Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (9): 893-901.doi: 10.17521/cjpe.2016.0163

• Research Articles • Previous Articles     Next Articles

Effects of streams on lignin degradation during foliar litter decomposition in an alpine forest

Kai YUE1, Wan-Qin YANG1,2, Yan PENG1, Chun-Ping HUANG1,3, Chuan ZHANG1, Fu-Zhong WU1,2,*()   

  1. 1Long-term Research Station of Alpine Forest Ecosystems, Provincial Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu 611130, China

    2Collaborative Innovation Center for Ecological Security in the Upper Reaches of the Yangtze River, Chengdu 611130 ,China
    3College of Life Science, Sichuan Normal University, Chengdu 610101, China
  • Received:2016-05-09 Accepted:2016-07-23 Online:2016-09-29 Published:2016-09-10
  • Contact: Fu-Zhong WU


AimsStreams are widely distributed in alpine forests, and litter decomposition in which is an important component of material cycling across the forest landscape. The leaching and fragmenting effects as well as the unique environmental factors in streams may have significant impacts on lignin degradation during litter decomposition, but studies on this are lacking.
Methods Using litterbag methods, we investigated the dynamics of lignin mass remaining and concentration (percent litter mass, %) during the decomposition of four foliar litters, which varied significantly in the initial litter chemical traits, from the dominant species of Salix paraplesia, Rhododendron lapponicum, Sabina saltuaria, and Larix mastersiana under different habitats (forest floor, stream, and riparian zone) in the upper reaches of the Minjiang River.
Important findings After two year’s incubation, litter lignin mass remaining for a specific litter species varied significantly (p < 0.05) among habitats, with an order of stream < riparian zone < forest floor. Lignin was degraded substantially in the early stage of litter decomposition process, and the lignin concentration first decreased and then increased with the proceeding of litter decomposition, but varied significantly (p < 0.05) among different litter species. Lignin mass showed a general trend of decrease across the 2-year decomposition course. In addition, habitat type, decomposition period and microenvironmental factors (e.g., temperature, pH value and nutrient availability) showed substantial influences on lignin degradation rate. These results suggest that the traditional view that lignin was relatively recalcitrant with an increase of concentration in the early stage of litter decomposition is challenged, but the loss of lignin in the early phrase is in line with recent findings about the fate of lignin during litter decomposition. Moreover, the significant differences of lignin degradation rates among different decomposition period and habitat types indicated that local-scale environmental factors can play a significant role in litter decomposition and lignin degradation processes.

Key words: carbon cycling, forest floor, stream, riparian zone, degradation rate, species, environmental factor

Table 1

Characteristics of environmental conditions of different habitats during the process of foliar litter decomposition (mean ± SD, n = 90)"

生境 Habitat AT (℃) C (g·kg-1) N (g·kg-1) P (g·kg-1) pH
林下 Forest floor 2.0 ± 5.2 126 ± 26 5.8 ± 1.1 1.2 ± 0.2 6.6 ± 0.02
生境 Habitat AT (°C) HCO3- (mg·L-1) NH4+ (mg·L-1) NO3-(mg·L-1) PO43- (μg·L-1) pH FV (m·s-1)
溪流 Stream 5.1 ± 2.6 13.9 ± 1.96 0.10 ± 0.05 0.29 ± 0.07 7.85 ± 0.38 6.6 ± 0.4 0.53 ± 0.15
河岸带 Riparian zone 4.8 ± 3.4 19.7 ± 1.33 0.04 ± 0.02 0.34 ± 0.08 7.84 ± 0.41 6.9 ± 0.3 0.05 ± 0.01

Table 2

Initial chemical properties of Salix paraplesia, Rhododendron lapponicum, Sabina saltuaria, and Larix mastersiana foliar litters (mean ± SD, n = 9)"

物种 Species C (%) N (%) P (%) 木质素 Lignin (%) C:N C:P N:P Lignin:N
康定柳 S. paraplesia 34.8 ± 0.9c 2.64 ± 0.15a 0.17 ± 0.01a 24.7 ± 1.3d 13.2 ± 0.8d 207 ± 19.7c 15.7 ± 1.7a 9.38 ± 0.8c
高山杜鹃 R. lapponicum 38.6 ± 1.1b 0.69 ± 0.10d 0.10 ± 0.02d 29.8 ± 0.8b 57.2 ± 10.2a 375 ± 53.6a 6.75 ± 1.5c 44.3 ± 8.3a
方枝柏 S. saltuaria 46.9 ± 1.8a 1.05 ± 0.06c 0.15 ± 0.01b 28.1 ± 0.8c 45.1 ± 3.9b 304 ± 12.6b 6.79 ± 0.7c 26.9 ± 1.8b
四川红杉 L. mastersiana 37.5 ± 0.5b 1.59 ± 0.11b 0.12 ± 0.01c 37.8 ± 1.0a 23.6 ± 1.8c 320 ± 24.6b 13.6 ± 0.8b 30.1 ± 2.1b

Fig. 1

Dynamics of lignin mass remaining (g) in the decomposing foliar litter of Salix paraplesia (A), Rhododendron lapponicum (B), Sabina saltuaria (C), and Larix mastersiana (D) under different habitat conditions (mean ± SD, n = 9). Different lowercase letters indicate significant (p < 0.05) differences of lignin mass remaining for a given litter species in a specific decomposition period under different habitat conditions."

Fig. 2

Dynamics of lignin concentration (percent litter mass, %) during Salix paraplesia (A), Rhododendron lapponicum (B), Sabina saltuaria (C), and Larix mastersiana (D) foliar litter decomposition (p < 0.05) under different habitat conditions (mean ± SD, n = 9). Different lowercase letters indicate significant (p < 0.05) differences of lignin concentration among different decomposition periods for a given litter species incubated in a specific type of habitat. FP, freezing period; GS, growing season; IV, initial value; LGS, late growing season; PP, pre-freezing period; TP, thawing period; 1, first year; 2, second year."

Fig. 3

Dynamics of lignin degradation rate (%/month) during Salix paraplesia (A), Rhododendron lapponicum (B), Sabina saltuaria (C), and Larix mastersiana (D) foliar litter decomposition (p < 0.05) under different habitat conditions (mean ± SD, n = 9). Different lowercase letters indicate significant (p < 0.05) differences of lignin degradation rate among different decomposition periods for a given litter species incubated in a specific type of habitat. FP, freezing period; GS, growing season; IV, initial value; LGS, late growing season; PP, pre-freezing period; TP, thawing period; 1, first year; 2, second year."

Table 3

Repeated-measure ANOVA analysis on the effects of litter species, habitat type, and decomposition period on lignin degradation rate during litter decomposition process"

Influence factor
Degree of freedom
F p
物种 Species 3 165.753 < 0.001
生境 Habitat 2 75.197 < 0.001
时期 Period 9 504.141 < 0.001
物种×生境 Species × habitat 6 40.353 < 0.001
物种×时期 Species × period 27 17.003 < 0.001
生境×时期 Habitat × period 18 18.317 < 0.001
Species × habitat × period
54 12.020 < 0.001

Table 4

Stepwise regression analysis between lignin degradation rate (%/month) of the 2 years and foliar litter initial chemical properties"

生境 Habitat 回归式 Regression model
a0 a1X1 a2X2 a3X3 a4X4
林下 Forest floor ŷ = 0.424 -0.017 C:N (0.353) +0.042 C (0.607)
溪流 Stream ŷ = 1.602 -0.031 Lignin:N (0.785) +13.231 P (0.874)
河岸带 Riparian zone ŷ = -7.311 +0.032 Lignin (0.783) +20.108 P (0.888) +0.164 N:P (0.932) +0.090 C (0.940)

Table 5

F-value for the regression analysis between lignin degradation rate (%/month) and environmental factors under different habitats during foliar litter decomposition"

林下 Forest floor AT C N P pH
康定柳 Salix paraplesia 26.925*** 35.094*** 1.987 0.340 6.194*
高山杜鹃 Rhododendron lapponicum 16.022*** 0.064 5.700* 17.816*** 2.431
方枝柏 Sabina saltuaria 10.134** 1.037 23.348*** 23.681*** 8.314**
四川红杉 Larix mastersiana 30.336*** 7.748** 32.560*** 10.076** 13.489***
溪流 Stream AT HCO3- NH4+ NO3- PO43- pH FV
康定柳 Salix paraplesia 0.001 0.572 2.692 13.248*** 0.522 6.208* 0.385
高山杜鹃 Rhododendron lapponicum 1.286 1.722 6.088* 8.832** 1.612 1.652 1.590
方枝柏 Sabinasaltuaria 1.245 4.809* 7.579** 8.964** 0.001 6.454* 0.103
四川红杉 Larix mastersiana 2.815 2.179 4.681* 11.866** 0.063 5.594* 0.053
河岸带 Riparian zone AT HCO3- NH4+ NO3- PO43- pH FV
康定柳 Salix paraplesia 35.148*** 5.748* 12.267** 0.256 1.305 16.431*** 2.540
高山杜鹃 Rhododendron lapponicum 3.702 2.822 2.029 1.369 0.001 7.300** 5.752*
方枝柏 Sabina saltuaria 1.564 4.024* 6.775* 4.609* 0.115 3.545 6.232*
四川红杉 Larix mastersiana 36.978*** 15.189*** 19.985*** 4.305* 0.055 0.371 11.602**
1 Berg B (2014). Decomposition patterns for foliar litter—A theory for influencing factors.Soil Biology & Biochem- istry, 78, 222-232.
2 Berg B, Kjønaas O, Johansson M-B, Erhagen B, Åkerblom S (2015). Late stage pine litter decomposition: Relationship to litter N, Mn, and acid unhydrolyzable residue (AUR) concentrations and climatic factors.Forest Ecology and Management, 358, 41-47.
3 Berg B, McClaugherty C (2014). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. 3rd edn. Springer, Berlin.
4 Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, Graça MAS, Dudgeon D, Boulton AJ, Callisto M, Chauvet E, Helson JE, Bruder A, Albariño RJ, Yule CM, Arunachalam M, Davies JN, Figueroa R, Flecker AS, Ramírez A, Death RG, Iwata T, Mathooko JM, Mathuriau C, Gonçalves JF, Moretti MS, Jinggut T, Lamothe S, M’Erimba C, Ratnarajah L, Schindler MH, Castela J, Buria LM, Cornejo A, Villanueva VD, West DC (2011). A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration.Ecology Letters, 14, 289-294.
5 Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA (2016). Understanding the dominant controls on litter decomposition.Journal of Ecology, 104, 229-238.
6 Bradford MA, Warren II RJ, Baldrian P, Crowther TW, Maynard DS, Oldfield EE, Wieder WR, Wood SA, King JR (2014). Climate fails to predict wood decomposition at regional scales.Nature Climate Change, 4, 625-630.
7 Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.Ecology Letters, 11, 1065-1071.
8 Ferreira V, Raposeiro PM, Pereira A, Cruz AM, Costa AC, Graça MAS, Gonçalves V (2016). Leaf litter decomposi- tion in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions.Freshwater Biology, 61, 783-799.
9 García-Palacios P, Prieto I, Ourcival J-M, Hättenschwiler S (2016a). Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall.Ecosystems, 19, 490-503.
10 García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S (2016b). Temporal dynamics of biotic and abiotic drivers of litter decomposition.Ecology Letters, 19, 554-563.
11 Gessner MO, Chauvet E, Dobson M (1999). A perspective on leaf litter breakdown in streams.Oikos, 85, 377-384.
12 Graça MA, Ferreira V, Canhoto C, Encalada AC, Guerrero- Bolaño F, Wantzen KM, Boyero L (2015). A conceptual model of litter breakdown in low order streams.International Review of Hydrobiology, 100, 1-12.
13 He W, Wu FZ, Yang WQ, Tan B, Zhao YY, Wu QQ, He M (2016). Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest.Ecosystems, 19, 115-128.
14 He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest.Chinese Journal of Plant Ecology, 37, 306-316. (in Chinese with English abstract)[何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.]
15 Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011). A new conceptual model for the fate of lignin in decomposing plant litter.Ecology, 92, 1052-1062.
16 Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Tan B, Hu Y (2016). Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest.Forests, 7, 27.
17 Martínez A, Larrañaga A, Pérez J, Descals E, Pozo J (2014). Temperature affects leaf litter decomposition in low- order forest streams: Field and microcosm approaches.FEMS Microbiology Ecology, 87, 257-267.
18 Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition.Science, 315, 361-364.
19 Prescott CE (2005). Do rates of litter decomposition tell us anything we really need to know?Forest Ecology and Management, 220, 66-74.
20 Wallace JB, Eggert S, Meyer JL, Webster J (1999). Effects of resource limitation on a detrital-based ecosystem.Ecological Monographs, 69, 409-442.
21 Yue K, Yang WQ, Peng CH, Peng Y, Zhang C, Huang CP, Tan Y, Wu FZ (2016). Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Science of the Total Environment, 566-567, 279-287.
22 Yue K, Yang WQ, Peng Y, Zhang C, Huang CP, Wu FZ (2015a). Carbon, nitrogen and phosphorus dynamics during winter foliar litter decomposition in an alpine forest river in the upper reaches of the Minjiang River.Chinese Journal of Applied and Environmental Biology, 21, 301-307. (in Chinese with English abstract)[岳楷, 杨万勤, 彭艳, 张川, 黄春萍, 吴福忠 (2015a). 岷江上游高山森林冬季河流中凋落叶碳氮和磷元素动态特征. 应用与环境生物学报, 21, 301-307.]
23 Yue K, Yang WQ, Peng Y, Zhang C, Huang CP, Wu FZ (2015b). Foliar litter mass loss in winter in an alpine forest river in the upper reaches of the Minjiang River.Resources and Environment in the Yangtze Basin, 24, 1177-1184. (in Chinese with English abstract)[岳楷, 杨万勤, 彭艳, 张川, 黄春萍, 吴福忠 (2015b). 岷江上游高山森林凋落叶在冬季河流中的质量损失特征. 长江流域资源与环境, 24, 1177-1184.]
24 Zhang C, Yang WQ, Yue K, Huang CP, Peng Y, Wu FZ (2015). Soluble nitrogen and soluble phosphorus dynamics during foliar litter decomposition in winter in alpine forest streams.Chinese Journal of Applied Ecology, 26, 1601-1608. (in Chinese with English abstract)[张川, 杨万勤, 岳楷, 黄春萍, 彭艳, 吴福忠 (2015). 高山森林溪流冬季不同时期凋落物分解中水溶性氮和磷的动态特征. 应用生态学报, 26, 1601-1608.]
25 Zhu JX, He XH, Wu FZ, Yang WQ, Tan B (2012). Decomposi- tion of Abies faxoniana litter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China.Scandinavian Journal of Forest Research, 27, 586-596.
[1] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[2] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[3] Jiang Zhigang. China’s key protected species lists, their criteria and management [J]. Biodiv Sci, 2019, 27(6): 698-703.
[4] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[5] Li Meng, Wei Tingting, Shi Boyang, Hao Xiyang, Xu Haigen, Sun Hongying. Biodiversity monitoring of freshwater benthic macroinvertebrates using environmental DNA [J]. Biodiv Sci, 2019, 27(5): 480-490.
[6] Jiang Huan, Zhang Hui, Long Wenxing, Fang Yanshan, Fu Mingqi, Zhu Kongxin. Interspecific associations and niche characteristics of communities invaded by Decalobanthus boisianus [J]. Biodiv Sci, 2019, 27(4): 388-399.
[7] Xie Fenglin, Zhou Quan, Shi Hang, Shu Xiao, Zhang Kerong, Li Tao, Feng Shuiyuan, Zhang Quanfa, Dang Haishan. Species composition and community characteristics of a 25 ha forest dynamics plot in deciduous broad-leaved forest, Qinling Mountains, north-central China [J]. Biodiv Sci, 2019, 27(4): 439-448.
[8] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. Species diversity and potential distribution of Chiroptera on Hainan Island, China [J]. Biodiv Sci, 2019, 27(4): 400-408.
[9] Xiao Zhishu,Chen Lijun,Song Xiangjin,Shu Zufei,Xiao Ronggao,Huang Xiaoqun. Species inventory and assessment of large- and medium-size mammals and pheasants using camera trapping in the Chebaling National Nature Reserve, Guangdong Province [J]. Biodiv Sci, 2019, 27(3): 237-242.
[10] Chen Lijun,Xiao Wenhong,Xiao Zhishu. Limitations of relative abundance indices calculated from camera-trapping data [J]. Biodiv Sci, 2019, 27(3): 243-248.
[11] Chen Lijun,Shu Zufei,Xiao Zhishu. Application of camera-trapping data to study daily activity patterns of Galliformes in Guangdong Chebaling National Nature Reserve [J]. Biodiv Sci, 2019, 27(3): 266-272.
[12] Yan Wenbo,Ji Shengnan,Shuai Lingying,Zhao Leigang,Zhu Dapeng,Zeng Zhigao. Spatial distribution patterns of mammal diversity in Yangxian County of Shaanxi Province on the southern slope of the Qinling Mountains [J]. Biodiv Sci, 2019, 27(2): 177-185.
[13] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China [J]. Biodiv Sci, 2019, 27(2): 149-158.
[14] Yang Lufei, Chen Linlin, Li Xiaojing, Zhou Zhengquan, Liu Bo, Song Bo, Li Bingjun, Li Baoquan. Effect of seasonal hypoxia on macrobenthic communities in the Muping Marine Ranch, Yantai, China [J]. Biodiv Sci, 2019, 27(2): 200-210.
[15] Dai Yujia,Luo Xiaofeng,Zhou Wenguan,Chen Feng,Shuai Haiwei,Yang Wenyu,Shu Kai. Plant Systemic Signaling Under Biotic and Abiotic Stresses Conditions [J]. Chin Bull Bot, 2019, 54(2): 255-264.
Full text



[1] Yu-Long Gao, Xue-Feng Yao, Wen-Zheng Li, Zhong-Bang Song, Bing-Wu Wang, Yu-Ping Wu, Jun-Li Shi, Guan-Shan Liu, Yong-Ping Li and Chun-Ming Liu. An efficient TILLING platform for cultivated tobacco[J]. J Integr Plant Biol, 0, (): 0 .
[2] Fengchao Li, Xianjiang Kang, Wenbo Yang, Yueqiang Guan, Xiaohui Zhang, Weiwei Liu, Gongming Shen, Jilong Li, Hongwei Wang. Protozoan community character in relation to trophic level in the Beijing section of the Juma River[J]. Biodiv Sci, 2006, 14(4): 327 -332 .
[3] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis[J]. Chin J Plan Ecolo, 2018, 42(5): 585 -594 .
[5] LIU YU. Seasonal species Diversity of Phytoplankton in Zhangjiang Seawaters[J]. Biodiv Sci, 1994, 02(Suppl.): 36 -42 .
[6] MO Xin-Chun. Recent Progress in Model Grass Brachypodium distachyon (Poaceae)[J]. Plant Diversity, 2014, 36(02): 197 -207 .
[7] HUANG Jiu-Xiang, ZHUANG Xue-Ying. A Study of Genetic Diversity of the Populations of Tsoongiodendron odorum[J]. Chin J Plan Ecolo, 2002, 26(4): 413 -419 .
[8] MENG Meng, NI Jian, ZHANG Zhi-Guo. ARIDITY INDEX AND ITS APPLICATIONS IN GEO-ECOLOGICAL STUDY[J]. Chin J Plan Ecolo, 2004, 28(6): 853 -861 .
[9] Guang-Wan HU, Heng LI,Ying TAN,Yan LIU,Chun-Lin LONG. Tupistra hongheensis (Ruscaceae), a new species from Yunnan, China based on morphological, karyotypic, and pollen morphological studies[J]. J Syst Evol, 2013, 51(2): 230 .
[10] Li-Na SHA, Xing FAN, Hai-Qin ZHANG, Hou-Yang KANG, Yi WANG, Xiao-Li WANG, Li ZHANG, Chun-Bang DING, Rui-Wu YANG, Yong-Hong ZHOU. Phylogenetic relationships in Leymus (Triticeae; Poaceae): Evidence from chloroplast trnH-psbA and mitochondrial coxII intron sequences[J]. J Syst Evol, 2014, 52(6): 722 -734 .