Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (7): 761-769.doi: 10.17521/cjpe.2016.0188

• Research Articles • Previous Articles     Next Articles

Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland, China

Ting XU, Cheng-Zhang ZHAO*(), Ling HAN, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG   

  1. College of Geography and Environmental Science, Northwest Normal University, Research Center of Wetland Resources Protection and Industrial Development Engineering of Gansu Province, Lanzhou 730070, China
  • Received:2016-05-31 Accepted:2017-04-06 Online:2017-08-21 Published:2017-07-10
  • Contact: Cheng-Zhang ZHAO E-mail:zhaocz601@163.com
  • About author:

    KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

Abstract:

Aims The correlation between vein density and water use efficiency (WUE) affects the balance between water supply and demand of plant leaves, which is significant for comprehending the ecological adaptation strategies of plants. The objective of this study was to study how Salix matsudana modulated vein density and WUE along a soil moisture gradient in Zhangye Wetland, China. Methods The study was conducted in floodplain wetland near Heihe River in Zhangye City, Gansu Province, China. Three sample plots, at a spatial interval of 70 m, were set up along a soil moisture gradient ordinally from the area near the water body to the wetland edge, plot I (69.23%), spot II (48.38%) and spot III (35.27%). Community traits were investigated by using diagonal method, and all individuals of S. matsudana were used for measurements of height and canopy. At each plot, 5 individuals of S. matsudana at 4 vertices and diagonal intersection were selected for measurements of vein density, WUE, net photosynthetic rate (Pn), transpiration rate (Tr), photosynthetically active radiation (PAR), saturated vapor pressure differences (VPD), specific leaf area, stomatal conductance (Gs) and intercellular CO2 concentration (Ci). We used mathematical methods of correlation analysis and standardized major axis to investigate relationships between vein density and WUE. Important findings With decreasing soil moisture, the height, canopy, specific leaf area, Gs and Ci of S. matsudana decreased gradually, while the vein density, WUE, Pn, Tr, PAR and VPD increased gradually. The correlation between vein density and WUE was positive in all the three plots, but the relationship varied along the soil moisture plots gradient. There was a highly significant positive correlation (p < 0.01) between the vein density and WUE at plot I and III, whereas the correlation only reached a significant level (p < 0.05) at plot II; The correlation coefficient between vein density and WUE is significantly smaller than 1 at plot I (p < 0.05), while the correlation coefficient is significant greater than 1 at plot II and III (p < 0.05). We can conclude that varied relationships between vein density and WUE of S. matsudana along a soil moisture gradient could reflect plant acclimation.

Key words: Salix matsudana, vein density, water use efficiency, correlation, soil moisture, Zhangye Wetland

Table 1

Main characteristics of plots in different water plots (mean ± SE, n = 60)"

样地
Plot
土壤含水量
Soil moisture (%)
群落特征 Community characteristics
高度 Height (cm) 郁闭度 Crown density (%)
I 69.23 ± 3.55a 636.96 ± 27.63a 91.21 ± 4.56a
II 48.38 ± 2.46b 589.25 ± 17.28b 75.69 ± 3.78b
III 35.27 ± 1.76c 502.34 ± 26.76c 37.26 ± 1.86c

Fig. 1

Change among leaf traits and water use efficiency (WUE) of Salix matsudana in different plots (mean ± SE, n = 60). Different lowercase letters indicate significant differences of different plots for identical module (p < 0.05)."

Table 2

Photosynthetic characteristics of Salix matsudana in different plots (mean ± SE, n = 60)"

样地 Plot I II III
饱和水汽压差 VPD
(kPa)
0.25 ± 0.01c 0.28 ± 0.01b 0.32 ± 0.02a
气孔导度 Gs
(mol·m-2·s-1)
1.77 ± 0.09a 0.91 ± 0.05b 0.32 ± 0.02c
蒸腾速率 Tr
(mmol·m-2·s-1)
3.02 ± 0.15c 5.26 ± 0.26b 6.81 ± 0.34a
净光合速率 Pn (μmol·m-2·s-1) 3.69 ± 0.08c 8.83 ± 0.34b 16.63 ± 0.83a
胞间CO2浓度 Ci
(μmol·mol-1)
0.31 ± 0.02a 0.29 ± 0.02a 0.27 ± 0.01a
光合有效辐射 PAR
(μmol·m-2·s-1)
782.30 ± 39.12c 1105.20 ± 55.26b 1562.20 ± 78.12a

Fig. 2

Relationship between vein density and water use efficiency (WUE) of Salix matsudana among different plots. A, Plot I; B, Plot II; C, Plot III. Plot see Table 1."

Table 3

Variation of leaf transpiration rate (Tr), net photosynthetic rate (Pn) and water use efficiency (WUE) for Salix matsudana"

参数 Parameter Tr Pn WUE
变异系数 Coefficient of variation (%) 9.25% 20.32% 9.96%
[1] Aiba M, Takafumi H, Hiura T (2012). Interspecific differences in determinants of plant species distribution and the relationships with functional traits.Journal of Ecology, 100, 950-957.
[2] Berlyn GP, Miksche JP (1976). Botanical Microtechnique and Cytochemistry. Iowa State University Press, Ames, USA.
[3] Blonder B, Violle C, Bentley LP, Enquist BJ (2010). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100.
[4] Brodribb TJ, Feild TS (2010). Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification.Ecology Letters, 13, 175-183.
[5] Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees.New Phytologist, 192, 437-448.
[6] Carins-Murphy MR, Jordan GJ, Brodribb TJ (2014). Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.Plant, Cell & Environment, 37, 124-131.
[7] Dang JJ, Zhao CZ, Dong XG, Yang Q, Zha GD (2014). Response of Kobresia tibetica and Kobresia humilis population spatial pattern to soil moisture.Chinese Journal of Ecology, 33, 1734-1740. (in Chinese with English abstract)[党晶晶, 赵成章, 董小刚, 杨泉, 查高德 (2014). 藏嵩草和矮嵩草种群空间分布格局对水分的响应. 生态学杂志, 33, 1734-1740.]
[8] Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, deTorres-Espuny L, Falczuk V, Guerrero- Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004). The plant traits that drive ecosystems: Evidence from three continents.Journal of Vegetation Science, 15, 295-304.
[9] Eschera P, Peukea AD, Bannisterb P, Finkc S, Hartungd W, Jiange F, Rennenberg H (2008). Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus × euamericana).Plant Physiology and Biochemistry, 46, 64-70.
[10] Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü (2015). Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants.Plant, Cell & Environment, 39, 965-982.
[11] Gang CC, Wang ZQ, Chen YZ, Yang Y, Li JL, Cheng JM, Qi JG, Odehe I (2016). Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011.Ecological Indicators, 67, 788-797.
[12] Gao L, Yang J, Liu RX (2009). Effects of soil moisture levels on photosynthesis, transpiration, and moisture use efficiency of female and male plants of Hippophae rhamnoidesssp ssp. sinensi.Acta Ecologica Sinica, 29, 6025-6034. (in Chinese with English abstract)[高丽, 杨劼, 刘瑞香 (2009). 不同土壤水分条件下中国沙棘雌雄株光合作用、蒸腾作用及水分利用效率特征. 生态学报, 29, 6025-6034.]
[13] Gao Y, Xia JB, Zhao ZG, Kong QX, Gu GY, Zhang L (2013). Effect of simulated soil water change on photosynthetic characteristics of Salix matsudana in shell sand habitat.Acta Botanica Boreali-Occidentalia Sinica, 33, 2467-2473. (in Chinese with English abstract)[高源, 夏江宝, 赵自国, 孔庆仙, 谷广义, 张亮 (2013). 模拟贝壳砂水分变化对旱柳光合特性的影响. 西北植物学报, 33, 2467-2473.]
[14] Gao Y, Zhu XJ, Yu GR, He NP, Wang QF, Tian J (2014). Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation. Agricultural and Forest Meteorology, 195-196, 32-37.
[15] Glenn DM (2016). Effect of highly processed calcined kaolin residues on apple water use efficiency.Scientia Horticulturae, 23, 127-132.
[16] Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions.Chinese Journal of Plant Ecology, 39, 300-308. (in English with Chinese abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.]
[17] Gurevitch J, Scheiner SM, Fox GA (2002). The Ecology of Plants. Sinauer Associates, Sunderland, USA.
[18] He CX, Li JY, Meng P, Zhang JS (2013). Changes of leaf traits and WUE with crown height of four tall tree species.Acta Ecologica Sinica, 33, 5644-5654. (in English with Chinese abstract)[何春霞, 李吉跃, 孟平, 张劲松 (2013). 4种高大树木的叶片性状及WUE随树高的变化. 生态学报, 33, 5644-5654.]
[19] Kenney AM, McKay JK, Richards JH, Juenger TE (2014). Direct and indirect selection on flowering time, water-use efficiency (WUE, δ13C), and WUE plasticity to drought in Arabidopsis thaliana.Ecology and Evolution, 4, 4505-4521.
[20] Li MX, Yang YZ, Zhu Q, Chen H, Peng CH (2016). Evaluating water use efficiency patterns of Qinling Mountains under climate change.Acta Ecologica Sinica, 36, 936-945. (in Chinese with English abstract)[李明旭, 杨延征, 朱求安, 陈槐, 彭长辉 (2016). 气候变化背景下秦岭地区陆地生态系统水分利用率变化趋势. 生态学报, 36, 936-945.]
[21] Li X, Xie YH, Huang JS, Chen XS (2009). Research progresses on the formation mechanism of vegetation distribution pattern in wetlands.Wetland Science, 7, 280-288. (in Chinese with English abstract)[李旭, 谢永宏, 黄继山, 陈心胜 (2009). 湿地植被格局成因研究进展. 湿地科学, 7, 280-288.]
[22] Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions.Scientia Sinica Vitae, 45, 325-339. (in Chinese with English abstract)[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.]
[23] Matthew-Ogburn R, Edwards EJ (2013). Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants.Current Biology, 23, 722-726.
[24] Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. (in Chinese with English abstract)[孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
[25] Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes.Functional Ecology, 28, 810-818.
[26] Nardini A, Raimondo F, LoGullo MA (2010). Leaf miners help us understand leaf hydraulic design. Plant, Cell and Environment, 33, 1091-1100.
[27] Niu YY, Liao K, Jia Y, Pang HX, Xu GX, Jiang ZB (2015). Analysis on differences in photosynthetic characteristics of korla fragrant pear among different planting densities.Agricultural Science & Technology, 16, 862-867.
[28] Pagano M, Storchi P (2015). Leaf vein density: A possible role as cooling system.Journal of Life Sciences, 9, 299-303.
[29] Pradhan S, Sehgal VK, Sanoo RN, Bandyopadhyay KK, Singh R (2014). Yield, water, radiation and nitrogen use efficiencies of wheat (Triticum aestivum) as influenced by nitrogen levels in a semi-arid environment.Indian Journal of Agronomy 59, 267-275.
[30] Quan XK, Wang CK (2015). Comparison of foliar water use efficiency among 17 provenances of Larix gmelinii in the Mao’ershan area.Chinese Journal of Plant Ecology, 39, 352-361. (in English with Chinese abstract)[全先奎, 王传宽 (2015). 帽儿山17个种源落叶松针叶的水分利用效率比较. 植物生态学报, 39, 352-361.]
[31] Ren QJ, Li HL, Bu HY (2015). Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow.Chinese Journal of Plant Ecology, 39, 593-603.[任青吉, 李宏林, 卜海燕 (2015). 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报, 39, 593-603.]
[32] Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees.Ecology, 87, 483-491.
[33] Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000.
[34] Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.Journal of Experimental Botany, 64, 4053-4080.
[35] Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns.Nature Communications, 3, 837.
[36] Silvertown J, Charlesworth D (2001). Introduction to Plant Population Biology. Blackwell, London.
[37] Song LQ, Hu CM, Hou XL, Shi L, Liu LA, Yang JC, Jiang CD (2015). Relationship between photosynthetic characteristics and leaf vein density in Sorghum bicolor and Perilla frutescens.Chinese Bulletin of Botany, 50, 100-106. (in English with Chinese abstract)[宋丽清, 胡春梅, 侯喜林, 石雷, 刘立安, 杨景成, 姜闯道 (2015). 高粱、紫苏叶脉密度与光合特性的关系. 植物学报, 50, 100-106.]
[38] Song YC (2001). Vegetation Ecology. East China Normal University Press, Shanghai. 551-552. (in Chinese)[宋永昌 (2001). 植被生态学. 华东师范大学出版社, 上海. 551-552.]
[39] Tan XJ, Zhao XS (2006). Spatial distribution and ecological adaptability of wetland vegetation in Yellow River Delta along a water table depth gradient.Chinese Journal of Ecology, 25, 1460-1464. (in Chinese with English abstract)[谭学界, 赵欣胜 (2006). 水深梯度下湿地植被空间分布与生态适应. 生态学杂志, 25, 1460-1464.]
[40] Villagra M, Campanello PI, Bucci SJ, Goldstein G (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.Tree Physiology, 33, 1308-1318.
[41] Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional!Oikos, 116, 882-892.
[42] Wang JL, Yu YR, Fang QX, Jiang DF, Qi H, Wang QF (2008). Responses of water use efficiency of nine plant species to light and CO2 and it’s modeling.Acta Ecologica Sinica, 28, 525-533. (in Chinese with English abstract)[王建林, 于贵瑞, 房全孝, 姜德锋, 齐华, 王秋凤 (2008). 不同植物叶片水分利用效率对光和CO2的响应与模拟. 生态学报, 28, 525-533.]
[43] Wang LL, Wang L, Zhang LF, Liu YY, Xu SJ (2015). Structure and dynamic characteristics of Gymnocarpos przewalskii in different habitats.Chinese Journal of Plant Ecology, 39, 980-989. (in Chinese with English abstract)[王立龙, 王亮, 张丽芳, 刘玉洋, 徐世健 (2015). 浙江天童木本植物叶片性状空间变异的地统计学分析. 植物生态学报, 39, 980-989.]
[44] Wang YP, Gao HH, Liu YS, Mu P, Yu XP, An LZ, Zhang F (2013). Adaptation mechanisms of alpine plants photosynthetic apparatus against adverse stress: A review. Chinese Journal of Applied Ecology, 24, 2049-2055. (in Chinese with English abstract)[王玉萍, 高会会, 刘悦善, 慕平, 鱼小军, 安黎哲, 张峰 (2013). 高山植物光合机构耐受胁迫的适应机制. 应用生态学报, 24, 2049-2055.]
[45] Westoby M, Falster DS, Moles AT (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology Systematics, 33, 125-159.
[46] Wu HW, Li XY, Jing ZY, Li J, Zheng XR, Zhao DZ (2015). Variations in water use for Achnatherum splendens in Lake Qinghai watershed based on δD and δ18O.Acta Ecologica Sinica, 35, 8174-8183. (in Chinese with English abstract)[吴华武, 李小雁, 蒋志云, 李静, 郑肖然, 赵殿智 (2015). 基于δD和δ18O的青海湖流域芨芨草水分利用来源变化研究. 生态学报, 35, 8174-8183.]
[47] Xu MS, Zhao YT, Yang XD, Shi QR, Zhou LL, Zhang QQ, Arshad A, Yan ER (2016). Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province.Chinese Journal of Plant Ecology, 40, 48-59. (in Chinese with English abstract)[许洺山, 赵延涛, 杨晓东, 史青茹, 周刘丽, 张晴晴, Ali ARSHAD, 阎恩荣 (2016). 浙江天童木本植物叶片性状空间变异的地统计学分析. 植物生态学报, 40, 48-59.]
[48] Yang WD, Chen YT (2008). Membrane leakage and antioxidant enzyme activities in roots and leaves of Salix matsudana with cadmium stress.Acta Botanica Boreali-Occidentalia Sinica, 28, 2263-2269. (in Chinese with English abstract)[杨卫东, 陈益泰 (2008). 镉胁迫对旱柳细胞膜透性和抗氧化酶活性的影响. 西北植物学报, 28, 2263-2269.]
[49] Yu WY, Ji RP, Feng R, Zhao XL, Zhang YS (2015). Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage.Acta Ecologica Sinica, 35, 2902-2909. (in Chinese with English abstract)[于文颖, 纪瑞鹏, 冯锐, 赵先丽, 张玉书 (2015). 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应. 生态学报, 35, 2902-2909.]
[50] Zhang YQ, Li SW, Fu W, Wen HD (2014). Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet.Journal of Plant Nutrition and Fertilizer, 20, 1119-1126. (in Chinese with English abstract)[张亚琦, 李淑文, 付巍, 文宏达 (2014). 施氮对杂交谷子产量与光合特性及水分利用效率的影响. 植物营养与肥料学报, 20, 1119-1126.]
[1] Zhao-Zhong FENG Li Pin You GuoZhang Zheng-zhen Li Qin Ping Long JinPeng Shuo Liu. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: Problems and prospective [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[2] Shuaifeng Li Xuedong Lang Wande Liu Xiaobo Huang Jianrong Su Chonghua Xu Zhihong Li Fandi Xu. The analysis of interspecific correlations of woody plant and community stability in the Eleutharrhena macrocarpa habitat [J]. Biodiv Sci, 2020, 28(3): 0-0.
[3] Aizezitiyuemaier MAIMAITI, Yusufujiang RUSULI, HE Hui, Baihetinisha ABUDUKERIMU. Spatio-temporal characteristics of vegetation water use efficiency and its relationship with climate factors in Tianshan Mountains in Xinjiang from 2000 to 2017 [J]. Chin J Plant Ecol, 2019, 43(6): 490-500.
[4] LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898.
[5] LIANG Shi-Chu, LIU Run-Hong, RONG Chun-Yan, CHANG Bin, JIANG Yong. Variation and correlation of plant functional traits in the riparian zone of the Lijiang River, Guilin, Southwest China [J]. Chin J Plant Ecol, 2019, 43(1): 16-26.
[6] SONG Xiao-Yan,WANG Gen-Xu,RAN Fei,YANG Yan,ZHANG Li,XIAO Yao. Flowering phenology and growth of typical shrub grass plants in response to simulated warmer and drier climate in early succession Taiga forests in the Da Hinggan Ling of northeast China [J]. Chin J Plan Ecolo, 2018, 42(5): 539-549.
[7] Chao-Yang FENG, He-Song WANG, Jian-xin SUN. Temporal changes of vegetation water use efficiency and its influencing factors in Northern China [J]. Chin J Plan Ecolo, 2018, 42(4): 453-465.
[8] WANG Li-Hua, XUE Jing-Yue, XIE Yu, WU Yan. Spatial distribution and influencing factors of soil organic carbon among different climate types in Sichuan, China [J]. Chin J Plan Ecolo, 2018, 42(3): 297-306.
[9] Wang Yucai, Zhang Hengjia, Deng Haoliang, Wang Shijie, Ba Yuchun. Effect of Regulated Deficit Irrigation on Water Use and Yield of Isatis indigotica [J]. Chin Bull Bot, 2018, 53(3): 322-333.
[10] LI Jin-Bo, YAO Nan, ZHAO Ying, FAN Ting, ZHANG Jian-Guo, LAN Zhi-Long, YI Jun, SI Bing-Cheng. Characteristics of soil water distribution and evaluation of recharge rate under different grazing history in the Xilin Gol Steppe [J]. Chin J Plant Ecol, 2018, 42(10): 1033-1042.
[11] Ling HAN, Cheng-Zhang ZHAO, Wei FENG, Ting XU, Hui-Ling ZHENG, Bei-Bei DUAN. Trade-off relationship between vein density and vein diameter of Achnatherum splendens in response to habitat changes in Zhangye wetland [J]. Chin J Plan Ecolo, 2017, 41(8): 872-881.
[12] Jing CHEN, Cheng-Zhang ZHAO, Ji-Wei WANG, Lian-Chun ZHAO. Canopy structure and radiation interception of Salix matsudana: Stand density dependent relationships [J]. Chin J Plan Ecolo, 2017, 41(6): 661-669.
[13] Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China [J]. Chin J Plan Ecolo, 2017, 41(5): 529-538.
[14] Xiao-Tao HUANG, Ge-Ping LUO. Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang [J]. Chin J Plan Ecolo, 2017, 41(5): 506-518.
[15] Xiao LIU, Chao QI, Yi-Lan YAN, Guo-Fu YUAN. Revised algorithm of ecosystem water use efficiency for semi-arid steppe in the Loess Plateau of China [J]. Chin J Plan Ecolo, 2017, 41(5): 497-505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hu Shi-yi. Lipoid Bodies in Plant Tissues[J]. Chin Bull Bot, 1994, 11(04): 49 -51 .
[2] CHENG Hong-Yan. Introduction of State Key Laboratory of Biomembrane and Membrane Biotechnology[J]. Chin Bull Bot, 1998, 15(04): 78 .
[3] Liu Dong-zhuo and Li Lan. The Karyotype Analysis of Solanum pseudocapsicum[J]. Chin Bull Bot, 1992, 9(03): 50 .
[4] WANG Bao-Shan;LI De-Quan;ZHAO Shi-Jie;MENG Qing-Wei and ZOU Qi. Effects of Iso-osmotic NaCl and KCl Stress on Growth and Gas Exchange of Sorghum Seedlings[J]. Chin Bull Bot, 1999, 16(04): 449 -453 .
[5] LI Yao-Dong WEI Yu-Ning XU Ben-Mei. Study on the ABA Content and SOD Activity in Ancient Lotus and Modern Lotus Seeds[J]. Chin Bull Bot, 2000, 17(05): 439 -442 .
[6] LI Zhong-Kui HU Hong-Jun LI Ye-Guang. Advances in Molecular Phylogenetic Relationship of Volvocales[J]. Chin Bull Bot, 2002, 19(04): 419 -424 .
[7] WANG Ting SU Ying-Juan ZHU Jian-Ming HUANG Chao LI Xue-Yan. PCR_RFLP Analysis of rbc L Genes in Taxaceae and Related Taxa[J]. Chin Bull Bot, 2001, 18(06): 714 -721 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 51 .
[9] Dong Shu-ting, Hu Chang-hao, Yue Shou-song, Wang Qun-ying, Gao Rong-qi, Pan Zi-long. The Characteristics of Canopy Photosynthesis of Summer Corn (Zea mays) and its Relation with Canopy Structure and Ecological Conditions[J]. Chin J Plan Ecolo, 1992, 16(4): 372 -378 .
[10] YANG Wei, YE Qi-Gang, LI Zuo-Zhou, HUANG Hong-Wen. GENETIC DIFFERENTIATION OF QUANTITATIVE TRAITS AND LOCAL ADAPTABILITY OF REMNANT POPULATIONS OF ISOETES SINENSIS AND IMPLICATIONS FOR CONSERVATION AND GENETIC REINFORCEMENT[J]. Chin J Plan Ecolo, 2008, 32(1): 143 -151 .