Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (1): 77-84.doi: 10.17521/cjpe.2018.0218

• Research Articles • Previous Articles    

Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau

MOU Jing1,BIN Zhen-Jun2,LI Qiu-Xia1,BU Hai-Yan1,ZHANG Ren-Yi1,XU Dang-Hui1,*()   

  1. 1 School of Life Science, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou 730000, China
    2 Guangxi Subtropical Crops Research Institute, Nanning 530001, China
  • Received:2018-09-11 Accepted:2018-10-31 Online:2019-04-25 Published:2019-01-20
  • Contact: XU Dang-Hui E-mail:dhxu@lzu.edu.cn
  • Supported by:
    Supported by the National Key R&D Program(2016YFC0501906);the National Natural Science Foundation(30900171);the National Natural Science Foundation(31460162);the National Natural Science Foundation(31600336)

Abstract:

Aims To understand the effects of nitrogen and silicon addition on soil nitrogen mineralization in the context of global climate change.
Methods Nitrogen fertilizer with different concentration were added separately (0, 20, 40, 60 g·m -2, namely CK, N20, N40, N60, respectively) and combined with silicon fertilizer (4 g·m -2 silicic acid, namely Si4). Soil nitrate and ammonium nitrogen contents, net nitrification rate, net ammonification rate as well as net mineralization rate in 0-20, 20-40 and 40-60 cm depth profiles were measured.
Important findings (1) When nitrogen fertilizer was applied alone, soil nitrate and ammonium nitrogen contents under N20, N40, N60 treatments in 0-20 cm soil layer increased by 63.48%, 126.04%, 247.03% and 80.66%, 152.52%, 244.56% respectively, compared with CK. With the increase of soil depth, soil nitrate and ammonium nitrogen both decreased, the nitrate nitrogen content in 20-40 and 40-60 cm soil layers decreased by an average of 53.90%, 76.05% respectively and the ammonium nitrogen content decreased by an average of 48.62%, 68.23% respectively, compared with 0-20 cm soil layer. (2) With the increase of N application, soil net nitrification rate, net ammoniation rate and net mineralization rate all showed an increasing trend. Under the same nitrogen fertilizer concentration, with the increase of soil depth, net nitrification rate, net ammonification rate and net mineralization rate gradually decreased (except for CK). (3) Compared with nitrogen addition alone, soil nitrogen content was significantly improved when nitrogen and silicon fertilizers were both applied, in the 0-20 cm soil layer, the increase ratio of nitrate nitrogen and ammonium nitrogen were 98.78%, 192.62%, 330.16% and 99.96%, 195.82%, 306.32% respectively, compared with CK. This trend was also found in the 20-40 and 40-60 cm soil layers. The results also showed that combined application of nitrogen and silicon had a significant effect on soil nitrogen mineralization. For example, net nitrification rate and net ammonification rate under N60Si4 treatment increased by 35.88% and 27.41% respectively in the 0-20 cm soil layer, compared with nitrogen application alone. The above results showed that compared with the nitrogen addition alone, the application of both nitrogen and silicon can not only increase the nitrogen content in different soil layers, but also promote the mineralization of soil nitrogen and therefore having a certain mitigation effect on atmospheric nitrogen deposition.

Key words: Qinghai-Xizang Plateau, nutrients addition, nitrate nitrogen, ammonium nitrogen, soil nitrogen mineralization, nitrogen deposition

Fig. 1

Change of NO3--N content in alpine meadows of Qinghai-Xizang Plateau under different nitrogen concentrations (mean ± SE, n = 6). CK, N20, N40, N60, added NH4NO3 0, 20, 40, 60 g·m-2, respectively; Si4, added silicic acid 4 g·m-2. Different lowercase letters indicate significant differences among treatments (p < 0.05)."

Fig. 2

Change of NH4+-N content in alpine meadows of Qinghai-Xizang Plateau under different nitrogen concentrations (mean ± SE, n = 6). CK, N20, N40, N60, added NH4NO3 0, 20, 40, 60 g·m-2, respectively; Si4, added silicic acid 4 g·m-2. Different lowercase letters indicate significant differences among treatments (p < 0.05)."

Fig. 3

Net nitrification rates under different nitrogen concentrations in alpine meadows of Qinghai-Xizang Plateau (mean ± SE, n = 6). CK, N20, N40, N60, added NH4NO3 0, 20, 40, 60 g·m-2, respectively; Si4, added silicic acid 4 g·m-2. Different lowercase letters indicate significant differences among treatments (p < 0.05)."

Fig. 4

Net ammonification rates under different nitrogen concentrations in alpine meadows of Qinghai-Xizang Plateau (mean ± SE, n = 6). CK, N20, N40, N60, added NH4NO3 0, 20, 40, 60 g·m-2, respectively; Si4, added silicic acid 4 g·m-2. Different lowercase letters indicate significant differences among treatments (p < 0.05)."

Fig. 5

Net mineralization rates under different nitrogen concentrations in alpine meadows of Qinghai-Xizang Plateau (mean ± SE, n = 6). CK, N20, N40, N60, added NH4NO3 0, 20, 40, 60 g·m-2, respectively; Si4, added silicic acid 4 g·m-2. Different lowercase letters indicate significant differences among treatments (p < 0.05)."

Table 1

Two-factor variance analysis between fertilization and soil depths on soil net mineralization rate in alpine meadows of Qinghai-Xizang Plateau"

来源 Source 第三类平方和 Type III sum of squares df 均方 Mean Square F 显著性 Sig.
校正模型 Corrected Model 1 436 023.182a 8 179 502.898 5 325.359 0.000
截距 Intercept 1 238 798.353 1 1 238 798.353 36 751.753 0.000
NSi 906 007.721 2 453 003.860 13 439.383 0.000
SD 318 252.753 2 159 126.376 4 720.844 0.000
NSi × SD 211 762.709 4 52 940.677 1 570.605 0.000
误差 Error 606.729 18 33.707
总计 Total 2 675 428.265 27
校正后总数 Corrected total 1 436 629.912 26
[1] Aber JD, Magill AH ( 2004). Chronic nitrogen additions at the Harvard Forest (USA): The first 15 years of a nitrogen saturation experiment. Forest Ecology and Management, 196, 1-5.
doi: 10.1016/j.foreco.2004.03.009
[2] Aber JD, Melillo JM ( 2001). Terrestrial Ecosystem. 2nd edn. Harcourt Academic Press, San Diego, USA.
[3] Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM ( 1989). Nitrogen saturation in northern forest ecosystems hypotheses and implications. Bioscience, 39, 378-386.
doi: 10.2307/1311067
[4] Bai JB, Xu XL, Fu G, Song MH, He YT, Jiang J ( 2011). Effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau. Journal of Anhui Agriculture Science, 39, 14698-14700, 14756.
[ 白洁冰, 徐兴良, 付刚, 宋明华, 何永涛, 蒋婧 ( 2011). 温度和氮素输入对青藏高原3种高寒草地土壤氮矿化的影响. 安徽农业科学, 39, 14698-14700, 14756.]
[5] Bai JB, Xu XL, Song MH, He YT, Jiang J, Shi PL ( 2011). Effects of temperature and added nitrogen on carbon mineralization in alpine soils on the Tibetan Plateau. Ecology and Environmental Sciences, 20, 855-859.
[ 白洁冰, 徐兴良, 宋明华, 何永涛, 蒋婧, 石培礼 ( 2011). 温度和氮素输入对青藏高原三种高寒草地土壤碳矿化的影响. 生态环境学报, 20, 855-859.]
[6] Bin ZJ, Zhang RY, Zhang WP, Xu DH ( 2015). Effects of nitrogen, phosphorus and silicon addition on leaf carbon, nitrogen, and phosphorus concentration of Elymus nutans of alpine meadow on Qinghai-Tibetan Plateau, China. Acta Ecologica Sinica, 35, 4699-4706.
[ 宾振钧, 张仁懿, 张文鹏, 徐当会 ( 2015). 氮磷硅添加对青藏高原高寒草甸垂穗披碱草叶片碳氮磷的影响. 生态学报, 35, 4699-4706.]
[7] Fu JR, Ho A, Kenichi K ( 2001). Nitrogen mineralization in two paddy soils as affected by silica source addition. Acta Agriculturae Zhejiangensis, 13(3), 133-140.
[8] Gundersen P, Emmett BA, Kjonaas OJ, Koopmans CJ, Tietema A ( 1998). Impact of nitrogen deposition on nitrogen cycling in forest: A synthesis of NITREX data. Forest Ecology and Management, 101, 37-55.
doi: 10.1016/S0378-1127(97)00124-2
[9] Guo YJ ( 2015). Effects of nitrogen Addition on Alpine Meadow Vegetation and soil Nitrogen Supply Capacity in the Qinghai-Xizang Plateau. Master degree dissertation, Lanzhou University, Lanzhou.
[ 郭雅婧 ( 2015). 氮素添加对青藏高原高寒草甸植被和土壤氮素供应能力的影响. 硕士学位论文, 兰州大学, 兰州.]
[10] Liu CF, Shi GR, Yu RG, Zhang Z ( 2017). Eco-physiological mechanisms of silicon-induced alleviation of cadmium toxicity in plants: A review. Acta Ecologica Sinica, 37, 7799-7810.
[ 刘彩凤, 史刚荣, 余如刚, 张铮 ( 2017). 硅缓解植物镉毒害的生理生态机制. 生态学报, 37, 7799-7810.]
[11] Liu HX, Guo ZG, Guo XH, Zhou XR, Hui WS, Wang KY ( 2009). Effect of addition of silicon on water use efficiency and yield components of alfalfa under the different soil moisture. Acta Ecologica Sinica, 29, 3075-3080.
[ 刘慧霞, 郭正刚, 郭兴华, 周雪荣, 惠文森, 王康英 ( 2009). 不同土壤水分条件下硅对紫花苜蓿水分利用效率及产量构成要素的影响. 生态学报, 29, 3075-3080.]
[12] Liu XD, Yin GL, Wu J, Chen JG, Ma LX, Shi SL ( 2015). Effects of nitrogen addition on the physical properties of soil in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 24(10), 12-21.
doi: 10.11686/cyxb2015154
[ 刘晓东, 尹国丽, 武均, 陈建纲, 马隆喜, 师尚礼 ( 2015). 青藏高原东部高寒草甸草地土壤物理性状对氮元素添加的响应. 草业学报, 24(10), 12-21.]
doi: 10.11686/cyxb2015154
[13] Liu XY, Long RJ, Shang ZH ( 2012). Interactive mechanism of service function of alpine rangeland ecosystems in Qinghai?-Tibetan Plateau. Acta Ecologica Sinica, 32, 7688-7697.
[ 刘兴元, 龙瑞军, 尚占环 ( 2012). 青藏高原高寒草地生态系统服务功能的互作机制. 生态学报, 32, 7688-7697.]
[14] Si XL, Wang WY, Gao XG, Xu DH ( 2016). Effects of nitrogen and silicon application on leaf nitrogen content and net photosynthetic rate of Elymus nutans in alpine meadow. Chinese Journal of Plant Ecology, 40, 1238-1244.
[ 司晓林, 王文银, 高小刚, 徐当会 ( 2016). 氮硅添加对高寒草甸垂穗披碱草叶片全氮含量及净光合速率的影响. 植物生态学报, 40, 1238-1244.]
[15] Xi ZB ( 2011). Ammonium nitrogen and nitrate nitrogen. Phosphate & Compound Fertilizer, 26(1), 62-65.
[ 奚振邦 ( 2011). 硝态氮与铵态氮. 磷肥与复肥, 26(1), 62-65.]
[16] Xu DH, Fang XW, Zhang RY, Gao TP, Bu HY, Du GZ ( 2015). Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow. AoB Plants, 7, plv125. DOI: 10.1093/aobpla/plv125.
[17] Xu DH, Gao XG, Gao TP, Mou J, Li JH, Bu HY, Zhang RY, Li QX ( 2018). Interactive effects of nitrogen and silicon addition on growth of five common plant species and structure of plant community in alpine meadow. Catena, 169, 80-89.
doi: 10.1016/j.catena.2018.05.017
[18] Yang XX, Ren F, Zhou HK, He JS ( 2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159-166.
[ 杨晓霞, 任飞, 周华坤, 贺金生 ( 2014), 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159-166.]
[19] Zhang JQ, Li Q, Ren ZW, Yang X, Wang G ( 2010). Effects of nitrogen addition on species richness and relationship between species richness and aboveground productivity of alpine meadow of the Qinghai-Tibetan Platen, China. Chinese Journal of Plant Ecology, 34, 1125-1131.
[ 张杰琦, 李奇, 任正炜, 杨雪, 王刚 . 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响. 植物生态学报, 34, 1125-1131.]
[20] Zhang WP, Si XL, Wang WY, Gao TP, Xu DH ( 2016). Effects of short-term nitrogen and silicon addition on above-?ground biomass and biodiversity of alpine meadow of the Qinghai-Tibetan Plateau, China. Pratacultural Science, 33, 38-45.
[ 张文鹏, 司晓林, 王文银, 高天鹏, 徐当会 ( 2016). 氮硅添加对高寒草甸生物量和多样性的影响 ——以青藏高原为例. 草业科学, 33, 38-45.]
[21] Zhang YL, Qi W, Zhou CP, Ding MJ, Liu LS, Gao JG, Bai WQ, Wang ZF, Zheng D ( 2013). Spatial and temporal variability in the net primary production (NPP) of alpine grassland on Tibetan Plateau from 1982 to 2009. Acta Geographica Sinica, 68, 1197-1211.
[ 张镱锂, 祁威, 周才平, 丁明军, 刘林山, 高俊刚, 摆万奇, 王兆锋, 郑度 ( 2013). 青藏高原高寒草地净初级生产力(NPP)时空分异. 地理学报, 68, 1197-1211.]
[22] Zhao Y, Zhang C, Zhao HF, Xu XN ( 2013). Effects of N and P addition on soil nitrogen mineralization in a subtropical evergreen broadleaved forest. Chinese Journal of Ecology, 32, 1690-1697.
[ 赵阳, 张驰, 赵竑绯, 徐小牛 ( 2013). 氮磷添加对亚热带常绿阔叶林土壤氮素矿化的影响. 生态学杂志, 32, 1690-1697.]
[1] ZOU An-Long,LI Xiu-Ping,NI Xiao-Feng,JI Cheng-Jun. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China [J]. Chin J Plant Ecol, 2019, 43(9): 783-792.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436.
[4] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[5] FENG Chan-Ying, ZHENG Cheng-Yang, TIAN Di. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(3): 185-196.
[6] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
[7] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[8] ZHANG Yun, YIN Ding-Cai, TIAN Kun, ZHANG Wei-Guo, HE Rong-Hua, HE Wen-Qing, SUN Jiang-Mei, LIU Zhen-Ya. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China [J]. Chin J Plan Ecolo, 2018, 42(6): 629-639.
[9] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[10] GENG Xiao-Dong, Xu Ri, LIU Yong-Wen. Responses of ecosystem carbon exchange to multi-level water addition in an alpine meadow in Namtso of Qinghai-Xizang Plateau, China [J]. Chin J Plan Ecolo, 2018, 42(3): 397-405.
[11] SHI Guo-Xi, WANG Wen-Ying, JIANG Sheng-Jing, CHENG Gang, YAO Bu-Qing, FENG Hu-Yuan, ZHOU Hua-Kun. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity [J]. Chin J Plan Ecolo, 2018, 42(1): 126-132.
[12] GOU Xiao-Lin, ZHOU Qing-Ping, CHEN You-Jun, WEI Xiao-Xing, TU Wei-Guo. Characteristics of nutrients in two dominant plant species and rhizospheric soils in alpine desert of the Qinghai-Xizang Plateau under contrasting climates [J]. Chin J Plan Ecolo, 2018, 42(1): 133-142.
[13] QIN Shu-Qi, FANG Kai, WANG Guan-Qin, PENG Yun-Feng, ZHANG Dian-Ye, LI Fei, ZHOU Guo-Ying, YANG Yuan-He. Responses of exchangeable base cations to continuously increasing nitrogen addition in alpine steppe: A case study of Stipa purpurea steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 95-104.
[14] CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19.
[15] WANG Jun, WANG Guan-Qin, LI Fei, PENG Yun-Feng, YANG Gui-Biao, YU Jian-Chun, ZHOU Guo-Ying, YANG Yuan-He. Effects of short-term experimental warming on soil microbes in a typical alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 116-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Xiao-hua Cai Zhu-ping. Effects of S-07, PP333 and Triadimefon on Peroxidaseisoentyme of Rice Seedling[J]. Chin Bull Bot, 1995, 12(专辑3): 109 -112 .
[2] . [J]. Chin Bull Bot, 1994, 11(专辑): 13 .
[3] Xiaomin Yu;Xingguo Lan;Yuhua Li. The Ub/26S Proteasome Pathway and Self-incompatible Responses in Flowering Plants[J]. Chin Bull Bot, 2006, 23(2): 197 -206 .
[4] WANG Ling-Li LIU Wen-Zhe. Contents of Camptothecin in Camptotheca acuminata from Different Provenances[J]. Chin Bull Bot, 2005, 22(05): 584 -589 .
[5] Dai Yun-ling and Xu Chun-hui. Advances in Research on Protein Components of Oxygen-evolving Complex[J]. Chin Bull Bot, 1992, 9(03): 1 -16 .
[6] . Advances in Research on Photosynthesis of Submerged Macrophytes[J]. Chin Bull Bot, 2005, 22(增刊): 128 -138 .
[7] Shaobin Zhang;Guoqin Liu. Research Advances in Plant Actin Isoforms[J]. Chin Bull Bot, 2006, 23(3): 242 -248 .
[8] BU Ren-Cang, CHANG Yu, HU Yuan-Man, LI Xiu-Zhen, HE Hong-Shi. SENSITIVITY OF CONIFEROUS TREES TO ENVIRONMENTAL FACTORS AT DIFFERENT SCALES IN THE SMALL XING’AN MOUNTAINS, CHINA[J]. Chin J Plan Ecolo, 2008, 32(1): 80 -87 .
[9] MA Li-Hui, WU Pu-Te, and WANG You-Ke. Spatial pattern of root systems of dense jujube plantation with jujube age in the semiarid loess hilly region of China[J]. Chin J Plan Ecolo, 2012, 36(4): 292 -301 .
[10] PAN Yu-De, Melillo J. M., Kicklighter D. W., XIAO Xiang-Ming, McGuire A. D.. Modeling Structural and Functional Responses of Terrestria Ecosystems in China to Changes in Climate and Atmospheric CO2[J]. Chin J Plan Ecolo, 2001, 25(2): 175 -189 .