)
Shen et al., 2012
江西吉泰
Jitai, Jiangxi
红壤 Red soil 马尾松林
Pinus massoniana forest
45
9.57
1.14 (25 ℃)
Xue et al., 2014
福建武夷山
Mt. Wuyi, Fujian
红壤 Red soil 常绿阔叶林
Evergreen broad-leaved forest
110
44.77

Zhou et al., 2008
江西千烟洲
Qianyanzhou, Jiangxi
红壤 Red soil 柑橘园 Citrus orchard 7 11.50 0.05 (5 ℃) Li et al., 2014
湿地马尾松人工林
Wetlands Pinus massoniana plantation
7 10.12 0.06 (5 ℃)

Table 3

Temperature sensitivity (Q10) contrast of soil in different study area"

气候类型
Climate type
地点
Site
土壤类型
Soil type
土地利用类型
Land use type
有机碳含量
Organic C (g·kg-1)
Q10 文献来源
Literature resources
亚热带季风气候Subtropical monsoon climate 福建长汀
Changting,
Fujian
红壤 Red soil 侵蚀地 Eroded land 1.54 1.06-1.41 本研究
This study
亚热带季风气候
Subtropical
monsoon climate
福建泉头
Quantou, Fujian
红壤 Red soil 果园 Garden land 13.21 1.49 Wang et al., 2012
亚热带季风气候
Subtropical
monsoon climate
江西千烟洲
Qianyanzhou, Jiangxi
红壤 Red soil 柑橘园 Citrus orchard 11.50 3.40 Li et al., 2014
湿地马尾松人工林
Wetlands Pinus massoniana plantation
10.12 2.20
亚热带季风气候 Subtropical
monsoon climate
广东鼎湖
Dinghu, Guangdong
赤红壤 Lateritic
red soil
针阔叶混交林 Mixed
coniferous and broad-leaved
forest
26.80 2.03 Deng et al., 2007
亚热带季风气候
Subtropical
monsoon
climate
福建南平
Nanping, Fujian
红壤 Red soil 杉木人工林 Cunninghamia
lanceolata plantation
22.60 1.40 Wei & Ma, 2006
马尾松人工林 Pinus
massoniana plantation
20.90 1.39
亚热带季风气候
Subtropical
monsoon climate
四川盆地
Sichuan Basin
红壤 Red soil 林地 Forestland
裸地 Bare land
19.26
11.98
1.25-3.25
1.54-3.68
Wang et al., 2007
亚热带季风气候
Subtropical
monsoon climate
湖南
Hunan
水稻土 Paddy soil 水稻田
Paddy field
19.20 2.11-2.78 Ren et al., 2007
干燥亚湿润气候
Dry sub-humid climate
内蒙古科尔沁沙地 Horqin sandy lands, Nei Mongol 风沙土
Aeolian
sandy soil
裸地
Bare land
3.36
1.55-1.97
Wang et al., 2008
高原气候
Plateau climate
青藏高原
Qinghai-Xizang Plateau
草甸土
Meadow soil
封育草地
Enclosure grassland
自由放牧草地
Grazing grassland
19.04 1.46-1.99 Xu et al., 2013
10.30 1.41-2.11
温带季风气候Temperate monsoon
climate
吉林长白山
Changbai Mountain,
Jilin
草甸土
Meadow soil
原生林 Original forest 8.06 1.23-1.61 Wang et al., 2013
次生林 Secondary forest 4.03 1.23-1.61
[1] Ai L, Wu JG, Zhu G, Liu JQ, Tian ZQ, Chang W, Xia X (2007). The mineralization of alpine meadow soil organic carbon and factors influencing it in the Qilian Mountain.Acta Prataculturae Sinica, 16(5), 22-33. (in Chinese with English abstract)[艾丽, 吴建国, 朱高, 刘建泉, 田自强, 苌伟, 夏新 (2007). 祁连山中部高山草甸土壤有机碳矿化及其影响因素研究. 草业学报, 16(5), 22-33.]
[2] Balser TC, Wixon DL (2009).Investigating biological control over soil carbon temperature sensitivity. Global Change Biology, 12, 2935-2949.
[3] Chatterjee A, Vance GF, Pendall E, Stahl PD (2008). Timber harvesting alters soil carbon mineralization and microbial community structure in coniferous forests. Soil Biology & Biochemistry, 40, 1901-1907.
[4] Chen GC, He ZL, Huang CY (2002). Turnover of microbial biomass C in red soils and its significance in soil fertility evaluation.Acta Pedologica Sinica, 39, 152-160. (in Chinese with English abstract)[陈国潮, 何振立, 黄昌勇 (2002). 红壤微生物生物量C周转及其研究. 土壤学报, 39, 152-160.]
[5] Chen J, Yang N (2013). Changes in SBR and qCO2 at different re-vegetation stages on sloping land with purple soils in Hengyang of Hunan Province, south-central China. Journal of Tropical and Subtropical Botany, 6, 514-520. (in Chinese with English abstract)[陈璟, 杨宁 (2013). 衡阳紫色土丘陵坡地不同恢复阶段土壤基础呼吸及代谢熵的变化. 热带亚热带植物学报, 6, 514-520.]
[6] Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF (2008). Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology, 4, 868-877.
[7] Deng Q, Liu SZ, Liu JX, Meng Z, Zhang DQ (2007). Contributions of litter-fall to soil respiration and its affacting factors in southern subtropical forests of China.Advances in Earth Science, 9, 976-986. (in Chinese with English abstract)[邓琦, 刘世忠, 刘菊秀, 孟泽, 张德强 (2007). 南亚热带森林凋落物对土壤呼吸的贡献及其影响因素. 地球科学进展, 9, 976-986.]
[8] Fang CM, Pete S, Moncrieff JB, Smith JU (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature.Nature, 433, 57-59.
[9] Grego S, Kennedy AY (1989). Effect of ammonitrate and stabilized farm yard manure on microbial biomass and metabolic quotient of soil under Zea mays.Agriculture of Mediterranean, 128, 132-137.
[10] Hashimoto S, Tanaka N, Suzuki M, Inoue A, Takizawa H, Kosaka I, Tanaka K, Tantasirin C, Tangtham N (2004). Soil respiration and soil CO2 concentration in a tropical forest, Thailand. Journal of Forest Research, 9, 75-79.
[11] He SJ, Xie JS, Yang ZJ, Yin YF, Li DC, Yang YS (2011). Status, causes and prevention of soil and water loss in Pinus massoniana woodland in hilly red soil region of southern. China Science of Soil and Water Conservation, 9(6), 65-70. (in Chinese with English abstract)[何圣嘉, 谢锦升, 杨智杰, 尹云锋, 李德成, 杨玉盛 (2011). 南方红壤丘陵区马尾松林下水土流失现状、成因及防治. 中国水土保持科学, 9(6), 65-70.]
[13] Jenkinson D, Adams D, Wild A (1991). Model estimates of CO2 emissions from soil in response to global warming.Nature, 351, 304-306.
[14] Lal R (2004). Soil carbon sequestration impacts on global climate change and food security.Science, 304, 1623-1627.
[15] Lange OL, Green TGA (2005). Lichens show that fungi can acclimate their respiration to seasonal changes in temperature.Oecologia, 1, 11-19.
[16] Leifeld J, Fuhrer J (2005). The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry, 75, 433-453.
[17] Li J, Wei XH, Chai H, Wang RM, Wang D, He NP (2014). Impacts of land-use types on soil C mineralization and temperature sensitivity of forests in Qianyanzhou, Jiangxi Province, China.Chinese Journal of Applied Ecology, 7, 1919-1926. (in Chinese with English abstract)[李杰, 魏学红, 柴华, 王若梦, 王丹, 何念鹏 (2014). 土地利用类型对千烟洲森林土壤碳矿化及其温度敏感性的影响. 应用生态学报, 7, 1919-1926.]
[18] Li ZG (2009). Current condition and dynamic changes of soil erosion in China.China Water Resources, 12, 8-11. (in Chinese with English abstract)[李智广 (2009). 中国水土流失现状与动态变化. 中国水利, 12, 8-11.]
[19] Li ZP, Wu XC, Chen BY (2007). Changes in transformation of soil organic carbon and functional diversity of soil microbial community under different land use patterns.Scientia Agricultura Sinica, 8, 1712-1721. (in Chinese with English abstract)[李忠佩, 吴晓晨, 陈碧云 (2007). 不同利用方式下土壤有机碳转化及微生物群落功能多样性变化. 中国农业科学, 8, 1712-1721.]
[20] Li ZP, Zhang TL, Chen BY (2004). Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon.Acta Pedologica Sinica, 41, 544-552. (in Chinese with English abstract)[李忠佩, 张桃林, 陈碧云 (2004). 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系. 土壤学报, 41, 544-552.]
[21] Lin S, Chen T, Zhao JS, Xiang RB, Hu RG, Zhang SQ, Wang ML, Lü ZQ (2014). Characteristics of soil organic carbon mineralization at different temperatures in paddy soils under long-term fertilization.Chinese Journal of Applied Ecology, 5, 1340-1348. (in Chinese with English abstract)[林杉, 陈涛, 赵劲松, 向荣彪, 胡荣桂, 张水清, 王米兰, 吕昭琪 (2014). 不同培养温度下长期施肥水稻土的有机碳矿化特征. 应用生态学报, 5, 1340-1348.]
[22] Liu SH, Fang JY (1997). Effect factors of soil respiration and the temperature's effects on soil respiration in the global scale. Acta Ecologica Sinica, 17, 469-476. (in Chinese with English abstract)[刘绍辉, 方精云 (1997). 土壤呼吸的影响因素及全球尺度下温度的影响. 生态学报, 17, 469-476.]
[23] Lu RK (1999). Methods of Soil Agricultural Chemical Analysis. Chinese Agricultural Science and Technology Press, Beijing. (in Chinese)[鲁如坤 (1999). 土壤农业化学分析方法. 中国农业科技出版社, 北京.]
[24] Luo Y, Wan S, Hui D, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie.Nature, 413, 622-625.
[25] Macdonald NW, Randlett DL, Zak DR (1999). Soil warming and carbon loss from a lake states spodosol.Soil Science Society of America Journal, 63, 211-218.
[26] Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP (2002). Soil warming and carbon-cycle feedbacks to the climate system.Science, 298, 2173-2176.
[27] Niklińska M, Maryański M, Laskowski R (1999). Effect of temperature on humus respiration rate and nitrogen mineralization: Implications for global climate change.Biogeochemistry, 3, 239-257.
[28] Reichstein M, Bednorz F, Broll G, Kätterer T (2000). Temperature dependence of carbon mineralization: Conclusions from a long-term incubation of subalpine soil samples . Soil Biology & Biochemistry, 7, 947-958.
[29] Ren XE, Tong CL, Sun ZL, Tang GY, Xiao HA, Wu JS (2007). Effects of temperature on organic carbon mineralization in paddy soils with different clay content.Chinese Journal of Applied Ecology, 10, 2245-2250. (in Chinese with English abstract)[任秀娥, 童成立, 孙中林, 唐国勇, 肖和艾, 吴金水 (2007). 温度对不同黏粒含量稻田土壤有机碳矿化的影响. 应用生态学报, 10, 2245-2250.]
[30] Shen FF, Yuan YH, Fan HB, Liu WF, Liu YQ (2012). Effects of elevated nitrogen deposition on soil organic carbon mineralization and soil enzyme activities in a Chinese fir plantation.Acta Ecologica Sinica, 32, 517-527. (in Chinese with English abstract)[沈芳芳, 袁颖红, 樊后保, 刘文飞, 刘苑秋 (2012). 氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响. 生态学报, 32, 517-527.]
[31] Tong XJ, Tao B, Cao MK (2005). The responses of soil respiration and nitrogen mineralization to global warming in terrestrial ecosystems.Progress in Geography, 4, 84-96. (in Chinese with English abstract)[同小娟, 陶波, 曹明奎 (2005). 陆地生态系统土壤呼吸、氮矿化对气候变暖的响应. 地理科学进展, 4, 84-96.]
[32] Wang D, Lü YL, Xu L, He X, Xu ZW, Zhao N, Wang RL, He NP (2013). Impact of changes in vegetation types on soil C mineralization and associated temperature sensitivity in the Changbai Mountain forests of China.Acta Ecologica Sinica, 19, 6373-6381. (in Chinese with English abstract)[王丹, 吕瑜良, 徐丽, 何秀, 徐志伟, 赵宁, 王瑞丽, 何念鹏 (2013). 植被类型变化对长白山森林土壤碳矿化及其温度敏感性的影响. 生态学报, 19, 6373-6381.]
[33] Wang F, Wang YX, Chen YZ, Wu ZD, Jiang FY, You ZM, Zhang WJ, Weng BQ (2012). Effects of temperature and green manure treatments on organic carbon mineralization in orchard soil.Journal of Southern Agriculture, 12, 1991-1996. (in Chinese with English abstract)[王峰, 王义祥, 陈玉真, 吴志丹, 江福英, 尤志明, 张文锦, 翁伯琦 (2012). 不同温度及化肥绿肥施用比例对果园土壤有机碳矿化的影响. 南方农业学报, 12, 1991-1996.]
[34] Wang H, Fan ZP, Deng DZ, Chen DL, Sun XK, Gao JG, Zeng DH (2008). Effects of environmental factors on soil organic carbon mineralization in a Pinus sylvestris var. mongolica plantation.Chinese Journal of Ecology, 9, 1469-1475. (in Chinese with English abstract)[王红, 范志平, 邓东周, 陈德龙, 孙学凯, 高俊刚, 曾德慧 (2008). 不同环境因子对樟子松人工林土壤有机碳矿化的影响. 生态学杂志, 9, 1469-1475.]
[35] Wang QK, Wang SL, Yu XJ, Zhang J, Liu YX (2007). Soil carbon mineralization potential and its effect on soil active organic carbon in evergreen broad-leaved forest and Chinese fir plantation.Chinese Journal of Ecology, 12, 1918-1923. (in Chinese with English abstract)[王清奎, 汪思龙, 于小军, 张剑, 刘燕新 (2007). 常绿阔叶林与杉木林的土壤碳矿化潜力及其对土壤活性有机碳的影响. 生态学杂志, 12, 1918-1923.]
[36] Wang RM, Dong KH, He NP, Zhu JX, Dai JZ, Shi KK (2013). Effect of enclosure on soil C mineralization and priming effect in Stipa grandis grassland of Inner Mongolia.Acta Ecologica Sinica, 12, 3622-3629. (in Chinese with English abstract)[王若梦, 董宽虎, 何念鹏, 朱剑兴, 代景忠, 施侃侃 (2013). 围封对内蒙古大针茅草地土壤碳矿化及其激发效应的影响. 生态学报, 12, 3622-3629.]
[37] Wang XG, Zhu B, Wang YQ, Zheng XH (2007). Soil respiration and its sensitivity to temperature under different land use conditions.Acta Ecologica Sinica, 5, 1960-1968. (in Chinese with English abstract)[王小国, 朱波, 王艳强, 郑循华 (2007). 不同土地利用方式下土壤呼吸及其温度敏感性. 生态学报, 5, 1960-1968.]
[38] Wei HD, Ma XQ (2006). Dynamics of soil respiration in three major plantations in mid-subtropical zone. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 3, 272-277. (in Chinese with English abstract)[尉海东, 马祥庆 (2006). 中亚热带3种主要人工林的土壤呼吸动态. 福建农林大学学报(自然科学版), 3, 272-277.]
[39] Xie GX, Zhang MK (2014). Influence of biochar application on mineralization and fractions of organic carbon in red soils with different land use.Chinese Journal of Soil Science, 2, 413-419. (in Chinese with English abstract)[谢国雄, 章明奎 (2014). 施用生物质炭对红壤有机碳矿化及其组分的影响. 土壤通报, 2, 413-419.]
[40] Xie JS, Yang YS, Chen GS, Zhu JM, Zeng HD, Yang ZJ (2008). Effects of vegetation restoration on water stability and organic carbon distribution in aggregates of degraded red soil in subtropics of China.Acta Ecologica Sinica, 2, 702-709. (in Chinese with English abstract)[谢锦升, 杨玉盛, 陈光水, 朱锦懋, 曾宏达, 杨智杰 (2008). 植被恢复对退化红壤团聚体稳定性及碳分布的影响. 生态学报, 2, 702-709.]
[41] Xu Li, Yu SX, He NP, Wen XF, Shi PL, Zhang YJ, Dai JZ, Wang RM (2013). Soil C mineralization and temperature sensitivity in alpine grasslands of the Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology, 11, 988-997. (in Chinese with English abstract)[徐丽, 于书霞, 何念鹏, 温学发, 石培礼, 张扬建, 代景忠, 王若梦 (2013). 青藏高原高寒草地土壤碳矿化及其温度敏感性. 植物生态学报, 11, 988-997.]
[42] Xue JY, Zhang HX, Quan Q, Wang RM, Gan YM, He NP (2014). Effect of land-use type on soil carbon mineralization and its priming effect on red soils in the mid-subtropics of China.Chinese Journal of Applied and Environmental Biology, 3, 516-522. (in Chinese with English abstract)[薛晶月, 张洪轩, 全权, 王若梦, 干友民, 何念鹏 (2014). 土地利用方式对中亚热带红壤碳矿化及其激发效应的影响. 应用与环境生物学报, 3, 516-522.]
[43] Zhang W, Parker KM, Luo Y, Wan S, Wallace LL, Hu S (2005). Soil microbial responses to experimental warming and clipping in a tall grass prairie.Global Change Biology, 11, 266-277.
[44] Zhou T, Shi PJ, Hui DF, Luo YQ (2009). The temperature sensitivity of soil respiration spatial pattern of inversion in China.Scientia Sinica Vitae, 3, 315-322. (in Chinese)[周涛, 史培军, 惠大丰, 骆亦其 (2009). 中国土壤呼吸温度敏感性空间格局的反演. 中国科学C辑: 生命科学, 3, 315-322.]
[45] Zhou Y, Xu XG, Ruan HH, Wang JS, Fang YH, Wu YY, Xu ZK (2008). Mineralization rates of soil organic carbon along an elevation gradient in Wuyi Mountain of Southeast China.Chinese Journal of Ecology, 27, 1901-1907. (in Chinese with English abstract)[周焱, 徐宪根, 阮宏华, 汪家社, 方燕鸿, 吴焰玉, 徐自坤 (2008). 武夷山不同海拔高度土壤有机碳矿化速率的比较. 生态学杂志, 27, 1901-1907.]
[46] Zhu SF, Liu CQ, Tao FX (2005). Use of δ13C method in studying soil organic matter.Acta Pedologica Sinica, 42, 495-503. (in Chinese with English abstract)[朱书法, 刘从强, 陶发祥 (2005). δ13C方法在土壤有机质研究中的应用. 土壤学报, 42, 495-503.]
[47] Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997). Compositional and functional shifts in microbial communities due to soil warming.Soil Science Society of America Journal, 61, 475-481.
[1] Kai-Jun YANG, Wan-Qin YANG, Yu TAN, Ruo-Yang HE, Li-Yan ZHUANG, Zhi-Jie LI, Bo TAN, Zhen-Feng XU. Short-term responses of winter soil respiration to snow removal in a Picea asperata forest of western Sichuan [J]. Chin J Plan Ecolo, 2017, 41(9): 964-971.
[2] Xiao-Gai GE, Ben-Zhi ZHOU, Wen-Fa XIAO, Xiao-Ming WANG, Yong-Hui CAO, Ming YE. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest [J]. Chin J Plan Ecolo, 2017, 41(11): 1177-1189.
[3] Jian-Hua ZHANG, Zhi-Yao TANG, Hai-Hua SHEN, Jing-Yun FANG. Effects of nitrogen addition on soil respiration in shrublands in Mt. Dongling, Beijing, China [J]. Chin J Plan Ecolo, 2017, 41(1): 81-94.
[4] Qiang ZHANG, Jia-Xiang LI, Zong-Qiang XIE. Effects of nitrogen addition on soil respiration of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plan Ecolo, 2017, 41(1): 95-104.
[5] Xiao-Jie LI, Xiao-Fei LIU, De-Cheng XIONG, Wei-Sheng LIN, Ting-Wu LIN, You-Wen SHI, Jin-Sheng XIE, Yu-Sheng YANG. Impact of litterfall addition and exclusion on soil respiration in Cunninghamia lanceolata plantation and secondary Castanopsis carlesii forest in mid-subtropical China [J]. Chin J Plan Ecolo, 2016, 40(5): 447-457.
[6] YAO Hui,HU Xue-Yang,ZHU Jiang-Ling,ZHU Jian-Xiao,JI Cheng-Jun,FANG Jing-Yun. Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing [J]. Chin J Plan Ecolo, 2015, 39(9): 849-856.
[7] HE Tong-Xin,LI Yan-Peng,ZHANG Fang-Yue,WANG Qing-Kui. Effects of understory removal on soil respiration and microbial community composition structure in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2015, 39(8): 797-806.
[8] WANG Qing-Kui,LI Yan-Peng,ZHANG Fang-Yue,HE Tong-Xin. Short-term nitrogen fertilization decreased root and microbial respiration in a young Cunninghamia lanceolata plantation [J]. Chin J Plan Ecolo, 2015, 39(12): 1166-1175.
[9] FAN Yue-Xin, YANG Yu-Sheng, GUO Jian-Fen*, YANG Zhi-Jie, CHEN Guang-Shui, XIE Jin-Sheng, ZHONG Xiao-Jian, and XU Ling-Lin. Changes in soil respiration and its temperature sensitivity at different successional stages of evergreen broadleaved forests in mid-subtropical China [J]. Chin J Plan Ecolo, 2014, 38(11): 1155-1165.
[10] XU Li, YU Shu-Xia, HE Nian-Peng, WEN Xue-Fa, SHI Pei-Li, ZHANG Yang-Jian, DAI Jing-Zhong, WANG Ruo-Meng. Soil C mineralization and temperature sensitivity in alpine grasslands of the Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2013, 37(11): 988-997.
[11] DAI Jing-Zhong, WEI Zhi-Jun, HE Nian-Peng, WANG Ruo-Meng, WEN Xue-Hua, ZHANG Yun-Hai, ZHAO Xiao-Ning, and YU Gui-Rui. Effect of grazing enclosure on the priming effect and temperature sensitivity of soil C mineralization in Leymus chinensis grasslands, Inner Mongolia, China [J]. Chin J Plan Ecolo, 2012, 36(12): 1226-1236.
[12] LI Guang-Qi, BAI Fan, SANG Wei-Guo. Different responses of radial growth to climate warming in Pinus koraiensis and Picea jezoensis var. komarovii at their upper elevational limits in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2011, 35(5): 500-511.
[13] TU Li-Hua, HU Ting-Xing, HUANG Li-Hua, LI Ren-Hong, DAI Hong-Zhong, LUO Shou-Hua, XIANG Yuan-Bin. RESPONSE OF SOIL RESPIRATION TO SIMULATED NITROGEN DEPOSITION IN PLEIOBLASTUS AMARUS FOREST, RAINY AREA OF WEST CHINA [J]. Chin J Plan Ecolo, 2009, 33(4): 728-738.
[14] CHEN Quan-Sheng, LI Ling Hao, HAN Xing-Guo, YAN Zhi-Dan, WANG Yan-Fen, ZHANG Yan, YUAN Zhi-You, TANG Fang. Responses of Soil Respiration to Temperature in Eleven Communities in Xilingol Grassland, Inner Mongolia [J]. Chin J Plan Ecolo, 2003, 27(4): 441-447.
[15] Wang Yanfeng, Chen Zuozhong, Larry T. Tieszen. Distribution of Soil Organic Carbon in the Major Grasslands of Xilinguole, Inner Mongolia, China [J]. Chin J Plan Ecolo, 1998, 22(6): 545-551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Ying-gen;Zhang Li-jun and Li yu. Studies on the Postharvest Physiology properties of Peach Fruits[J]. Chin Bull Bot, 1995, 12(04): 47 -49 .
[2] Zhou Shi-gong. Applications of Lanthanum in Botanical Research[J]. Chin Bull Bot, 1992, 9(02): 26 -29 .
[3] . [J]. Chin Bull Bot, 1996, 13(专辑): 105 .
[4] 杜维广 王彬如 谭克辉 郝迺斌. An Approach to the Breeding of Soybean with High Photosynthetic Efficiency[J]. Chin Bull Bot, 1984, 2(23): 7 -11 .
[5] ZHAO Yun-Yun ZHOU Xiao-Mei YANG Cai. Production of Hybrid F1 Between Avena magna and Avena nuda and It''s Identification[J]. Chin Bull Bot, 2003, 20(03): 302 -306 .
[6] . Professor Jiayang Li, a Plant Molecular Genetist[J]. Chin Bull Bot, 2003, 20(03): 370 -372 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 100 -101 .
[8] Qiong Jiang, Youning Wang, Lixiang Wang, Zhengxi Sun, Xia Li. Validation of Reference Genes for Quantitative RT-PCR Analysis in Soybean Root Tissue under Salt Stress[J]. Chin Bull Bot, 2015, 50(6): 754 -764 .
[9] MA Ke-Ming. Advances of the Study on Species Abundance Pattern[J]. Chin J Plan Ecolo, 2003, 27(3): 412 -426 .
[10] ZHANG Zhi-Meng, WAN Shu-Bo, NING Tang-Yuan, DAI Liang-Xiang. EFFECTS OF NITROGEN LEVEL ON NITROGEN METABOLISM AND CORRELATING ENZYME ACTIVITY IN PEANUT[J]. Chin J Plan Ecolo, 2008, 32(6): 1407 -1416 .