Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (8): 872-881.doi: 10.17521/cjpe.2016.0316

• Research Articles • Previous Articles     Next Articles

Trade-off relationship between vein density and vein diameter of Achnatherum splendens in response to habitat changes in Zhangye wetland

Ling HAN, Cheng-Zhang ZHAO*(), Wei FENG, Ting XU, Hui-Ling ZHENG, Bei-Bei DUAN   

  1. College of Geography and Environmental Science, Northwest Normal University, Research Center of Wetland Resources Protection and Industrial Development Engineering of Gansu Province, Lanzhou 730070, China
  • Online:2017-09-29 Published:2017-08-10
  • Contact: Cheng-Zhang ZHAO E-mail:zhaocz601@163.com
  • About author:

    KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

Abstract:

Aims The coevolution between vein traits has influences on water use strategies of plant and the formation of leaf economic spectrum, and therefore is important for understanding the trade-off between carbon input in leaf vein construction and the functional feedback from leaf veins. Our aim is to study the allometric relationship between vein density and vein diameter of Achnatherum splendens populations at three natural microhabitats (subcanopy, transitional and open areas) in Zhangye wetland. Methods According to the shade condition of the arbor canopy and the distance to arbor, the A. splendens community were divided into three microenvironments: subcanopy, transitional and open areas. We sampled 10 (4 m × 4 m) A. splendens plots from each microenvironment and investigate the biological characteristics of the plots and leaf traits of the plants within the plots. Then the soil physical and chemical properties, and community photosynthetically active radiation (PAR) were investigated at three gradients. Six individual of A. splendens were selected in each plot and the leaf length, leaf width, vein density and vein diameter of two or three healthy and complete leaves from four directions of each individual were measured in laboratory. The SMA estimation method and correlation analysis were then used to examine the allometric relationship between vein density and vein diameter. Important findings Along the gradient from subcanopy, transitional zone to open areas, soil moisture displayed a pattern of initial decrease of plant community, and soil electric conductivity displayed increase changing trends. Photosynthetically active radiation (PAR), vapor pressure deficit (VPD), vein density (1.28-1.59 mm·mm-2), leaf width and water use efficiency (WUE) increase gradually, while the leaf length, vein diameter (0.21-0.16 mm) of A. splendens decrease. The average value of plasticity indexes of leaf characteristics was 0.19. Leaf net photosynthetic rate (Pn), transpiration rate (Tr) and bundle density increase first and them decrease. The vein density and vein diameter of A. splendens were negatively correlated with each other in subcanopy environment (p < 0.01), transitional and open areas (p < 0.05). The SMA (0.54-1.50) slope of regression equation in the scaling relationships between vein density and vein diameter decrease gradually from subcanopy to open areas.

Key words: Achnatherum splendens, light, vein density, vein diameter, trade-off, Zhangye wetland

Table 1

Biological characteristics and soil characteristics of wetland plant communities in the different microenvironments (mean ± SE, n = 30)"

样地 Plot PAR (μmol·m-2·s-1) VPD (Pa·kPa) 土壤含水量
Soil moisture (%)
土壤电导率
Soil electrical conductivity (ms·cm-1)
冠盖区 Subcanopy areas 636.30 ± 14.18c 27.24 ± 2.68c 40.07 ± 1.24a 314 ± 13.89c
过渡区 Transitional areas 879.20 ± 27.95b 29.79 ± 4.22b 37.64 ± 1.07b 669 ± 15.02b
空旷区区 Open areas 1 205.10 ± 50.75a 31.84 ± 3.34a 31.4 ± 0.67c 1 090 ± 20.45a

Table 2

Leaf traits characteristics and photosynthetic physiological parameters of Achnatherum splendens in the different microenvironments (mean ± SE, n = 30)"

样地 Plot 冠盖区 Subcanopy areas 过渡区 Transitional areas 空旷区 Open areas 可塑性指数 Plasticity index
叶脉密度 Vein destiny (mm·mm-2) 1.28 ± 0.14c 1.46 ± 0.15b 1.59 ± 0.18a 0.20
叶脉直径 Vein diameter (mm) 0.21 ± 0.04a 0.18 ± 0.03b 0.16 ± 0.02c 0.24
叶片长度 Leaf length (cm) 58.6 ± 0.39a 51.99 ± 0.28b 49.08 ± 0.22c 0.16
叶片宽度 Leaf width (cm) 0.28 ± 0.04c 0.31 ± 0.05b 0.34 ± 0.07a 0.17
株丛密度 Bundle density (bundle·m-2) 4.25 ± 0.32c 13.50 ± 0.82b 11.75 ± 1.02a 0.64
Pn (μmol·m-2·s-1) 13.2 ± 0.12c 14.01 ± 0.18a 13.87 ± 0.13b 0.05
Tr (mmol·m-2·s-1) 6.35 ± 0.07c 6.83 ± 0.11a 6.65 ± 0.09b 0.05
WUE (μmol·mmol-1) 1.93 ± 0.01c 2.12 ± 0.02b 2.18 ± 0.03a 0.11

Table 3

The correlation analysis between photosynthetic parameters and leaf traits characteristics of Achnatherum splendens in three different habitats"

叶脉密度
Vein destiny
叶脉直径
Vein diameter
LL LW BD SM PAR VPD Pn Tr WUE
叶脉密度 Vein destiny 1
叶脉直径 Vein diameter -0.98** 1
LL -0.83* 0.84* 1
LW 0.81* -0.82* -0.86* 1
BD 0.72* -0.73 -0.81* 0.85* 1
SM -0.84* 0.81* 0.63 0.63 -0.57 1
PAR 0.83* -0.84* -0.82* 0.85* 0.58 -0.84* 1
VPD 0.53 -0.63 -0.49 0.58 0.71 -0.83* -0.86* 1
Pn 0.87* 0.84* 0.62 0.78 -0.56 -0.81* 0.86* 0.82* 1
Tr 0.83* 0.81* 0.61 0.73 0.53 -0.87* 0.83* 0.86* 0.89* 1
WUE 0.87* 0.82* 0.64 0.59 0.73 -0.86* 0.88* 0.83* 0.83* -0.88* 1

Fig. 1

Relationship between vein density and vein diameter of Achnatherum splendens among different light conditions. A, subcanopy areas. B, transitional areas. C, open areas."

[1] Blonder B, Violle C, Bentley LP (2011). Venation networks and the origin of the leaf economics spectrum.Ecology Letters, 14, 91-100.
doi: 10.1111/j.1461-0248.2010.01554.x pmid: 21073643
[2] Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit.New Phytologist, 188, 533-542.
doi: 10.1111/j.1469-8137.2010.03393.x pmid: 20673281
[3] Brodribb TJ, Jordan GJ (2008). Internal coordination between hydraulics and stomatal control in leaves.Plant, Cell & Environment, 31, 1557-1564.
doi: 10.1111/j.1365-3040.2008.01865.x pmid: 18684244
[4] Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees.New Phytologist, 192, 437-448.
doi: 10.1111/nph.2011.192.issue-2
[5] Cai J, Tyree MT (2010). The impact of vessel size on vulnerability curves: Data and models for within-species variability in saplings of aspen, Populus tremuloides Michx.Plant, Cell & Environment, 33, 1059-1069.
[6] Cai J, Zhang SX, Tyree MT (2010). A computational algorithm addressing how vessel length might depend on vessel diameter.Plant, Cell & Environment, 33, 1234-1238.
doi: 10.1111/j.1365-3040.2010.02142.x pmid: 20199614
[7] Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2005). Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: A comparison of co-occurring Mediterranean oaks that differ in leaf lifespan.New Phytologist, 168, 597-612.
doi: 10.1111/j.1469-8137.2005.01555.x pmid: 16313643
[8] Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2014). Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland.Chinese Journal of Plant Ecology, 38, 1307-1314.(in English with Chinese abstract)[党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2014). 高寒草地甘肃臭草茎-叶性状的坡度差异性. 植物生态学报, 38, 1307-1314.]
[9] Drezner TD (2007). An analysis of winter temperature and dew point under the canopy of a common Sonoran Desert nurse and the implications for positive plant interactions.Journal of Arid Environments, 69, 554-568.
doi: 10.1016/j.jaridenv.2006.11.003
[10] Falster DS, Warton DI, Wright IJ (. Cited: 2016-10-11.
[11] Funk JL, Cornwell WK (2013). Leaf traits within communities: Context may affect the mapping of traits to function.Ecology, 94, 1893-1897.
doi: 10.1890/12-1602.1 pmid: 24279259
[12] Givnish TJ (1987). Comparative studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints.New Phytologist, 106, 131-160.
doi: 10.1111/j.1469-8137.1987.tb04687.x
[13] Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions.Chinese Journal of Plant Ecology, 39, 300-308.(in Chinese with English abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.]
[14] Hale BK, Herms DA, Hansen RC, Clausen TP, Arnold D (2005). Effects of drought stress and nutrient availability on dry matter allocation, phenolic glycosides, and rapid induced resistance of poplar to two Lymantriid defoliators.Journal of Chemical Ecology, 31, 2601-2620.
doi: 10.1007/s10886-005-7616-8 pmid: 16273431
[15] Han L, Zhao CZ, Xu T, Feng W, Duan BB, Zheng HL (2016). Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland.Chinese Journal of Plant Ecology, 40, 788-797.(in Chinese with English abstract)[韩玲, 赵成章, 徐婷, 冯威, 段贝贝, 郑慧玲 (2016). 张掖湿地芨芨草叶大小和叶脉密度的权衡关系. 植物生态学报, 40, 788-797.]
[16] Hao CS, Wang QK, Sun XL (2016). Effects of light heterogeneity on leaf anatomical structure in Buchloe dactyloides.Chinese Journal of Plant Ecology, 40, 246-254.(in Chinese with English abstract)[郝晨淞, 王庆凯, 孙小玲 (2016). 异质性光对野牛草叶片解剖结构的影响. 植物生态学报, 40, 246-254.]
[17] Hao GY, Hoffmann WA, Scholz FG, Bucci SJ, Meinzer FC, Franco AC, Cao KF, Goldstein G (2008). Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems.Oecologia, 155, 405-415.
doi: 10.1007/s00442-007-0918-5 pmid: 18049826
[18] Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK.Heberling JM, Fridley JD (2012). Biogeographic constraints on the world-wide leaf economics spectrum. Global Ecology and Biogeography, 21, 1137-1146.
[19] James SA, Bell DT (2000). Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances.Tree Physiology, 20, 1007-1018.
doi: 10.1093/treephys/20.15.1007 pmid: 11305455
[20] Li L, Zeng H, Guo DL (2013). Leaf venation functional traits and their ecological significance.Chinese Journal of Plant Ecology, 37, 691-698.(in Chinese with English abstract)[李乐, 曾辉, 郭大立 (2013). 叶脉网络功能性状及其生态学意义. 植物生态学报,37, 691-698.]
doi: 10.3724/SP.J.1258.2013.00072
[21] Li R, Dang W, Cai J, Zhang SX, Jiang ZM (2016). Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees.Chinese Journal of Plant Ecology, 40, 255-263.(in Chinese with English abstract) [李荣, 党维, 蔡靖, 张硕新, 姜在民 (2016). 6个耐旱树种木质部结构与栓塞脆弱性的关系. 植物生态学报,40, 255-263.]
[22] Matthew-Ogburn R, Edwards EJ (2013). Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants.Current Biology, 23, 722-726.
doi: 10.1016/j.cub.2013.03.029 pmid: 23583553
[23] McCulloh KA, Johnson DM, Petitmermet J, McNellis B, Meinzer FC, Lachenbruch B (2015). A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height.Tree Physiology, 35, 723-731.
doi: 10.1093/treephys/tpv035 pmid: 25972291
[24] Mencuccini M (2003). The ecological significance of long-distance water transport: Short-term regulation, long- term acclimation and the hydraulic costs of stature across plant life forms.Plant, Cell & Environment, 26, 163-182.
[25] Milios E, Pipinis E, Petrou P, Akritidou S, Smiris P, Aslanidou M (2007). Structure and regeneration patterns of the Juniperus excelsa Bieb. stands in the central part of the Nestos valley in the northeast of Greece, in the context of anthropogenic disturbances and nurse plant facilitation.Ecological Research, 22, 713-723.
doi: 10.1007/s11284-006-0310-7
[26] Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes.Functional Ecology, 28, 810-818.
doi: 10.1111/1365-2435.12246
[27] Navas ML, Roumet C, Bellmann A, Laurent G, Garnier E (2010). Suites of plant traits in species from different stages of a Mediterranean secondary succession.Plant Biology, 12, 183-196.
doi: 10.1111/(ISSN)1438-8677
[28] Niklas KJ, Enquist BJ (2002). Canonical rules for plant organ biomass partitioning and annual allocation.American Journal of Botany, 89, 812-819.
doi: 10.3732/ajb.89.5.812
[29] Ping XY, Zhou GS, Sun JS (2010). Advances in the study of photosynthate allocation and its controls.Chinese Journal of Plant Ecology, 34, 100-111.(in Chinese with English abstract)[平晓燕, 周广胜, 孙敬松 (2010). 植物光合产物分配及其影响因子研究进展, 植物生态学报,34, 100-111.
doi: 10.3773/j.issn.1005-264x.2010.01.013
[30] Pitman EJG (1939). A note on normal correlation.Biometrika, 31, 9-12.
doi: 10.2307/2334971
[31] Qin FF, Li Q, Cui ZM, Li HP, Yang ZR (2012). Leaf anatomical structures and ecological adaptabilities to light of three alfalfa cultivars with different fall dormancies under shading during overwintering.Chinese Journal of Plant Ecology, 36, 333-345.(in Chinese with English abstract)[覃凤飞, 李强, 崔棹茗, 李洪萍, 杨智然 (2012). 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性. 植物生态学报,36, 333-345.]
doi: 10.3724/SP.J.1258.2012.00333
[32] Reich PB, Cornelissen H (2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto.Journal of Ecology, 102, 275-301.
doi: 10.1111/1365-2745.12211
[33] Ren QJ, Li HL, Bu HY (2015). Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow.Chinese Journal of Plant Ecology, 39, 593-603.(in Chinese with English abstract)[任青吉, 李宏林, 卜海燕 (2015). 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报,39, 593-603.]
doi: 10.17521/cjpe.2015.0057
[34] Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future.New Phytologist, 198, 983-1000.
doi: 10.1111/nph.12253 pmid: 23600478
[35] Sack L, Scoffoni C, McKown AD (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns.Nature Communications, 3, 837.
doi: 10.1038/ncomms1835 pmid: 22588299
[36] Sellin A, ?unapuu E, Kupper P (2008). Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula).Physiologia Plantarum, 134, 412-420.
doi: 10.1111/ppl.2008.134.issue-3
[37] Sultan SE (2005). An emerging focus on plant ecological development.New Phytologist, 166, 1-5.
doi: 10.1111/j.1469-8137.2005.01381.x pmid: 15760345
[38] van Kleunen M, Fischer M (2007). Progress in the detection of costs of phenotypic plasticity in plants.New Phytologist, 176, 727-730.
doi: 10.1111/j.1469-8137.2007.02296.x pmid: 17997755
[39] Villagra M, Campanello PI, Bucci SJ, Goldstein G (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.Tree Physiology, 33, 1308-1318.
doi: 10.1093/treephys/tpt098 pmid: 24284866
[40] Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models.Biometrical Journal, 44, 161-174.
doi: 10.1002/(ISSN)1521-4036
[41] Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291.
doi: 10.1017/S1464793106007007 pmid: 16573844
[42] Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159.
doi: 10.1146/annurev.ecolsys.33.010802.150452
[43] Westoby M, Reich PB, Wright IJ (2013). Understanding ecological variation across species: Area-based vs. mass- based expression of leaf traits.New Phytologist, 199, 322-323.
doi: 10.1111/nph.12345 pmid: 23692294
[44] Wu T, Geng YF, Chai Y, Hao JB, Yuan CM (2014). Response of leaf anatomical structure and photosynthesis characteristics of Parthenocissus himalayana to three habitat types.Ecology and Environmental Sciences, 23, 1586-1592.(in Chinese with English abstract)[吴涛, 耿云芬, 柴勇, 郝佳波, 袁春明 (2014). 三叶爬山虎叶片解剖结构和光合生理特性对3种生境的响应. 生态环境学报,23, 1586-1592.]
doi: 10.3969/j.issn.1674-5906.2014.10.004
[45] Zhang HX, Li S, Zhang SX, Xiong XY, Cai J (2013). Relationships between xylem structure and embolism vulnerability in four Populus clones.Scientia Silvae Sinicae, 49(5), 54-61.(in Chinese with English abstract)[张海昕, 李珊, 张硕新, 熊晓燕, 蔡靖 (2013). 4个杨树无性系木质部导管结构与栓塞脆弱性的关系. 林业科学,49(5), 54-61.]
doi: 10.11707/j.1001-7488.20130508
[46] Zhang MJ, Liu MS, Xu C, Chi T, Hong C (2012). Spatial pattern responses of Achnatherum splendens to environmental stress in different density levels.Acta Ecologica Sinica, 32, 595-604.(in Chinese with English abstract)[张明娟, 刘茂松, 徐驰, 池婷, 洪超 (2012). 不同密度条件下芨芨草空间格局对环境胁迫的响应. 生态学报,32, 595-604.]
doi: 10.5846/stxb201012171806
[47] Zhang QM, Zhang C, Liu MS, Yu W, Xu C, Wang HJ (2007). The influences of arboraceous layer on spatial patterns and morphological characteristics of herbaceous layer in an arid plant community.Acta Ecologica Sinica, 27, 1265-1271.
doi: 10.1016/S1872-2032(07)60027-4
[48] Zhang SB, Zhang JL, Cao KF (2016). Effects of seasonal drought on water status, leaf spectral traits and fluorescence parameters in Tarenna depauperata Hutchins, a Chinese savanna evergreen species.Plant Science Journal, 34, 117-126.(in Chinese with English abstract)[张树斌, 张教林, 曹坤芳 (2016). 季节性干旱对白皮乌口树水分状况、叶片光谱特征和荧光参数的影响. 植物科学学报,34, 117-126.]
[49] Zhang YF, Wang W, Liang CZ, Wang LX, Pei H, Wang CY, Wang WF (2012). Suitable habitat for the Achnatherum splendens community in typical steppe region of Inner Mongolia.Acta Ecologica Sinica, 32, 1193-1201.(in English with Chinese abstract)[张翼飞, 王炜, 梁存柱, 王立新, 裴浩, 王成燕, 王伟峰 (2012). 内蒙古典型草原区芨芨草群落适生生境. 生态学报,32, 1193-1201.]
doi: 10.5846/stxb201012301871
[50] Zhang YJ, Cao KF, Sack L, Li N, Wei XM, Goldstein G (2015). Extending the generality of leaf economic design principles in the cycads, an ancient lineage.New Phytologist, 206, 817-829.
doi: 10.1111/nph.13274 pmid: 25622799
[51] Zhang YQ, Liang CZ, Wang W, Wang LX, Peng JT, Yang JC, Jia CZ (2010). Soil salinity and distribution.Chinese Journal of Ecology, 29, 2438-2443.(in Chinese with English abstract)[张雅琼, 梁存柱, 王炜, 王立新, 彭江涛, 闫建成, 贾成朕 (2010). 芨芨草群落土壤盐分特征. 生态学杂志,29, 2438-2443.]
[52] Zhao YT, Xu MS, Zhang ZH, Zhou LL, Zhang QQ, Arshad A, Song YJ, Yan ER (2016). Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park, Zhejiang Province, China.Chinese Journal of Plant Ecology, 40, 116-126.(in Chinese with English abstract)[赵延涛, 许洺山, 张志浩, 周刘丽, 张晴晴, Ali ARSHAD, 宋彦君, 阎恩荣 (2016). 浙江天童常绿阔叶林不同演替阶段木本植物的水力结构特征. 植物生态学报,40, 116-126.]
doi: 10.17521/cjpe.2015.0258
[53] Zou CM, Wang YQ, Liu Y, Zhang XH, Tang S (2015). Responses of photosynthesis and growth to weak light regime in four legume species.Chinese Journal of Plant Ecology, 39, 909-916.(in Chinese with English abstract)[邹长明, 王允青, 刘英, 张晓红, 唐杉 (2015). 四种豆科作物的光合生理和生长发育对弱光的响应. 植物生态学报,39, 909-916.]
doi: 10.17521/cjpe.2015.0087
[54] Zwieniecki MA, Brodribb TJ, Holbrook NM (2007). Hydraulic design of leaves: Insights from rehydration kinetics.Plant, Cell & Environment, 30, 910-921.
[1] Sun Lulong,Duan Qiuyan,Zhai Heng,Du Yuanpeng. Analysis of Temperature and Light Factors during Frost Events and Establishing Conditions for Simulated Frost [J]. Chin Bull Bot, 2019, 54(2): 237-244.
[2] Ye Wenlan,Ma Guolan,Yuan liyanan,Zheng Shiyi,Cheng Linqiao,Fang Yuan,Rao Yuchun. Research Progress on Pathogenic Characteristics and Resistance of Bacterial Panicle Blight of Rice [J]. Chin Bull Bot, 2019, 54(2): 277-283.
[3] Zhongyi Zhou, Ran Liu, Shuna Shi, Yanjun Su, Wenkai Li, Qinghua Guo. Ecological niche modeling with LiDAR data: A case study of modeling the distribution of fisher in the southern Sierra Nevada Mountains, California [J]. Biodiv Sci, 2018, 26(8): 878-891.
[4] Deng Yun, Wang Bin, Li Qiang, Zhang Zhiming, Deng Xiaobao, Cao Min, Lin Luxiang. An analysis of lightweight-drone-assisted mapping accuracy in tropical forest plot [J]. Biodiv Sci, 2018, 26(8): 892-904.
[5] Zhang Xuhong, Wang Di, Liang Zhenxu, Sun Meiyu, Zhang Jinzheng, Shi Lei. Callus Induction and Establishment of a Plant Regeneration System with Lilium martagon [J]. Chin Bull Bot, 2018, 53(6): 840-847.
[6] Zhou Zhi, Zhang Yongli, Wang Bianbian, Gai Shujie, Wang Ruozhong, Lu Xiangyang, Li Ruilian. The Effects of Different Phosphor Excitation-type LED Lighting on the Growth and Development of Arabidopsis [J]. Chin Bull Bot, 2018, 53(4): 502-508.
[7] Zhao Xuehui, Xiao Wei, Guo Jianmin, Gao Dongsheng, Fu Xiling, Li Dongmei. Effect of Blue Light on Photosynthetic Performance and Accumulation of Sugar and Organic Acids in Greenhouse Nectarine [J]. Chin Bull Bot, 2018, 53(2): 227-237.
[8] LI Qi, HU Fei. Effects of light quality on circumnutation of Vigna unguiculata seedlings [J]. Chin J Plant Ecol, 2018, 42(12): 1192-1199.
[9] Ting XU, Cheng-Zhang ZHAO, Ling HAN, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland, China [J]. Chin J Plan Ecolo, 2017, 41(7): 761-769.
[10] Jing CHEN, Cheng-Zhang ZHAO, Ji-Wei WANG, Lian-Chun ZHAO. Canopy structure and radiation interception of Salix matsudana: Stand density dependent relationships [J]. Chin J Plan Ecolo, 2017, 41(6): 661-669.
[11] Wu Renye, Sun Yuanfen, Zheng Jingui, Deng Chuanyuan, Ye Dapeng, Wang Qingshui. Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field [J]. Chin Bull Bot, 2017, 52(6): 744-755.
[12] Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China [J]. Chin J Plan Ecolo, 2017, 41(5): 529-538.
[13] Jian-Guo CAI, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plan Ecolo, 2017, 41(5): 570-576.
[14] Hong-Tao XIE, Mu-Kui YU, Xiang-Rong CHENG. Effects of light intensity variation on nitrogen and phosphorus contents, allocation and limitation in five shade-enduring plants [J]. Chin J Plan Ecolo, 2017, 41(5): 559-569.
[15] Yan Pan, Jirui Gong, Taogetao Baoyin, Qinpu Luo, Zhanwei Zhai, Sha Xu, Yihui Wang, Min Liu, Lili Yang. Effect of Seasonal Grazing on Trade-off Among Plant Functional Traits in Root, Stem and Leaf of Leymus chinensis in the Temperate Grassland of Inner Mongolia, China [J]. Chin Bull Bot, 2017, 52(3): 307-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Ying Li, Jing-Lei Shuang, Wei-Wei Yuan, Wu-Yang Huang and Ren-Xiang Tan. Verticase: a Fibrinolytic Enzyme Produced by Verticillium sp. Tj33, an Endophyte of Trachelospermum jasminoides[J]. J Integr Plant Biol, 2007, 49(11): 1548 -1554 .
[2] Ronggai Li, Yanmei Lu, Yueying Wang, Baoqiang Wang, Wei Song, Wenying Zhang. Molecular Study on Maize Rough Dwarf Disease: A Review[J]. Chin Bull Bot, 2017, 52(3): 375 -387 .
[3] Dekai Wang, Heqin Liu, Sujuan Li, Guowei Zhai, Jianfeng Shao, and Yuezhi Tao. Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice[J]. J Integr Plant Biol, 2015, 57(9): 745 -756 .
[4] CHEN Shi-Ping, BAI Yong-Fei, HAN Xing-Guo, AN Ji-Lin, GUO Fu-Cun. VARIATIONS IN FOLIAR CARBON ISOTOPE COMPOSITION AND ADAPTIVE STRATEGIES OF CAREX KORSHINSKYI ALONG A SOIL MOISTURE GRADIENT[J]. Chin J Plan Ecolo, 2004, 28(4): 515 -522 .
[5] HOU Tian-Wen, JIN Hui, LIU Hong-Xia, LUO Yi-Bo. Mycorrhizal specificity of Doritis pulcherrima in in-vitro research[J]. Chin J Plan Ecolo, 2010, 34(12): 1433 -1438 .
[6] Shen Ze-hao, Jin Yi-xing. The Early Restoration of Vegetation and Soil Environment in Felling-Field of the Fagus engerliana Forest[J]. Chin J Plan Ecolo, 1995, 19(4): 375 -383 .
[7] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[8] Qinhong Ma,Yanpeng Li,Juyu Lian,Wanhui Ye. Difference in survival response of tree species to neighborhood crowding in a lower subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodiv Sci, 2018, 26(6): 535 -544 .
[9] Juan Yan, Haijia Chu, Hengchang Wang, Jianqiang Li. Genetic structure and diversity of Medicago lupulina populations in northern and central China based on EST-SSRs markers[J]. Biodiv Sci, 2008, 16(3): 263 -270 .
[10] David J. Hearn, Margaret Evans, Ben Wolf, Michael McGinty, Jun Wen. Dispersal is associated with morphological innovation, but not increased diversification, in Cyphostemma (Vitaceae)[J]. J Syst Evol, 2018, 56(4): 340 -359 .