Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (8): 914-924.doi: 10.17521/cjpe.2016.0337

• Reviews • Previous Articles    

Mesophyll conductance and its limiting factors in plant leaves

Ji-Mei HAN1, Wang-Feng ZHANG1, Dong-Liang XIONG2, Jaume FLEXAS2, Ya-Li ZHANG1,*()   

  1. 1Shihezi University, Agricultural College, The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi, Xinjiang 832003, China

    2Universitat de les Illes Balears, Research Group in Plant Biology Under Mediterranean Conditions, Palma de Mallorca 07122, Illes Balears, Spain
  • Online:2017-09-29 Published:2017-08-10
  • Contact: Ya-Li ZHANG E-mail:zhangyali_cn@foxmail.com
  • About author:

    KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

Abstract:

Mesophyll conductance (gm) represents the CO2 diffusion facility from sub-stomatal internal cavities to carboxylation sites in chloroplasts, and the variation of gm across genotypes as well as environmental conditions is expected to be related to the anatomical structures and biochemical properties of leaves. In recent years, the variation of gm has attracted wide attention. The limiting factors in photosynthetic rate are no longer divided simply into stomatal limitation and non-stomatal limitation, but splitted in stomatal limitation, mesophyll limitation and carboxylation limitation. In this review, we summarize the potential influences of cell wall, cell membrane, cytoplasm, chloroplast envelope and stroma on gm, and indicate that cell wall thickness and the surface area of chloroplast exposed to intercellular air space (Sc) are the most important factors influencing the gm. We also analyze the probable effects of biochemical process related with aquaporins and carbonic anhydrase on gm. Meanwhile, the regulation mechanisms of long- and short-term environment changes (including temperature, light intensity, drought, and nutrients) on gm are also summarized. The relationship between gm and hydraulic conductance (Kleaf) is debated. Finally, we discuss the scientific problems related with gm.

Key words: photosynthesis, CO2 diffusion, mesophyll conductance, anatomical structure, biochemical factor, environmental change, hydraulic conductance

Fig. 1

CO2 transport model. AQPs, aquaporins; Ca, the atmospheric CO2 concentration; Ci, intercellular CO2 concentration; CA, carbonic anhydrase; gias, the gas phase conductance; glip, the liquid phase conductance."

Fig. 2

The diffusion path of CO2 reflected by gm. A, The leaf anatomical structure in cotton by optical microscope, which represents the CO2 gas phase diffusion from the atmosphere into the leaf intercellular air layer; B, The leaf ultra-micro structure in cotton by electron microscope, which represents the CO2 liquid phase diffusion from intercellular into the chloroplast carboxylation site. AQPs, aquaporins; Ci, intercellular CO2 concentration; Cc, CO2 concentration at chloroplast carboxylation site; CA, carbonic anhydrase; gias, the gas phase conductance."

Table 1

Diffusion way, transportation form, resistance source, power source when CO2 passes through the ultrastructure components of mesophyll cells and the different response time to the external environment"

CO2扩散方式
CO2 diffusion way
CO2运输形态
CO2 transportation form
阻力来源
Resistance source
动力来源
Power source
对外界环境的响应时间
Response time to the external environment
细胞壁
Cell wall
物理和生化方式
Physics and
biochemical mode
CO2 厚度、孔隙度、果胶等组分
Thickness, porosity, pectin etc.
CO2浓度差
Difference of CO2 concentration
最长
Longest
细胞膜
Cell
membrane
物理和生化方式
Physics and
biochemical mode
CO2 水孔蛋白、膜两侧pH差值
AQPs, the difference of pH on both sides of the membrane
CO2浓度差、跨膜蛋白主动运输 Difference of CO2 concentration, active transport of transmembrane protein 较短
Shorter
细胞液
Cytoplasm
生化和物理方
Biochemical
and physical mode
CO2, HCO3- CA、pH、细胞液组分
CA, pH, cytosol component
pH、CA的催化
pH, catalysis of CA
较短
Shorter
叶绿体膜
Chloroplast membranes
生化和物理方
Biochemical
and physical mode
CO2 水孔蛋白、膜两侧CO2浓度差
AQPs, the difference of CO2 concentration on both sides of the membrane
跨膜蛋白主动运输
Active transport of
transmembrane protein
较短
Shorter
叶绿体基质
Stroma
生化和物理方式
Biochemical
and physical mode)
CO2, HCO3- CA, pH pH、CA的催化
pH, catalysis of CA
最短
Shortest
[1] Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002). Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesisin vivo. Plant Physiology, 130, 1992-1998.
doi: 10.1104/pp.008250 pmid: 12481082
[2] Boex-Fontvieille E, Jossier M, Davanture M, Zivy M, Hodges M, Tcherkez G (2014). Differential protein phosphorylation regulates chloroplast movement in response to strong light and darkness inArabidopsis thaliana. Plant Molecular Biology Reporter, 32, 987-1001.
doi: 10.1007/s11105-014-0707-3
[3] Bongi G, Loreto F (1989). Gas-exchange properties of salt stressed olive (Olea europea L.) leaves.Plant Physiology, 90, 1408-1416.
doi: 10.1104/pp.90.4.1408 pmid: 16666944
[4] Boron W, Endeward V, Gros G, Musa-Aziz R, Pohl P (2011). Intrinsic CO2 permeability of cell membranes and potential biological relevance of CO2 channels.Chemphyschem, 12, 1017-1019.
doi: 10.1002/cphc.201100034 pmid: 21384488
[5] Burnell JN, Suzuki I, Sugiyama T (1990). Light induction and the effect of nitrogen status upon the activity of carbonic anhydrase in maize leaves.Plant Physiology, 94, 384-387.
doi: 10.1104/pp.94.1.384
[6] Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E (2000). Root hydraulic conductance: Diurnal aquaporin expression and the effects of nutrient stress.Journal of Experimental Botany, 51, 61-70.
doi: 10.1093/jexbot/51.342.61 pmid: 10938796
[7] Cochard H, Nardini A, Coll L (2004). Hydraulic architecture of leafblades: Where is the main resistance?Plant, Cell & Environment, 27, 1257-1267.
doi: 10.1111/j.1365-3040.2004.01233.x
[8] Diaz-Espejo A, Nicolás E, Fernández JE (2007). Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought.Plant, Cell & Environment, 30, 922-933.
doi: 10.1111/j.1365-3040.2007.001686.x pmid: 17617820
[9] Ethier GJ, Livingston NJ (2004). On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model.Plant, Cell & Environment, 27, 137-153.
[10] Evans JR, Kaldenhoff R, Genty B, Terashima I (2009). Resistances along the CO2 diffusion pathway inside leaves. Journal of Experimental Botany, 60, 2235-2248.
doi: 10.1093/jxb/erp117 pmid: 19395390
[11] Evans JR, Shatrkey TD, Berry JA, Farquhar GD (1986). Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants.Australian Journal of Plant Physiology, 13, 281-292.
doi: 10.1071/PP9860281
[12] Evans JR, von Caemmere S (1996). Carbon dioxide diffusion inside leaves.Plant Physiology, 110, 339-346.
doi: 10.1104/pp.110.2.339 pmid: 12226185
[13] Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994). The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco.Australian Journal of Plant Physiology, 21, 475-495.
doi: 10.1071/PP9940475
[14] Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.Planta, 149, 78-90.
doi: 10.1007/BF00386231
[15] Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012). Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant Science, 193-194, 70-84.
doi: 10.1016/j.plantsci.2012.05.009 pmid: 22794920
[16] Flexas J, Bota J, Cifre J, Escalona JM, Galmés J, Gulías J, Lefi EK, Martinez-Canellas SF, Moreno MT, Ribas-Carbo M (2004). Understanding down-regulation of photosynthesis under water stress: Future prospects and searching for physiological tools for irrigation management. Annal of Applied Biology, 144, 273-283.
doi: 10.1111/j.1744-7348.2004.tb00343.x
[17] Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002). Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Functional Plant Biology, 29, 461-471.
doi: 10.1071/PP01119
[18] Flexas J, Diaz-Espejo A (2015). Interspecific differences in temperature response of mesophyll conductance: Food for thought on its origin and regulation.Plant, Cell & Environment, 38, 625-628.
doi: 10.1111/pce.12476
[19] Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano HO, Ribas-Carbó M (2007). Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves.Plant, Cell & Environment, 30, 1284-1298.
doi: 10.1111/j.1365-3040.2007.01700.x pmid: 17727418
[20] Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Martínez-Ca?ellas S, Medrano H (2006a). Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration.New Phytologist, 172, 73-82.
doi: 10.1111/j.1469-8137.2006.01794.x pmid: 16945090
[21] Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008). Mesophyll conductance to CO2: Current knowledge and future prospects.Plant, Cell & Environment, 31, 602-621.
[22] Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006b). Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2in vivo. The Plant Journal, 48, 427-439.
[23] Flexas J, Scoffoni C, Gago J, Sack L (2013). Leaf mesophyll conductance and leaf hydraulic conductance: An introduction to their measurement and coordination.Journal of Experimental Botany, 64, 3965-3981.
doi: 10.1093/jxb/ert319 pmid: 24123453
[24] Galmés J, Medrano H, Flexas J (2006). Acclimation of Rubisco specificity factor to drought in tobacco: Discrepancies between in vitro and in vivo estimations.Journal of Experimental Botany, 57, 3659-3667.
doi: 10.1093/jxb/erl113 pmid: 16968885
[25] Galmés J, Medrano H, Flexas J (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 175, 81-93.
doi: 10.1111/nph.2007.175.issue-1
[26] Gillon JS, Yakir D (2000). Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves.Plant Physiology, 123, 201-213.
doi: 10.1104/pp.123.1.201
[27] Gu L, Sun Y (2013). Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods.Plant, Cell & Environment, 37, 1231-1249.
doi: 10.1111/pce.12232 pmid: 24237289
[28] Han JM, Meng HF, Wang SY, Jiang CD, Liu F, Zhang WF, Zhang YL (2016). Variability of mesophyll conductance and its relationship with water use efficiency in cotton leaves under drought pretreatment.Journal of Plant Physiology, 194, 61-71.
doi: 10.1016/j.jplph.2016.03.014 pmid: 27101723
[29] Hanba YT, Kogami H, Terashima I (2002). The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand.Plant, Cell & Environment, 25, 1021-1030.
[30] Hanba YT, Miyazawa SI, Terashima I (1999). The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm temperate forests.Functional Ecology, 13, 632-639.
doi: 10.1046/j.1365-2435.1999.00364.x
[31] Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004). Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants.Plant Cell Physiology, 45, 521-529.
pmid: 15169933
[32] Harley PC, Loreto F, Marco GD, Sharkey TD (1992). Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2.Plant Physiology, 98, 1429-1436.
doi: 10.1104/pp.98.4.1429 pmid: 16668811
[33] Hassiotou F, Ludwig M, Renton M, Veneklaas EJ, Evans JR (2009). Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls.Journal of Experimental Botany, 60, 2303-2314.
doi: 10.1093/jxb/erp021 pmid: 19286919
[34] Heckwolf M, Pater D, Hanson DT, Kaldenhoff R (2011). The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator.Plant Journal, 67, 795-804.
doi: 10.1111/j.1365-313X.2011.04634.x pmid: 21564354
[35] Hub JS, de Groot BL (2006). Does CO2 permeate through aquaporin-1?Biophysical Journal, 91, 842-848.
doi: 10.1529/biophysj.106.081406 pmid: 16698771
[36] Hub JS, de Groot BL (2008). Mechanism of selectivity in aquaporins and aquaglyceroporins.Proceedings of the National Academy of Sciences of the United States of America, 105, 1198-1203.
doi: 10.1073/pnas.0707662104 pmid: 18202181
[37] Jia WS, Davies WJ (2007). Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals.Plant Physiology, 143, 68-77.
doi: 10.1104/pp.106.089110 pmid: 17098853
[38] Kelly G, Sade N, Attia Z, Secchi F, Zwieniecki M, Holbrook NM, Levi A, Alchanatis V, Moshelion M, Granot D (2014). Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth.PLOS ONE, 9, e87888. doi:10.1371/journal.pone. 0087888.
doi: 10.1371/journal.pone.0087888 pmid: 24498392
[39] Laisk A, Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, Kull O (2005). Adjustment of leaf photosynthesis to shade in a natural canopy: Rate parameters.Plant, Cell & Environment, 28, 375-388.
doi: 10.1111/j.1365-3040.2004.01274.x
[40] Li Y, Gao YX, Xu XM, Shen QR, Guo SW (2009). Light- saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration.Journal of Experimental Botany, 60, 2351-2360.
doi: 10.1093/jxb/erp127 pmid: 19395387
[41] Loreto F, Harley PC, Di Marco G, Sharkey TD (1992). Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiology, 98, 1437-1443.
doi: 10.1104/pp.98.4.1437 pmid: 16668812
[42] Loreto F, Tsonev T, Centritto M (2009). The impact of blue light on leaf mesophyll conductance.Journal of Experimental Botany, 60, 2283-2290.
doi: 10.1093/jxb/erp112 pmid: 19395388
[43] Makino A, Sakashita H, Hidema J, Mae T, Ojima K, Osmond B (1992). Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance.Plant Physiology, 100, 1737-1743.
doi: 10.1104/pp.100.4.1737 pmid: 16653191
[44] Missner A, Kugler P, Antonenko YN, Pohl P (2008). Passive transport across bilayer lipid membranes: Overton continues to rule.Proceedings of the National Academy of Sciences of the United States of America, 1778, 2154-2156.
doi: 10.1073/pnas.0809606106
[45] Miyazawa SI, Yoshimura S, Shinzaki Y, Maeshima M, Miyake C (2008). Relationship between mesophyll CO2 gas diffusion conductance and leaf plasma-membrane-type aquaporin contents in tobacco plants grown under drought conditions.Photosynthesis, 91, 805-808.
[46] Moualeu-Ngangue DP, Chen T-W, Stutzel H (2016). A new method to estimate photosynthetic parameters through net assimilation reteintercellular space CO2 concentration (A-Ci) curve and chlorophyll fluorescence measurements.New Phytologist, 213, 1543-1554.
doi: 10.1111/nph.14260 pmid: 27768807
[47] Niinemets ü, Reichstein M (2003a). Controls on the emission of plant volatiles through stomata: A sensitivity analysis.Journal of Geophysical Research, 108, 4211. doi: 4210.1029/2002JD002626.
doi: 10.1029/2002JD002626
[48] Niinemets ü, Reichstein M (2003b). Controls on the emission of plant volatiles through stomata: Sensitivity or insensitivity of the emission rates to stomatal closure explained.Journal of Geophysical Research, 108, 4208. doi: 4210.1029/2002JD002620.
doi: 10.1029/2002JD002620
[49] Niinemets ü, Diaz-Espejo A, Flexas J, Galmés J, Warren CR (2009). Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field.Journal of Experimental Botany, 60, 2271-2282.
doi: 10.1093/jxb/erp063
[50] Otto B, Uehlein N, Sdorra S, Fischer M, Ayaz M, Belastegui- Macadam X, Heckwolf M, Lachnit M, Pede N, Priem N (2010). Aquaporin tetramer composition modifies the function of tobacco aquaporins.Journal of Biological Chemistry, 285, 31253-31260.
doi: 10.1074/jbc.M110.115881
[51] Pakatas A, Stavrakas D, Fisarakis I (2003). Relationship between CO2 assimilation and leafanatomical characteristics of two grapevine cultivars.Agronomie, 23, 293-296.
doi: 10.1051/agro:2003002
[52] Perez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernández JE, Sebastiani L, Diaz-Espejo A (2014). Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: Correlation with gene expression of carbonic anhydrase and aquaporins.Journal of Experimental Botany, 65, 3143-3156.
doi: 10.1093/jxb/eru160
[53] Piel C, Frak E, Le Roux X, Genty B (2002). Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut.Journal of Experimental Botany, 53, 2423-2430.
doi: 10.1093/jxb/erf095 pmid: 12432034
[54] Price DG, von Caemmerer S, Evans JR, Yu JW, Lloyd J, Oja V, Kell P, Harrison K, Gallagher A, Badger M (1994). Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation.Planta, 193, 331-340.
doi: 10.1007/BF00201810
[55] Sack L, Holbrook NM (2006). Leaf hydraulics.Annual Review of Plant Biology, 57, 361-381.
doi: 10.1146/annurev.arplant.56.032604.144141
[56] Sack L, Streeter CM, Holbrook NM (2004). Hydraulic analysis of water flow through leaves of sugar maple and red oak.Plant Physiology, 134, 1824-1833.
doi: 10.1104/pp.103.031203 pmid: 15064368
[57] Sade N, Gallé A, Flexas J, Lerner S, Peleg G, Yaaran A, Moshelion M (2014). Differential tissue-specific expression of NtAQP1 in Arabidopsis thaliana reveals a role for this protein in stomatal and mesophyll conductance of CO2 under standard and salt-stress conditions.Planta, 239, 357-366.
doi: 10.1007/s00425-013-1988-8
[58] Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010). The Role of tobacco aquaporin 1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress.Plant Physiology, 152, 245-254.
doi: 10.1104/pp.109.145854 pmid: 19939947
[59] Sage TL, Sage RF (2009). The functional anatomy of rice leaves: Implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice.Plant Cell Physiology, 50, 756-772.
doi: 10.1093/pcp/pcp033 pmid: 19246459
[60] Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves.Plant, Cell & Environment, 30, 1035-1040.
doi: 10.1111/j.1365-3040.2007.01710.x pmid: 17661745
[61] Syvertsen JP, Lloyd J, Meconchie C, Kriedbmann PE, Farquhar GD (1995). On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves.Plant Cell Physiology, 18, 149-157.
[62] Terashima I, Araya T, Miyazawa S-I, Sone K, Yano S (2005). Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: An eco-developmental treatise.Annals of Botany, 95, 507-519.
doi: 10.1093/aob/mci049 pmid: 4246796
[63] Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006). Irradiance and phenotype: Comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Journal of Experimental Botany, 57, 343-354.
doi: 10.1093/jxb/erj014 pmid: 16356943
[64] Terashima I, Hanba YT, Tholen D, Niinemets U (2011). Leaf functional anatomy in relation to photosynthesis.Plant Physiology, 155, 108-116.
doi: 10.1104/pp.110.165472 pmid: 21075960
[65] Terashima I, Hikosaka K (1995). Comparative ecophysiology/ anatomy of leaf and canopy photosynthesis.Plant, Cell & Environment, 18, 1111-1128.
[66] Terashima I, Ono K (2002). Effects of HgCl2 on CO2 dependence of leaf photosynthesis: Evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane.Plant Cell Physiology, 43, 70-78.
pmid: 11828024
[67] Théroux-Rancourt G, Gilbert ME (2017). The light response of mesophyll conductance is controlled by structure across leaf profiles. Plant, Cell & Environment, 40, 726-740.
doi: 10.1111/pce.12890 pmid: 28039917
[68] Tholen D, Boom C, Noguchi K, Ueda S, Katase T, Terashima I (2008). The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant, Cell & Environment, 31, 1688-1700.
doi: 10.1111/j.1365-3040.2008.01875.x pmid: 18721264
[69] Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012). Variable mesophyll conductance revisited: Theoretical background and experimental implications.Plant, Cell & Environment, 35, 2087-2103.
doi: 10.1111/j.1365-3040.2012.02538.x pmid: 22590996
[70] Tholen D, Zhu XG (2011). The mechanistic basis of internal conductance: A theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiology, 156, 90-105.
doi: 10.1104/pp.111.172346
[71] Tomás M, Flexas J, Copolovici L, Galmes J, Hallik L, Medrano H, Ribas-Carbó M, Tosens T, Vislap V, Niinemets ü (2013). Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: Quantitative limitations and scaling up by models.Journal of Experimental Botany, 64, 2269-2281.
doi: 10.1093/jxb/ert086
[72] Tomás M, Medrano H, Brugnoli E, Escalona JM, Martorell S, Pou A, Ribas-Carbó M, Flexas J (2014). Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency.Australian Journal of Grape and Wine Research, 20, 272-280.
doi: 10.1111/ajgw.12069
[73] Tosens T, Niinemets ü, Vislap V, Eichelmann H, Castro Diez P (2012a). Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: How structure constrains function.Plant, Cell & Environment, 35, 839-856.
doi: 10.1111/j.1365-3040.2011.02457.x pmid: 22070625
[74] Tosens T, Niinemets ü, Westoby M, Wright IJ (2012b). Anatomicalbasis of variation in mesophyll resistance in eastern Australian sclerophylls: News of a long and winding path.Journal of Experimental Botany, 63, 5105-5119.
doi: 10.1093/jxb/ers171 pmid: 3430992
[75] Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008). Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell, 20, 648-657.
doi: 10.1105/tpc.107.054023
[76] von Caemmerer S, Evans JR (1991). Determination of the average partial pressure of CO2 in chloroplast from leaves of several C3 plants.Australian Journal of Plant Physiology, 18, 287-305.
doi: 10.1071/pp9910287
[77] Warren CR (2004). The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply.Journal of Experimental Botany, 55, 2313-2321.
doi: 10.1093/jxb/erh239 pmid: 15310814
[78] Warren CR (2008). Stand aside stomata, another actor deserves centre stage: The forgotten role of the internal conductance to CO2 transfer.Journal of Experimental Botany, 59, 1475-1487.
doi: 10.1093/jxb/erm245 pmid: 17975206
[79] Warren CR, Low M, Matyssek R, Tausz M (2007). Internal conductance to CO2 transfer of adult Fagus sylvatica: Variation between sun and shade leaves and due to free-air ozone fumigation.Environmental and Experimental Botany, 59, 130-138.
doi: 10.1016/j.envexpbot.2005.11.004
[80] Williams TG, Flanagan LB, Coleman JR (1996). Photosynthetic gas exchange and discrimination against 13CO2, and C18O16O in tobacco plants modified by an antisense construct to have low chloroplastic carbonic anhydrase.Plant Physiology, 112, 319-326.
doi: 10.1104/pp.112.1.319 pmid: 12226395
[81] Xiong D, Flexas J, Yu T, Peng S, Huang J (2016). Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 inOryza. New Phytologist, 213, 572-583.
doi: 10.1111/nph.14186 pmid: 27653809
[82] Xiong D, Liu X, Liu L, Douthe C, Li Y, Peng S, Huang J (2015b). Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice.Plant, Cell & Environment, 38, 2541-2550.
[83] Xiong D, Yu T, Zhang T, Li Y, Peng S, Huang J (2015a). Leaf hydraulic conductance is coordinated with leaf morpho- anatomical traits and nitrogen status in the genusOryza. Journal of Experimental Botany, 66, 741-748.
doi: 10.1093/jxb/eru434 pmid: 4321541
[84] Yamori W, Nagai T, Makino A (2011). The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species.Plant, Cell & Environment, 34, 764-777.
doi: 10.1111/j.1365-3040.2011.02280.x pmid: 21241332
[85] Yamori W, Noguchi K, Hanba YT, Terashima I (2006). Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures.Plant Cell Physiology, 47, 1069-1080.
doi: 10.1093/pcp/pcj077 pmid: 16816408
[1] Zhang Lu,He Xinhua. Nitrogen Utilization Mechanism in C3 and C4 Plants [J]. Chin Bull Bot, 2020, 55(2): 228-239.
[2] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[3] LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898.
[4] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plan Ecolo, 2018, 42(5): 585-594.
[5] Chen Xu, Xiaolong Liu, Qian Li, Fenglou Ling, Zhihai Wu, Zhian Zhang. Effect of Salt Stress on Photosynthesis and Chlorophyll Fluorescence Characteristics of Rice Leaf for Nitrogen Levels [J]. Chin Bull Bot, 2018, 53(2): 185-195.
[6] ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plan Ecolo, 2018, 42(2): 229-239.
[7] Muqier Hasi, Xueyao Zhang, Guoxiang Niu, Yinliu Wang, Jianhui Huang. Effects of Nitrogen Addition on Ecosystem CO2 Exchange in a Meadow Steppe, Inner Mongolia [J]. Chin Bull Bot, 2018, 53(1): 27-41.
[8] Sun Wanmei, Wang Xiaozhu, Han Erqin, Han Li, Sun Liping, Peng Zaihui, Wang Bangjun. Advances in the Functions of Immunophilins in Plants [J]. Chin Bull Bot, 2017, 52(6): 808-819.
[9] LIANG Xing-Yun, LIU Shi-Rong. A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curves [J]. Chin J Plan Ecolo, 2017, 41(6): 693-706.
[10] Jian-Guo CAI, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plan Ecolo, 2017, 41(5): 570-576.
[11] Liang-Hua CHEN, Juan LAI, Xiang-Wei HU, Wan-Qin YANG, Jian ZHANG, Xiao-Jun WANG, Ling-Jie TAN. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution [J]. Chin J Plan Ecolo, 2017, 41(4): 480-488.
[12] Ji-Ye ZENG, Zheng-Hong TAN, Nobuko SAIGUSA. Using approximate Bayesian computation to infer photosynthesis model parameters [J]. Chin J Plan Ecolo, 2017, 41(3): 378-385.
[13] Zhi-Min LI, Chuan-Kuan WANG, Dan-Dan LUO. Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii [J]. Chin J Plan Ecolo, 2017, 41(11): 1140-1148.
[14] Ping Xie. The origin of genetic codes: from energy transformation to informatiza- tion [J]. Biodiv Sci, 2017, 25(1): 94-106.
[15] Ming-Xiu LIU, Guo-Lu LIANG. Research progress on leaf mass per area [J]. Chin J Plan Ecolo, 2016, 40(8): 847-860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] . [J]. Chin Bull Bot, 1996, 13(专辑): 103 .
[5] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[6] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[8] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[9] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[10] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chin Bull Bot, 2014, 49(1): 78 -86 .