Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (9): 893-901.doi: 10.17521/cjpe.2016.0163

• Research Articles • Previous Articles     Next Articles

Effects of streams on lignin degradation during foliar litter decomposition in an alpine forest

Kai YUE1, Wan-Qin YANG1,2, Yan PENG1, Chun-Ping HUANG1,3, Chuan ZHANG1, Fu-Zhong WU1,2,*()   

  1. 1Long-term Research Station of Alpine Forest Ecosystems, Provincial Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu 611130, China

    2Collaborative Innovation Center for Ecological Security in the Upper Reaches of the Yangtze River, Chengdu 611130 ,China
    and
    3College of Life Science, Sichuan Normal University, Chengdu 610101, China
  • Received:2016-05-09 Accepted:2016-07-23 Online:2016-09-29 Published:2016-09-10
  • Contact: Fu-Zhong WU E-mail:wufzchina@163.com

Abstract:

AimsStreams are widely distributed in alpine forests, and litter decomposition in which is an important component of material cycling across the forest landscape. The leaching and fragmenting effects as well as the unique environmental factors in streams may have significant impacts on lignin degradation during litter decomposition, but studies on this are lacking.
Methods Using litterbag methods, we investigated the dynamics of lignin mass remaining and concentration (percent litter mass, %) during the decomposition of four foliar litters, which varied significantly in the initial litter chemical traits, from the dominant species of Salix paraplesia, Rhododendron lapponicum, Sabina saltuaria, and Larix mastersiana under different habitats (forest floor, stream, and riparian zone) in the upper reaches of the Minjiang River.
Important findings After two year’s incubation, litter lignin mass remaining for a specific litter species varied significantly (p < 0.05) among habitats, with an order of stream < riparian zone < forest floor. Lignin was degraded substantially in the early stage of litter decomposition process, and the lignin concentration first decreased and then increased with the proceeding of litter decomposition, but varied significantly (p < 0.05) among different litter species. Lignin mass showed a general trend of decrease across the 2-year decomposition course. In addition, habitat type, decomposition period and microenvironmental factors (e.g., temperature, pH value and nutrient availability) showed substantial influences on lignin degradation rate. These results suggest that the traditional view that lignin was relatively recalcitrant with an increase of concentration in the early stage of litter decomposition is challenged, but the loss of lignin in the early phrase is in line with recent findings about the fate of lignin during litter decomposition. Moreover, the significant differences of lignin degradation rates among different decomposition period and habitat types indicated that local-scale environmental factors can play a significant role in litter decomposition and lignin degradation processes.

Key words: carbon cycling, forest floor, stream, riparian zone, degradation rate, species, environmental factor

Table 1

Characteristics of environmental conditions of different habitats during the process of foliar litter decomposition (mean ± SD, n = 90)"

生境 Habitat AT (℃) C (g·kg-1) N (g·kg-1) P (g·kg-1) pH
林下 Forest floor 2.0 ± 5.2 126 ± 26 5.8 ± 1.1 1.2 ± 0.2 6.6 ± 0.02
生境 Habitat AT (°C) HCO3- (mg·L-1) NH4+ (mg·L-1) NO3-(mg·L-1) PO43- (μg·L-1) pH FV (m·s-1)
溪流 Stream 5.1 ± 2.6 13.9 ± 1.96 0.10 ± 0.05 0.29 ± 0.07 7.85 ± 0.38 6.6 ± 0.4 0.53 ± 0.15
河岸带 Riparian zone 4.8 ± 3.4 19.7 ± 1.33 0.04 ± 0.02 0.34 ± 0.08 7.84 ± 0.41 6.9 ± 0.3 0.05 ± 0.01

Table 2

Initial chemical properties of Salix paraplesia, Rhododendron lapponicum, Sabina saltuaria, and Larix mastersiana foliar litters (mean ± SD, n = 9)"

物种 Species C (%) N (%) P (%) 木质素 Lignin (%) C:N C:P N:P Lignin:N
康定柳 S. paraplesia 34.8 ± 0.9c 2.64 ± 0.15a 0.17 ± 0.01a 24.7 ± 1.3d 13.2 ± 0.8d 207 ± 19.7c 15.7 ± 1.7a 9.38 ± 0.8c
高山杜鹃 R. lapponicum 38.6 ± 1.1b 0.69 ± 0.10d 0.10 ± 0.02d 29.8 ± 0.8b 57.2 ± 10.2a 375 ± 53.6a 6.75 ± 1.5c 44.3 ± 8.3a
方枝柏 S. saltuaria 46.9 ± 1.8a 1.05 ± 0.06c 0.15 ± 0.01b 28.1 ± 0.8c 45.1 ± 3.9b 304 ± 12.6b 6.79 ± 0.7c 26.9 ± 1.8b
四川红杉 L. mastersiana 37.5 ± 0.5b 1.59 ± 0.11b 0.12 ± 0.01c 37.8 ± 1.0a 23.6 ± 1.8c 320 ± 24.6b 13.6 ± 0.8b 30.1 ± 2.1b

Fig. 1

Dynamics of lignin mass remaining (g) in the decomposing foliar litter of Salix paraplesia (A), Rhododendron lapponicum (B), Sabina saltuaria (C), and Larix mastersiana (D) under different habitat conditions (mean ± SD, n = 9). Different lowercase letters indicate significant (p < 0.05) differences of lignin mass remaining for a given litter species in a specific decomposition period under different habitat conditions."

Fig. 2

Dynamics of lignin concentration (percent litter mass, %) during Salix paraplesia (A), Rhododendron lapponicum (B), Sabina saltuaria (C), and Larix mastersiana (D) foliar litter decomposition (p < 0.05) under different habitat conditions (mean ± SD, n = 9). Different lowercase letters indicate significant (p < 0.05) differences of lignin concentration among different decomposition periods for a given litter species incubated in a specific type of habitat. FP, freezing period; GS, growing season; IV, initial value; LGS, late growing season; PP, pre-freezing period; TP, thawing period; 1, first year; 2, second year."

Fig. 3

Dynamics of lignin degradation rate (%/month) during Salix paraplesia (A), Rhododendron lapponicum (B), Sabina saltuaria (C), and Larix mastersiana (D) foliar litter decomposition (p < 0.05) under different habitat conditions (mean ± SD, n = 9). Different lowercase letters indicate significant (p < 0.05) differences of lignin degradation rate among different decomposition periods for a given litter species incubated in a specific type of habitat. FP, freezing period; GS, growing season; IV, initial value; LGS, late growing season; PP, pre-freezing period; TP, thawing period; 1, first year; 2, second year."

Table 3

Repeated-measure ANOVA analysis on the effects of litter species, habitat type, and decomposition period on lignin degradation rate during litter decomposition process"

影响因子
Influence factor
自由度
Degree of freedom
F p
物种 Species 3 165.753 < 0.001
生境 Habitat 2 75.197 < 0.001
时期 Period 9 504.141 < 0.001
物种×生境 Species × habitat 6 40.353 < 0.001
物种×时期 Species × period 27 17.003 < 0.001
生境×时期 Habitat × period 18 18.317 < 0.001
物种×生境×时期
Species × habitat × period
54 12.020 < 0.001

Table 4

Stepwise regression analysis between lignin degradation rate (%/month) of the 2 years and foliar litter initial chemical properties"

生境 Habitat 回归式 Regression model
a0 a1X1 a2X2 a3X3 a4X4
林下 Forest floor ŷ = 0.424 -0.017 C:N (0.353) +0.042 C (0.607)
溪流 Stream ŷ = 1.602 -0.031 Lignin:N (0.785) +13.231 P (0.874)
河岸带 Riparian zone ŷ = -7.311 +0.032 Lignin (0.783) +20.108 P (0.888) +0.164 N:P (0.932) +0.090 C (0.940)

Table 5

F-value for the regression analysis between lignin degradation rate (%/month) and environmental factors under different habitats during foliar litter decomposition"

林下 Forest floor AT C N P pH
康定柳 Salix paraplesia 26.925*** 35.094*** 1.987 0.340 6.194*
高山杜鹃 Rhododendron lapponicum 16.022*** 0.064 5.700* 17.816*** 2.431
方枝柏 Sabina saltuaria 10.134** 1.037 23.348*** 23.681*** 8.314**
四川红杉 Larix mastersiana 30.336*** 7.748** 32.560*** 10.076** 13.489***
溪流 Stream AT HCO3- NH4+ NO3- PO43- pH FV
康定柳 Salix paraplesia 0.001 0.572 2.692 13.248*** 0.522 6.208* 0.385
高山杜鹃 Rhododendron lapponicum 1.286 1.722 6.088* 8.832** 1.612 1.652 1.590
方枝柏 Sabinasaltuaria 1.245 4.809* 7.579** 8.964** 0.001 6.454* 0.103
四川红杉 Larix mastersiana 2.815 2.179 4.681* 11.866** 0.063 5.594* 0.053
河岸带 Riparian zone AT HCO3- NH4+ NO3- PO43- pH FV
康定柳 Salix paraplesia 35.148*** 5.748* 12.267** 0.256 1.305 16.431*** 2.540
高山杜鹃 Rhododendron lapponicum 3.702 2.822 2.029 1.369 0.001 7.300** 5.752*
方枝柏 Sabina saltuaria 1.564 4.024* 6.775* 4.609* 0.115 3.545 6.232*
四川红杉 Larix mastersiana 36.978*** 15.189*** 19.985*** 4.305* 0.055 0.371 11.602**
1 Berg B (2014). Decomposition patterns for foliar litter—A theory for influencing factors.Soil Biology & Biochem- istry, 78, 222-232.
2 Berg B, Kjønaas O, Johansson M-B, Erhagen B, Åkerblom S (2015). Late stage pine litter decomposition: Relationship to litter N, Mn, and acid unhydrolyzable residue (AUR) concentrations and climatic factors.Forest Ecology and Management, 358, 41-47.
3 Berg B, McClaugherty C (2014). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. 3rd edn. Springer, Berlin.
4 Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, Graça MAS, Dudgeon D, Boulton AJ, Callisto M, Chauvet E, Helson JE, Bruder A, Albariño RJ, Yule CM, Arunachalam M, Davies JN, Figueroa R, Flecker AS, Ramírez A, Death RG, Iwata T, Mathooko JM, Mathuriau C, Gonçalves JF, Moretti MS, Jinggut T, Lamothe S, M’Erimba C, Ratnarajah L, Schindler MH, Castela J, Buria LM, Cornejo A, Villanueva VD, West DC (2011). A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration.Ecology Letters, 14, 289-294.
5 Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA (2016). Understanding the dominant controls on litter decomposition.Journal of Ecology, 104, 229-238.
6 Bradford MA, Warren II RJ, Baldrian P, Crowther TW, Maynard DS, Oldfield EE, Wieder WR, Wood SA, King JR (2014). Climate fails to predict wood decomposition at regional scales.Nature Climate Change, 4, 625-630.
7 Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.Ecology Letters, 11, 1065-1071.
8 Ferreira V, Raposeiro PM, Pereira A, Cruz AM, Costa AC, Graça MAS, Gonçalves V (2016). Leaf litter decomposi- tion in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions.Freshwater Biology, 61, 783-799.
9 García-Palacios P, Prieto I, Ourcival J-M, Hättenschwiler S (2016a). Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall.Ecosystems, 19, 490-503.
10 García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S (2016b). Temporal dynamics of biotic and abiotic drivers of litter decomposition.Ecology Letters, 19, 554-563.
11 Gessner MO, Chauvet E, Dobson M (1999). A perspective on leaf litter breakdown in streams.Oikos, 85, 377-384.
12 Graça MA, Ferreira V, Canhoto C, Encalada AC, Guerrero- Bolaño F, Wantzen KM, Boyero L (2015). A conceptual model of litter breakdown in low order streams.International Review of Hydrobiology, 100, 1-12.
13 He W, Wu FZ, Yang WQ, Tan B, Zhao YY, Wu QQ, He M (2016). Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest.Ecosystems, 19, 115-128.
14 He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest.Chinese Journal of Plant Ecology, 37, 306-316. (in Chinese with English abstract)[何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.]
15 Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011). A new conceptual model for the fate of lignin in decomposing plant litter.Ecology, 92, 1052-1062.
16 Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Tan B, Hu Y (2016). Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest.Forests, 7, 27.
17 Martínez A, Larrañaga A, Pérez J, Descals E, Pozo J (2014). Temperature affects leaf litter decomposition in low- order forest streams: Field and microcosm approaches.FEMS Microbiology Ecology, 87, 257-267.
18 Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition.Science, 315, 361-364.
19 Prescott CE (2005). Do rates of litter decomposition tell us anything we really need to know?Forest Ecology and Management, 220, 66-74.
20 Wallace JB, Eggert S, Meyer JL, Webster J (1999). Effects of resource limitation on a detrital-based ecosystem.Ecological Monographs, 69, 409-442.
21 Yue K, Yang WQ, Peng CH, Peng Y, Zhang C, Huang CP, Tan Y, Wu FZ (2016). Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Science of the Total Environment, 566-567, 279-287.
22 Yue K, Yang WQ, Peng Y, Zhang C, Huang CP, Wu FZ (2015a). Carbon, nitrogen and phosphorus dynamics during winter foliar litter decomposition in an alpine forest river in the upper reaches of the Minjiang River.Chinese Journal of Applied and Environmental Biology, 21, 301-307. (in Chinese with English abstract)[岳楷, 杨万勤, 彭艳, 张川, 黄春萍, 吴福忠 (2015a). 岷江上游高山森林冬季河流中凋落叶碳氮和磷元素动态特征. 应用与环境生物学报, 21, 301-307.]
23 Yue K, Yang WQ, Peng Y, Zhang C, Huang CP, Wu FZ (2015b). Foliar litter mass loss in winter in an alpine forest river in the upper reaches of the Minjiang River.Resources and Environment in the Yangtze Basin, 24, 1177-1184. (in Chinese with English abstract)[岳楷, 杨万勤, 彭艳, 张川, 黄春萍, 吴福忠 (2015b). 岷江上游高山森林凋落叶在冬季河流中的质量损失特征. 长江流域资源与环境, 24, 1177-1184.]
24 Zhang C, Yang WQ, Yue K, Huang CP, Peng Y, Wu FZ (2015). Soluble nitrogen and soluble phosphorus dynamics during foliar litter decomposition in winter in alpine forest streams.Chinese Journal of Applied Ecology, 26, 1601-1608. (in Chinese with English abstract)[张川, 杨万勤, 岳楷, 黄春萍, 彭艳, 吴福忠 (2015). 高山森林溪流冬季不同时期凋落物分解中水溶性氮和磷的动态特征. 应用生态学报, 26, 1601-1608.]
25 Zhu JX, He XH, Wu FZ, Yang WQ, Tan B (2012). Decomposi- tion of Abies faxoniana litter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China.Scandinavian Journal of Forest Research, 27, 586-596.
[1] cao xiuwen. Population structure characteristics and survival status of Picea purpurea in the Taohe river upstream [J]. Chin J Plant Ecol, 2020, 44(预发表): 0-0.
[2] Shuai-Feng LI xuedong Lang Huang Xiao-Bo yanhong Wang LIU Wan-De chonghua Xu Jianrong Su. Association classification of a 30 hm2 dynamics plot in the monsoon broad-leaved evergreen forest in Puer, Yunnan Province [J]. Chin J Plant Ecol, 2020, 44(预发表): 0-0.
[3] Xiao-Juan FENG YiYun Wang Ting Liu Juan JIA Guo-Hua DAI Tian MA Zong-Guang LIU. Biomarkers and their applications in ecosystem research [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[4] Zhigang Jiang Jianping Jiang Yuezhao Wang E Zhang Yanyun Zhang Bo Cai. Significance of country red lists of endangered species for biodiversity conservation [J]. Biodiv Sci, 2020, 28(5): 0-0.
[5] Junhua Zhu Zhou Wu Bingbin Feng Shuaishuai Deng Wenquan Zhen Yongyan Liao Xiaoyong Xie Kit Yue Kwan. Global conservation of Tachypleus tridentatus: Present status and recommendations [J]. Biodiv Sci, 2020, 28(5): 0-0.
[6] Na Li Chenchen Ding Dandan Cao Hongjun Chu Yingjie Qi Chunwang Li Xiaoge Ping Yuehua Sun Zhigang Jiang. Avian species census, richness patterns and faunal composition in the Altay Region, China [J]. Biodiv Sci, 2020, 28(4): 401-411.
[7] Yiyi Dong Yanqiong Peng Bo Wang. Seasonal dynamics of fig wasp community and interaction networks in Ficus benjamina [J]. Biodiv Sci, 2020, 28(4): 496-503.
[8] Xinghui Lu,Runguo Zang,Yi Ding,Jihong Huang,Yue Xu. Habitat characteristics and its effects on seedling abundance of Hopea hainanensis, a Wild Plant with Extremely Small Populations [J]. Biodiv Sci, 2020, 28(3): 289-295.
[9] Dan Liu,Zhongling Guo,Xiaoyang Cui,Chunnan Fan. Comparison of five associations of Taxus cuspidata and their species diversity [J]. Biodiv Sci, 2020, 28(3): 340-349.
[10] Yuanyuan Li,Chaonan Liu,Rong Wang,Shuixing Luo,Shouqian Nong,Jingwen Wang,Xiaoyong Chen. Applications of molecular markers in conserving endangered species [J]. Biodiv Sci, 2020, 28(3): 367-375.
[11] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow [J]. Biodiv Sci, 2020, 28(2): 107-116.
[12] Zhenyuan Liu,Xingliang Meng,Zhengfei Li,Junqian Zhang,Jing Xu,Senlu Yin,Zhicai Xie. Diversity assessment and protection strategies for the mollusk community in the southern Dongting Lake [J]. Biodiv Sci, 2020, 28(2): 155-165.
[13] Jiazhen Zhang,Chunlei Gao,Yan Li,Ping Sun,Zongling Wang. Species composition of dinoflagellates cysts in ballast tank sediments of foreign ships berthed in Jiangyin Port [J]. Biodiv Sci, 2020, 28(2): 144-154.
[14] Kai Wang,Jinlong Ren,Hongman Chen,Zhitong Lyu,Xianguang Guo,Ke Jiang,Jinmin Chen,Jiatang Li,Peng Guo,Yingyong Wang,Jing Che. The updated checklists of amphibians and reptiles of China [J]. Biodiv Sci, 2020, 28(2): 189-218.
[15] Xia Li,Wanze Zhu,Shouqin Sun,Shumiao Shu,Zheliang Sheng,Jun Zhang,Ting Liu,Zhicai Zhang. Influence of habitat on the distribution pattern and diversity of plant community in dry and warm valleys of the middle reaches of the Dadu River, China [J]. Biodiv Sci, 2020, 28(2): 117-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 91 .
[2] QIAN Ying-Qian. Some Issues in Biodiversity[J]. Chin Bull Bot, 1998, 15(06): 1 -18 .
[3] ZHANG Xiu-Juan MEI Li WANG Zheng-Quan HAN You-Zhi. Advances in Studying Fine Root Decomposition in Forests[J]. Chin Bull Bot, 2005, 22(02): 246 -254 .
[4] CHENG Long-Jun GUO De-Ping GE Hong-Juan. The Special Proteins in Sweet Potato Tuber—Sporamin[J]. Chin Bull Bot, 2001, 18(06): 672 -677 .
[5] Tang Yancheng. A Short Guide to the International Code of Botanical Nomenclature[J]. Chin Bull Bot, 1984, 2(06): 49 -54 .
[6] Chuanyuan Deng, Guiliang Xin, Wanchao Zhang, Suzhi Guo, Qiuhua Xue, Zhongxiong Lai, Luying Ye. SEM Observations and Measurements of Vestured Pits of the Secondary Xylem in the Tribe Rhizophoreae[J]. Chin Bull Bot, 2015, 50(1): 90 -99 .
[7] YANG Xiao-Lin, ZHANG Xi-Ming, LI Yi-Ling, LI Shao-Cai, SUN Hai-Long. ANALYSIS OF ROOT ARCHITECTURE AND ROOT ADAPTIVE STRATEGY IN THE TAKLIMAKAN DESERT AREA OF CHINA[J]. Chin J Plan Ecolo, 2008, 32(6): 1268 -1276 .
[8] Zhang Jintun, Pickett S. T. A. Gradient Analysis of Forest Vegetation Along an Urban-Rural Transect in New York[J]. Chin J Plan Ecolo, 1998, 22(5): 392 -397 .
[9] JI Fang, MA Ying-Jie, FAN Zi-Li. Soil Water Regime in Populus euphratica Forest on the Tarim River Alluvial Plain[J]. Chin J Plan Ecolo, 2001, 25(1): 17 -21 .
[10] JIANG Fu-Wei, JIANG Hong, LI Wei, YU Shu-Quan, ZENG Bo, WANG Yan-Hong. PHOTOSYNTHETIC AND PHYSIOLOGICAL CHARACTERISTICS OF THREE ANGIOSPERMS OF DIFFERENT EVOLUTIONARY AGES UNDER ACID RAIN STRESS[J]. Chin J Plan Ecolo, 2009, 33(1): 125 -133 .