Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (1): 55-64.doi: 10.17521/cjpe.2018.0275

• Research Articles • Previous Articles     Next Articles

Effects of forest canopy condition on the establishment of Castanopsis fargesii seedlings in a subtropical evergreen broad-leaved forest

WU Xiao-Qi,YANG Sheng-He,HUANG Li,LI Xiao-Han,YANG Chao,QIAN Shen-Hua,YANG Yong-Chuan()   

  1. Key Lab of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
  • Received:2018-11-03 Accepted:2019-01-10 Online:2019-04-23 Published:2019-01-20
  • Contact: YANG Yong-Chuan ORCID:0000-0001-7627-7776
  • Supported by:
    Supported by the National Research Basic Work Special Project(2015FY210200-16);Chongqing Technology Innovation and Application Demonstration Major Theme Special Project(cstc2018jszx-zdyfxmX0007);the Natural Science Foundation of Chongqing (CSTC2016jcyjA0379).(CSTC2016jcyjA0379)


Aims The establishment of seedlings is a key life-history stage during the regeneration of plant populations. This study is to investigate the effects of forest canopy condition (large-sized gap: >150 m 2, medium-sized gap: 100-150 m 2, small-sized gap: 50-100 m 2, and understory as control) on the establishment of Castanopsis fargesii seedlings, and to guide in situ management and restoration of subtropical evergreen broad-leaved forests.
Methods We conducted a 3-year in situ seed sowing experiment in the Jinyun Mountain National Nature Reserve under different canopy conditions, and monitored the growth and survival of C. fargesii seedlings for three years (2014-2016).
Important findings We found that: (1) the emergence of the seedlings lasted from July to December, and the emergence of seedlings was delayed under large canopy gaps; (2) overall germination rate was (62.8 ± 2.0)%. The averaged survival rate during three growing seasons was (65.1 ± 2.2)%, with wither being the key type of seedling mortality; (3) there was no significant difference in the germination and survival rates under different canopy conditions in 2014, but significant difference in the survival rates in 2015 and 2016; (4) seedling growth among canopy conditions showed no difference in 2014, but distinct differences in 2015 and 2016. The seedling growth in large- and medium-sized gaps was significantly promoted compared with those growing under closed canopies in terms of total biomass, plant height, base diameter, root length and leaf number (except for the specific leaf area); (5) for each of the four types of canopy conditions, leaf mass ratio (LMR) and stem mass ratio (SMR) of seedlings growing increased within last three years, while root mass ratio (RMR) and root shoot ratio (RSR) decreased. The LMR in large-sized gaps was significantly higher than those in closed canopies, but not for the RMR and RSR. The results suggested that the initial survival and growth of C. fargesii seedlings may be supported by the nutrients stored in seeds, and thus less affected by canopy conditions. However, in late-establishment stages (i.e., the second and third years), gap size could become a key factor in affecting both the seedling survival and growth. And large- and medium-sized gaps could promote the seedling establishment success for C. fargesii.

Key words: canopy condition, seed germination, seedling establishment, growth, Castanopsis fargesii

Table 1

Basic characteristics of sowing plots in forest gaps and understory"

Canopy condition
Area (m2)
Types of formation
Age (year)
主要边界木 Main boundary trees 光通量
Quantum flux
物种 Species 胸径 DBH (cm) 树高 H (m)
Large-sized gap
A 175 人工砍伐栲
Selective cutting of
Castanopsis fargesii
2 C. fargesii 20-45 15-25 484 ± 48.4a
山矾 Symplocos sumunti 10-20 10-20
B 185 栲倒木 C. fargesii logs 3-5 C. fargesii 30-40 15-20 513 ± 30.9a
润楠 Machilus nanmu 20-35 15-25
C 190 栲倒木 C. fargesii logs 6-8 C. fargesii 25-50 17-20 697 ± 104.3a
润楠 M. nanmu 20-35 10-20
Medium-sized gap
A 122 栲倒木 C. fargesii logs 5-7 润楠 M. nanmu 20-30 15-25 365 ± 24.4b
山矾 S. sumuntia 10-20 10-20
短刺米槠 Castanopsis carlesii var. spinulosa 15-30 10-15
B 140 栲倒木 C. fargesii logs 5-7 润楠 M. nanmu 15-30 15-25 447 ± 36.5b
C 131 栲倒木 C. fargesii logs 5-7 C. fargesii 35-45 15-20 444 ± 53.9b
润楠 M. nanmu 10-20 15-20
山矾 S. sumuntia 10-20 10-20
Small-sized gap
A 88 栲倒木 C. fargesii logs 5-7 C. fargesii 35-55 20-25 169 ± 30.7c
润楠 M. nanmu 25-35 20-25
B 72 栲倒木 C. fargesii logs 4-6 C. fargesii 40-50 20-25 191 ± 13.3c
润楠 M. nanmu 20-30 15-25
C 75 栲倒木 C. fargesii logs 5-7 C. fargesii 25-40 15-20 199 ± 9.3c
润楠 M. nanmu 10-20 15-20
主要优势种 Main dominant species
物种 Species 胸径 DBH (cm) 树高 H (m)
A 100 - - C. fargesii 35-55 20-25 40 ± 4.1d
润楠 M. nanmu 35-45 20-25
B 100 - - C. fargesii 40-50 20-25 35 ± 3.4d
C 100 - - C. fargesii 35-45 20-25 39 ± 3.9d
冬桃 Elaeocarpus duclouxii 20-35 15-25

Fig. 1

The germination rate of Castanopsis fargesii seeds under different canopy conditions (mean ± SE)."

Fig. 2

Monthly germination rate and germination process of Castanopsis fargesii seeds under different canopy conditions (mean ± SE)."

Fig. 3

Temporal dynamics of Castanopsis fargesii seedling survival rates (mean ± SE) under different canopy conditions. Different lowercase letters showed significant differences among seedling survival rate under different canopy conditions (p < 0.05)."

Fig. 4

Ratio of the causes of Castanopsis fargesii seedling death under different canopy conditions (mean ± SE). Different lowercase letters showed significant differences among the causes of seedling death under same canopy condition (p < 0.05)."

Fig. 5

The interannual variation of the growth indicators for Castanopsis fargesii seedling under different canopy conditions (mean ± SE). * indicates a significant canopy effect on a specific seedling growth indicator at a given stage (**, p < 0.01; ***, p < 0.001)."

Fig. 6

The interannual variation of the biomass allocation for Castanopsis fargesii seedlings under different canopy conditions (mean ± SE). LMR, leaf mass ratio; SMR, stem mass ratio; RMR, root mass ratio; RSR, root shoot ratio. * indicates a significant canopy effect on seedling biomass allocation at a given stage (**, p < 0.01; ***, p < 0.001)."

[1] Abe M, Miguchi H, Nakashizuka T ( 2001). An interactive effect of simultaneous death of dwarf bamboo, canopy gap, and predatory rodents on beech regeneration. Oecologia, 127, 281-286.
doi: 10.1007/s004420000585
[2] Bonal D, Burban B, Stahl C, Wagner F, Hérault B ( 2016). The response of tropical rainforests to drought—Lessons from recent research and future prospects. Annals of Forest Science, 73, 27-44.
doi: 10.1007/s13595-015-0522-5
[3] Chanthorn W, Caughlin T ( 2013). The relative importance of fungal infection, conspecific density and environmental heterogeneity for seedling survival in a dominant topical tree. Biotropica, 45, 587-593.
doi: 10.1111/btp.2013.45.issue-5
[4] Chen B, Da LJ, Song YC ( 2002). Seed germination and seedling growth of Castanopsis fargesii in evergreen broadleaved forest and in gaps. Journal of Tropical and Subtropical Botany, 10, 207-214.
[ 陈波, 达良俊, 宋永昌 ( 2002). 常绿阔叶林内和林窗中栲树的种子萌发和幼苗生长. 热带亚热带植物学报, 10, 207-214.]
[5] Chen GP, Xian JR, Cao XW, Liu JQ, Yang YH, Lei W ( 2016). Effects of canopy gap on the survival dynamics of Abies faxoniana seedlings in a subalpine coniferous forest. Acta Ecologica Sinica, 36, 6475-6486.
[ 陈国鹏, 鲜骏仁, 曹秀文, 刘锦乾, 杨永红, 雷炜 ( 2016). 林窗对岷江冷杉幼苗生存过程的影响. 生态学报, 36, 6475-6486.]
[6] Chen SB, Song AQ, Li ZJ ( 2005). Research advance in response of forest seedling regeneration to light environmental heterogeneity. Chinese Journal of Applied Ecology, 16, 365-370.
[ 陈圣宾, 宋爱琴, 李振基 ( 2005). 森林幼苗更新对光环境异质性的响应研究进展. 应用生态学报, 16, 365-370.]
[7] Chmura DJ, Modrzyński J, Chmielarz P, Tjoelker MG ( 2017). Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit. Plant Biology, 19, 172-182.
doi: 10.1111/plb.12531
[8] Clark CJ, Poulsen JR, Levey DJ ( 2013). Roles of seed and establishment limitation in determining patterns of afrotropical tree recruitment. PLOS ONE, 8, e63330. DOI: 10.1371/journal.pone.0063330.
doi: 10.1371/journal.pone.0063330
[9] Comita LS, Hubbell SP ( 2009). Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology, 90, 328-334.
doi: 10.1890/08-0451.1
[10] Ding SY, Lu XL ( 2007). Comparing ecophysiological characteristics of Castanopsis fargesii seedlings and saplings under different disturbance regimes: A case study of the Tiantong evergreen broad-leaved forest, Zhejiang Province of China. Acta Ecological Sinica, 27, 3892-3900.
[ 丁圣彦, 卢训令 ( 2007). 不同干扰背景下栲树(Castanopsis fargesii)幼苗幼树的生理生态特性比较——以浙江天童常绿阔叶林为例. 生态学报, 27, 3892-3900.]
[11] Dong H, Yang LX ( 2018). Effects of soil in larch plantations on the growth of Picea koraiensis and P. crassifolia seedlings. Chinese Journal of Applied Ecology, 29, 3199-3205.
[ 董慧, 杨立学 ( 2018). 落叶松人工林土壤对红皮云杉和青海云杉幼苗生长的影响. 应用生态学报, 29, 3199-3205.]
[12] Donohue K, Casas RRD, Burghardt L, Kovach K, Willis CG ( 2010). Germination, postgermination adaptation, and species ecological ranges. Annual Review of Ecology & Systematics, 41, 293-319.
[13] Du YJ, Peng SJ, Xu GL, Huang ZL, Huang YJ ( 2007). Study of distance-dependence on Castanopsis Chinensis seed in coniferous and broad-leaved mixed forest of Dinghushan, China. Journal of Plant Ecology (Chinese Version), 31, 998-1006.
[ 杜彦君, 彭闪江, 徐国良, 黄忠良, 黄玉佳 ( 2007). 鼎湖山针阔混交林锥栗种子距离制约研究. 植物生态学报, 31, 998-1006.]
[14] Engelbrecht BMJ, Dalling JW, Pearson TRH, Wolf RL, Gálvez DA, Koehler T, Tyree MT, Kursar TA ( 2006). Short dry spells in the wet season increase mortality of tropical pioneer seedlings. Oecologia, 148, 258-269.
doi: 10.1007/s00442-006-0368-5
[15] Feng DL, Zhang LN, Huang ZH, Chen JH, Zhu XL ( 2013). Effects of gap size on the seed germination and seedling growth of Castanopsis carlesii and Castanopsis fargesii. Journal Northwest A&F University (Nature Science), 41(6), 61-66.
[ 冯大兰, 张丽楠, 黄仲华, 陈继红, 朱小龙 ( 2013). 林窗大小对小叶栲和栲树种子萌发及幼苗生长的影响. 西北农林科技大学学报(自然科学版), 41(6), 61-66.]
[16] Figueroa JA, Lusk CH ( 2001). Germination requirements and seedling shade tolerance are not correlated in a Chilean temperate rain forest. New Phytologist, 152, 483-489.
doi: 10.1046/j.0028-646X.2001.00282.x
[17] Gao XY ( 2015). Castanopsis fargesii Decline and the Effect on Seedling Recruitment on Mt. Jinyun. Master degree dissertation, Chongqing University, Chongqing.
[ 高祥阳 ( 2015). 缙云山栲树衰退及其幼苗更新. 硕士论文, 重庆大学, 重庆.]
[18] Gao XY, Huang L, Yang C, Yang YC, Yuan XZ ( 2016). Seed germination characteristics of the dominate tree Castanopsis fargesii in evergreen broadleaved forest on Mt. Jinyun. Journal of Chongqing Normal University (Nature Science), 33(2), 127-133.
[ 高祥阳, 黄力, 杨超, 杨永川, 袁兴中 ( 2016). 缙云山常绿阔叶林建群种栲树的种子萌发特性. 重庆师范大学学报(自然科学版), 33(2), 127-133.]
[19] Gong HD, Yang GP, Lu ZY, Liu YH, Cao M ( 2011). Composition and spatio-temporal distribution of tree seedlings in an evergreen broad-leaved forest in the Ailao Mountain, Yunnan. Biodiversity Science, 19, 151-157.
[ 巩合德, 杨国平, 鲁志云, 刘玉洪, 曹敏 ( 2011). 哀牢山常绿阔叶林乔木树种的幼苗组成及时空分布特征. 生物多样性, 19, 151-157.]
[20] Gremer JR, Kimball S, Venable DL ( 2016). Within- and among-year germination in Sonoran Desert winter annuals: Bet hedging and predictive germination in a variable environment. Ecology Letters, 19, 1209-1218.
doi: 10.1111/ele.12655
[21] Hou ZJ, Zhao CZ, Li Y, Zhang Q, Ma XL ( 2014). Trade-off between height and branch numbers in Stellera chamaejasme on slopes of different aspects in a degraded alpine grassland. Chinese Journal of Plant Ecology, 38, 281-288.
[ 侯兆疆, 赵成章, 李钰, 张茜, 马小丽 ( 2014). 不同坡向高寒退化草地狼毒株高和枝条数的权衡关系. 植物生态学报, 38, 281-288.]
[22] Huang L ( 2016). Seed Ecology of Subtropical Broad-leaved Evergreen Forest on Jinyun Mountain. Master degree dissertation, Chongqing University, Chongqing.
[ 黄力 ( 2016). 缙云山常绿阔叶林种子生态学研究. 硕士论文, 重庆大学, 重庆.]
[23] Jin Y, Russo SE, Yu M ( 2018). Effects of light and topography on regeneration and coexistence of evergreen and deciduous tree species in a Chinese subtropical forest. Journal of Ecology, 106, 1634-1645.
doi: 10.1111/jec.2018.106.issue-4
[24] Larson JE, Sheley RL, Hardegree SP, Doescher PS, James JJ ( 2015). Seed and seedling traits affecting critical life stage transitions and recruitment outcomes in dryland grasses. Journal of Applied Ecology, 52, 199-209.
doi: 10.1111/1365-2664.12350
[25] Larson JE, Sheley RL, Hardegree SP, Doescher PS, James JJ ( 2016). Do key dimensions of seed and seedling functional trait variation capture variation in recruitment probability? Oecologia, 181, 39-53.
doi: 10.1007/s00442-015-3430-3
[26] Li QK, Ma KP ( 2003). Factors affecting establishment of Quercus liaotungensis Koidz. under mature mixed oak forest overstory and in shrubland. Forest Ecology & Management, 176, 133-146.
[27] Li YN, Li DS, Xu ZQ, Yu XF ( 2014). The process of emergence and height growth of Qucercus species in different provenances. Journal of Northwest Forestry University, 29(4), 139-144.
[ 李亚男, 李东胜, 许中旗, 虞晓凡 ( 2014). 栎属不同种源树种的出苗及生长过程. 西北林学院学报, 29(4), 139-144.]
[28] Lu JM, Johnson DJ, Qiao XJ, Lu ZJ, Wang QG, Jiang MX ( 2015). Density dependence and habitat preference shape seedling survival in a subtropical forest in central China. Journal of Plant Ecology, 8, 568-577.
[29] Ma LW, Zhang WH, Zhou JY, Xue YQ, Wu M, Ma C ( 2013). Effects of forest gap size on the growth of Quercus variabilis seedlings on north slopes of the Qinling Mountains. Scientia Silvae Sinicae, 49(12), 43-50.
doi: 10.11707/j.1001-7488.20131207
[ 马莉薇, 张文辉, 周建云, 薛瑶芹, 吴敏, 马闯 ( 2013). 秦岭北坡林窗大小对栓皮栎实生幼苗生长发育的影响. 林业科学, 49(12), 43-50.]
doi: 10.11707/j.1001-7488.20131207
[30] Morales J, Squeo FA, Tracol Y, Armas C, Gutiérrez JR ( 2015). Resource economics and coordination among above- and below-ground functional traits of three dominant shrubs from the Chilean coastal desert. Journal of Plant Ecology, 8, 70-78.
doi: 10.1093/jpe/rtu010
[31] Ou JD, Wu ZZ, Luo N ( 2016). Effects of forest gap size on the growth and form quality of Taxus wallichina var. mairei in Cunninghamia lanceolata forest. Chinese Journal of Applied Ecology, 27, 3098– 3104.
[ 欧建德, 吴志庄, 罗宁 ( 2016). 林窗大小对杉木林内南方红豆杉生长与形质的影响. 应用生态学报, 27, 3098-3104.]
[32] Piiroinen T, Valtonen A, Roininen H ( 2017). The seed-to-seedling transition is limited by ground vegetation and vertebrate herbivores in a selectively logged rainforest. Forest Ecology & Management, 384, 137-146.
[33] Reddy KR, Brand D, Wijewardana C, Gao W ( 2017). Temperature effects on cotton seedling emergence, growth, and development. Agronomy Journal, 109, 1379-1387.
doi: 10.2134/agronj2016.07.0439
[34] Song YC ( 2013). China Evergreen Broad- leaved Forest: Classification, Ecology, Conservation. Science Press, Beijing.
[ 宋永昌 ( 2013). 中国常绿阔叶林: 分类·生态·保育. 科学出版社, 北京.]
[35] Tang JM, Zhai MP ( 2006). Morphological response and biomass allocation of Schima superba seedlings at different habitats in gap. Journal of Huazhong Agricultural University, 25, 559-563.
[ 汤景明, 翟明普 ( 2006). 木荷幼苗在林窗不同生境中的形态响应与生物量分配. 华中农业大学学报, 25, 559-563.]
[36] Tian D, Li P, Fang WJ, Xu J, Luo YK, Yan ZB, Zhu B, Wang JJ, Xu XN, Fang JY ( 2017). Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China. Biogeosciences, 14, 3461-3469.
doi: 10.5194/bg-14-3461-2017
[37] Wang BC, Smith TB ( 2002). Closing the seed dispersal loop. Trends in Ecology & Evolution, 17, 379-386.
[38] Xing ZL, Zhang WH, Huang CZ, Yu SC, Zhou JY ( 2017). Effects of forest gap size on the aboveground architecture of Pinus tabulaeformis seedlings. Acta Botanica Boreali-?Occidentalia Sinica, 37, 578-585.
[ 邢忠利, 张文辉, 黄财智, 于世川, 周建云 ( 2017). 林窗大小对油松实生苗地上部分构型的影响. 西北植物学报, 37, 578-585.]
[39] Yan XF, Cao M ( 2008). Effects of forest gap on the seedling growth of a canopy tree species Pometia tomentosa in tropical rainforest of Xishuangbanna. Chinese Journal of Applied Ecology, 19, 238-244.
[ 闫兴富, 曹敏 ( 2008). 林窗对热带雨林冠层树种绒毛番龙眼幼苗生长的影响. 应用生态学报, 19, 238-244.]
[40] Yan XF, Wang JL, Zhou LB ( 2011). Effects of light intensity on Quercus Wutaishanica seed germination and seedling growth. Chinese Journal of Applied Ecology, 22, 1682-1688.
[ 闫兴富, 王建礼, 周立彪 ( 2011). 光照对辽东栎种子萌发和幼苗生长的影响. 应用生态学报, 22, 1682-1688.]
[41] Yang YC, Huang L, Qian SH, Fukuda KJ ( 2015). Completing the life history of Castanopsis fargesii: Changes in the seed dispersal, seedling and sapling recruitment patterns. European Journal of Forest Research, 134, 1143-1154.
[42] Zhang K, Baskin JM, Baskin CC, Yang X, Huang Z ( 2017). Effect of seed morph and light level on growth and reproduction of the amphicarpic plant Amphicarpaea edgeworthii(Fabaceae). Scientific Reports, 7, 39886.
[43] Zheng YL, Sun WB, Zhou Y, Coombs D ( 2009). Variation in seed and seedling traits among natural populations of Trigonobalanus doichangensis( A. Camus) Forman (Fagaceae), a rare and endangered plant in southwest China. New Forests, 37, 285-294.
[44] Zhou JH, Cheng XR, Yu MK, Zhuge JJ ( 2015). Responses of growth, leaf traits and biomass allocation of Phoebe sheareri seedlings to different habitats in forest gap. Journal of Northeast Forestry University, 43(12), 21-24, 50.
[ 周俊宏, 成向荣, 虞木奎, 诸葛建军 ( 2015). 紫楠幼苗生长、叶性状和生物量分配对林窗不同生境的响应. 东北林业大学学报, 43(12), 21-24, 50.]
[45] Zhu JJ, Gonda Y, Yu LZ, Li FQ, Yan QL, Sun YR ( 2012). Regeneration of a coastal pine (Pinus thunbergii Parl.) forest 11 years after thinning, Niigata, Japan. PLOS ONE, 7, e47593. DOI: 10.1371/journal.pone.0047593.
[46] Zhu JJ, Matsuzaki T, Lee FQ, Gonda Y ( 2003). Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest. Forest Ecology & Management, 182, 339-354.
[1] Yang -Zhang Hua JieLiu. Cloning of Wheat TaLCD Gene and Its Regulation on Osmotic Stress [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[2] . Advances in the Regulation of Plant Growth and Development by miR172-AP2 Module [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[3] Cao Dongdong,Chen Shanyu,Qin Yebo,Wu Huaping,Ruan Guanhai,Huang Yutao. Regulatory Mechanism of Salicylic Acid on Seed Germination Under Salt Stress in Kale [J]. Chin Bull Bot, 2020, 55(1): 49-61.
[4] Wang Menglong,Peng Xiaoqun,Chen Zhufeng,Tang Xiaoyan. Research Advances on Lectin Receptor-like Kinases in Plants [J]. Chin Bull Bot, 2020, 55(1): 96-105.
[5] Li Ping,Dong Yahui,Li Chenglong,He Yulong,Li Mingjun. Optimization of Cell Suspension Culture Conditions of Achyranthes bidentata [J]. Chin Bull Bot, 2020, 55(1): 90-95.
[6] ZOU An-Long,LI Xiu-Ping,NI Xiao-Feng,JI Cheng-Jun. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China [J]. Chin J Plant Ecol, 2019, 43(9): 783-792.
[7] Guo Qianqian, Zhou Wenbin. Advances in the Mechanism Underlying Plant Response to Stress Combination [J]. Chin Bull Bot, 2019, 54(5): 662-673.
[8] Aysajan ABDUSALAM, Dilinaer ABULA, ZHANG Kai, Maireyemugu TUERXUN, Kadir ABDULRASHID, LI Ling. Fruit set and seed germination traits of Zygophyllum kaschgaricum [J]. Chin J Plant Ecol, 2019, 43(5): 437-446.
[9] Yang Liwen, Liu Shuangrong, Lin Rongcheng. Advances in Light and Hormones in Regulating Seed Dormancy and Germination [J]. Chin Bull Bot, 2019, 54(5): 569-581.
[10] FAN Zi-Teng, WU Yu-Ling, WANG Xin-Ju, LI Tai-Qiang, GAO Jiang-Yun. Effects of symbiotic fungi on seed germination of interspecific hybrid progenies in Orchidaceae [J]. Chin J Plant Ecol, 2019, 43(4): 374-382.
[11] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[12] Ma Hongxiu,Wang Kaiyong,Zhang Kaixiang,Meng Chunmei,An Mengjie. Effect of Cottonseed Meal on Cotton Physiology and Growth Compensation Under Salinity-alkalinity Stress [J]. Chin Bull Bot, 2019, 54(2): 208-216.
[13] WANG Zhao-Guo, WANG Chuan-Kuan. Mechanisms of carbon source-sink limitations to tree growth [J]. Chin J Plant Ecol, 2019, 43(12): 1036-1047.
[14] ZHAO Xin, WANG Wen-Juan, WANG Pu-Chang, HUANG Li-Juan, ZHAO Li-Li. Effects of different calcium concentrations on growth and physiology of Paspalum wettsteinii seedlings [J]. Chin J Plant Ecol, 2019, 43(10): 909-920.
[15] Zhang Tiantian, Wang Xuan, Ren Haibao, Yu Jianping, Jin Yi, Qian Haiyuan, Song Xiaoyou, Ma Keping, Yu Mingjian. A comparative study on the community characteristics of secondary and old-growth evergreen broad-leaved forests in Gutianshan, Zhejiang Province [J]. Biodiv Sci, 2019, 27(10): 1069-1080.
Full text



[1] Lin liang-qiu;Zhang Qing-qi and Wu Wen-shan. A Study on Pollen Morphology of Rosa laevigata and Its Nutrition Composition[J]. Chin Bull Bot, 1994, 11(04): 43 -44 .
[2] Jie Dong;Fenghui Qi;Yaguang Zhan. Establishment of the Suspension Culture System and Optimization of Biosynthesis of Gallic Acid in Acer ginnala[J]. Chin Bull Bot, 2008, 25(06): 734 -740 .
[3] Li Guo-zhen;Qin Ming-bo;Kang Ning-ling;Xie De-yu;Ye He-chun and Li Guo-feng. Tissue Culture and Chromosome Analysis of Arnebia euchroma[J]. Chin Bull Bot, 1992, 9(01): 37 -41 .
[4] Han Bi-wen. The Synthitic Activities of Roots and their Relation to the Above-grond Parts[J]. Chin Bull Bot, 1984, 2(23): 23 -25 .
[5] Guiling Wang;Zhiwei Qin;Xiuyan Zhou;Zhiyun Zhao. Genetic Analysis and SSR Markers of Tuberculate Trait in Cucumis sativus[J]. Chin Bull Bot, 2007, 24(02): 168 -172 .
[6] Hui Yang;Lizhe An;Zhiye Wang;Jianping Zhou;Xunling Wang. Effects of Enhanced UV-B Radiation on Pollen Activities of 2 Tomato Cultivars in Terms of Endogenous Hormone,Polyamine and Proline Levels in Stamens[J]. Chin Bull Bot, 2007, 24(02): 161 -167 .
[7] Hao Zhao;Zhao Xue-chen;Zheng Shu-jun and Qu Chun-ying. Winter Hardiness of Wheat Seedling at Differant Leaf-Age[J]. Chin Bull Bot, 1985, 3(05): 38 -40 .
[8] Chang Huey-ju;Guan Zhong-tian;Zhou Lin and Hsu Kuo-shih. Comparison of two natural cycad communities in China[J]. Chin Bull Bot, 1995, 12(专辑): 52 -58 .
[9] . Positional Information and Plant Development [J]. Chin Bull Bot, 2005, 22(03): 366 -374 .
[10] Deyong Ren, Guanghua He, Yinghua Ling, Xianchun Sang, Zhenglin Yang, Fangming Zhao. Analysis of Quantitative Trait Loci Additive and Epistasis Effects for Panicle Length with Single Segment Substitution Lines in Rice[J]. Chin Bull Bot, 2010, 45(06): 662 -669 .