Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (5): 396-407.doi: 10.17521/cjpe.2019.0020

• Reviews • Previous Articles     Next Articles

A review on the process of bryophyte karstification

MENG Wen-Ping1,2,DAI Quan-Hou1,*(),RAN Jing-Cheng3   

  1. 1. College of Forestry, Guizhou University, Guiyang 550025, China
    2. Guizhou Botanical Garden, Guiyang 550001, China
    3. Guizhou Wildlife and Forest Plant Management Station, Guiyang 550001, China
  • Received:2019-09-22 Accepted:2019-05-06 Online:2019-10-18 Published:2019-05-20
  • Contact: DAI Quan-Hou
  • Supported by:
    Supported by the National Natural Science Foundation of China(41671275);The National Key R&D Program of China(2016YFC0502604);The National Nature Science Foundation of China and the Karst Science Research Center of Guizhou Province(U1812401)


Bryophyte participate in karstification is an important part of biokarst process. Numerous studies on bryophyte karstification provide theoretical and technical foundation for restoration and comprehensive management of bare rock in the rocky desertification area. This article systematically reviewed the process (dissolution and sedimentation), mechanism and interaction relationship between bryophyte karstification and habitats. Bryophyte and its biological crusts emerge physical forces such as expansion, curling, freezing and thawing when they are under alternating wet or dry conditions can destroy rock. In addition, their metabolic secretions and H2CO3 formed by respiration, which react with minerals resulting in destruction of the crystal structure, pyrolysis the minerals, further the rock surface disintegrated and the surface morphology changed, the karst landform and the original soil formed. The driving force of bryophyte karstification closely related to plant functional traits, rock properties and habitat. Studies on biokarst need long-term monitoring and long research period. It is recommended to establish a long-term monitoring sites for strengthening examinations on process, internal mechanisms, and interaction relationship with habitat of bryophyte karstification. At the same time, physiological metabolic processes of bryophytes and the relationship with bryophyte karstification should be emphasized. The environmental adaptability of bryophyte and the maintenance mechanism of biodiversity in karst areas need research attention as well.

Key words: bryophytes, karstification, process, mechanism, habitat, interaction mechanism

Fig. 1

Bryophytes on rock surface at Puding karst ecological monitoring station in Guizhou. A, mosses of Ptychomitriaceae gardenri and Hyophila acutifolia. B, mosses of Plagiobryum zierii, Bryum anagustirete and Anomodon rugelii."

Fig. 2

A schematic flowchart showing the bryophyte karstification process. The moss on rock surface through physical and biochemical action to destroy and corrosion the rock, change the rock surface morphology and form the karst microtopography. At the same time, the dissolution products are deposited to form the original soil."

Fig. 3

The three-way circulation interaction mechanism among bryophyte karstification, environment and rock. Bryophyte, environmental factors and rock in the karstification process promote and restraint each other. Environmental factors and rock affect karstification process and efficiency by controlling the community characteristics, morphology, physiological processes, genes, etc. of bryophyte. The lithology, composition, occurrence of rock, and the improvement of bryophyte on rock surface habitat (temperature, humidity, light, soil fertility, microbes) are closely related to the rate of karstification."

1 Amao Y, Takai K, Ohashi A (2010). Effect of manganese and calcium ions on the photoinduced water oxidation with photosynthesis organ grana from green plant. Applied Catalysis B: Environmental, 97, 36-40.
2 Benbouzid H, Le Floch S, Stephan L, Olier R, Privat M (2012). Combined effects of salinity and temperature on the solubility of organic compounds. The Journal of Chemical Thermodynamics, 48, 54-64.
3 Bray AW, Oelkers EH, Bonneville S, Wolff-Boenisch D, Potts NJ, Fones G, Benning LG (2015). The effect of pH, grain size, and organic ligands on biotite weathering rates. Geochimica et Cosmochimica Acta, 164, 127-145.
4 Cai HL (2017). Surface Dissolved Forms of Carbonate Rocks and Its Influencing Factors. Master degree dissertation, Yunnan Normal University, Kunming.
[ 蔡胡霖(2017). 碳酸盐岩表面溶蚀形态及其影响因素. 硕士学位论文, 云南师范大学, 昆明.]
5 Cama J, Ganor J (2006). The effects of organic acids on the dissolution of silicate minerals: A case study of oxalate catalysis of kaolinite dissolution. Geochimica et Cosmochimica Acta, 70, 2191-2209.
6 Cao JH, Wang FX (1996). Observations on fractal characters between karst macrophology and biokarst micromorphology in the Guilin area. Journal of Nanjing University (Natural Science), 32, 146-147.
[ 曹建华, 王福星 (1996). 桂林地区生物岩溶微观形态与岩溶地貌宏观形态间的分形特征. 南京大学学报(自然科学版), 32, 146-147.]
7 Cao JH, Yuan DX (1999). Relationship between water-holding of carbonate rock and saxicolous algae, lichen and moss and its ecological significance. Geochimica, 28, 248-256.
[ 曹建华, 袁道先 (1999). 石生藻类、地衣、苔藓与碳酸盐岩持水性及生态意义. 地球化学, 28, 248-256.]
8 Cao JH, Yuan DX, Zhang C, Jiang ZC (2004). Karst ecosystem constrained by geological conditions in southwest China. Earth and Environment, 1, 1-8.
[ 曹建华, 袁道先, 章程, 蒋忠诚 (2004). 受地质条件制约的中国西南岩溶生态系统. 地球与环境, 1, 1-8.]
9 Cao QZ, Deng M, Huang B, Chen B (2018). Influence of acid-insoluble residue on dedolomite reaction in dolomitic rocks. Journal of Nanjing Tech University (Natural Science Edition), 40, 89-94.
[ 曹沁智, 邓敏, 黄蓓, 陈碧 (2018). 白云质岩石中酸不溶物对碱白云石反应的影响. 南京工业大学学报(自然科学版), 40, 89-94.]
10 Chen CP, Gu X, Zhou SM, Liu JP (2008). Experimental research on dissolution dynamics of main minerals in several aqueous organic acid solutions. Acta Geologica Sinica, 7, 1007-1012.
[ 陈传平, 固旭, 周苏闽, 刘建平 (2008). 不同有机酸对矿物溶解的动力学实验研究. 地质学报, 7, 1007-1012.]
11 Chen HS, Fu ZY, Zhang W, Nie YP (2018). Soil water processes and vegetation restoration in karst region of southwest China. Chinese Journal of Nature, 40, 41-46.
[ 陈洪松, 付智勇, 张伟, 聂云鹏 (2018). 西南喀斯特地区水土过程与植被恢复重建. 自然杂志, 40, 41-46.]
12 Chen HS, Nie YP, Wang KL (2013). Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions: A review. Acta Ecologica Sinica, 33, 317-326.
[ 陈洪松, 聂云鹏, 王克林 (2013). 岩溶山区水分时空异质性及植物适应机理研究进展. 生态学报, 33, 317-326.]
13 Chen WJ, Zhang N, Hang LL, Wang Y, Ji MC (2012). Effects of different medium and pH value on the growth of gametophyte in Haplocladium microphyllum. Practical Forestry Technology, (4), 20-23.
[ 陈文佳, 张楠, 杭璐璐, 王媛, 季梦成 (2012). 不同培养基及pH值对细叶小羽藓配子体生长的影响. 林业实用技术, (4), 20-23.]
14 Chen ZY, Liu F, Bu TD, Liu YS, Zhu J (2016). Effects of organic acids on dissolution of Fe and Mn from weathering coal gangue. Acta Geochimica, 3, 316-328.
15 Costa DP, Amado-Filho GM, Pereira RC, Paradas WC, Miyataka H, Okamoto Y, Asakawa Y (2018). Diversity of secondary metabolites in the liverwort Syzygiella rubricaulis(Nees) Stephani (Jamesoniellaceae, Marchantiophyta) from neotropical high mountains. Chemistry & Biodiversity, 15, e1800239. DOI: 10.1002/cbdv.201800239.
16 Dang CQ, Li ZF, Chen M, Gao T, Huang HM, Liu JC, Tao JP (2018). Physiological and biochemical characteristics of epilithic moss Homomallium simlaense(Mitt.) Broth. Mitt under high temperature and drought stress. Plant Science Journal, 36, 393-401.
[ 党成强, 李宗峰, 陈淼, 高婷, 黄慧敏, 刘锦春, 陶建平 (2018). 石生南亚毛灰藓在不同温度和干旱条件下的生理生化特性. 植物科学学报, 36, 393-401.]
17 de la Rosa JPM (2016). The Burren: A glacial, karstic and biokarstic expression of a limestone plateau in western Ireland. Earth Surface Processes and Landforms, 41, 1614-1628.
18 Fu L, Zhang ZH (2010). Preliminary study on biokarst erosion of bryophytes in Guiyang city. Journal of Guizhou Normal University (Nature Science), 28(4), 140-143.
[ 付兰, 张朝晖 (2010). 贵阳市苔藓植物的生物岩溶溶蚀初探. 贵州师范大学学报(自然科学版), 28(4), 140-143.]
19 Ghoorah M, Dlugogorski BZ, Balucan RD, Kennedy EM (2014). Selection of acid for weak acid processing of wollastonite for mineralisation of CO2. Fuel, 122, 277-286.
20 Gorozhankina SM, Konstantinov VD (2001). Comparative ecocenotic characteristics of mosses in the taiga zone of West Siberia. Russian Journal of Ecology, 32, 386-392.
21 Guo Y, Wang ZH, Zhang ZH (2018). Study on community characteristics of bryophytes in dolomite cave twilight zones: An example of the Shuidong Cave in Suiyang county, Guizhou Province. Carsologica Sinica, 37, 388-399.
[ 郭云, 王智慧, 张朝晖 (2018). 白云岩洞穴洞口弱光带的苔藓群落特征——以绥阳水洞为例. 中国岩溶, 37, 388-399.]
22 Guo YW, Zhao YG (2018). Effects of storage temperature on the physiological characteristics and vegetative propagation of desiccation-tolerant mosses. Biogeoscience, 15, 797-808.
23 Hanson DT, Renzaglia K, Villarreal JC (2014). Diffusion limitation and CO2 concentrating mechanisms in bryophytes. In: Hanson DT, Rice SK eds. Photosynthesis in Bryophytes and Early Land Plants. Springer, Dordrecht, Netherlands. 95-111.
24 Harper KT, Belnap J (2001). The influence of biological soil crusts on mineral uptake by associated vascular plants. Journal of Arid Environments, 47, 347-357.
25 Haward SJ, Smits MM, Ragnarsdóttir KV, Leake JR, Banwart SA, McMaster TJ (2011). In situ atomic force microscopy measurements of biotite basal plane reactivity in the presence of oxalic acid. Geochimica et Cosmochimica Acta, 75, 6870-6881.
26 Heino J, Virtanen R (2006). Relationships between distribution and abundance vary with spatial scale and ecological group in stream bryophytes. Freshwater Biology, 51, 1879-1889.
27 Hong ZX (2018). Study on the characteristics of microbial carbonic anhydrase. Biological Chemical Engineering, (4), 63-66.
[ 洪子茜 (2018). 微生物碳酸酐酶特性研究. 生物化工, (4), 63-66.]
28 Huang F, Huang YM, Gao X, Cao JH (2015). Effects of karst environmental factors on activity of soil microorganic extracellular carbonic anhydrase of karst area in Maocun village, Guilin. Journal of Southern Agriculture, 46, 1792-1797.
[ 黄芬, 黄艳梅, 高喜, 曹建华 (2015). 岩溶环境因子对桂林毛村岩溶区土壤微生物胞外碳酸酐酶活性的影响. 南方农业学报, 46, 1792-1797.]
29 Huang QB, Qin XQ, Liu PY, Lan FN, Zhang LK (2015). Dissolution rate and it’s significance of different lithological tablets. Earth and Environment, 43, 379-385.
[ 黄奇波, 覃小群, 刘朋雨, 蓝芙宁, 张连凯 (2015). 不同岩性试片溶蚀速率差异及意义. 地球与环境, 43, 379-385.]
30 Jackson TA (2015). Weathering, secondary mineral genesis, and soil formation caused by lichens and mosses growing on granitic gneiss in a boreal forest environment. Geoderma, 251, 78-91.
31 Jia SH, Li JF, Wang ZH, Zhang ZH (2014). Ecological function of bryophyte on karst rocky desertification slopes along mountainous roads. Chinese Journal of Ecology, 33, 1928-1934.
[ 贾少华, 李军峰, 王智慧, 张朝晖 (2014). 岩溶山区公路石漠化边坡苔藓生态功能. 生态学杂志, 33, 1928-1934.]
32 Kleinteich J, Golubic S, Pessi IS, Velázquez D, Storme J-Y, Darchambeau F, Borges AV, Compère P, Radtke G, Lee S-J, Javaux EJ, Wilmotte A (2017). Cyanobacterial contribution to travertine deposition in the Hoyoux River system, Belgium. Microbial Ecology, 74, 33-53.
33 Kolupaev YE, Vayner AA, Yastreb TO, Oboznyi AI, Khripach VA (2014). The role of reactive oxygen species and calcium ions in the implementation of the stress protective effect of brassinosteroids on plant cells. Applied Biochemistry and Microbiology, 50, 658-663.
34 Krol E, Dziubinska H, Trebacz K (2003). Low-temperature induced transmembrane potential changes in the liverwort Conocephalum conicum. Plant & Cell Physiology, 44, 527-533.
35 Lammers K, Smith MM, Carroll SA (2017). Muscovite dissolution kinetics as a function of pH at elevated temperature. Chemical Geology, 466, 149-158.
36 Li JF, Wang ZH, Zhang ZH (2013). Bryophyte diversity and the effect of soil formation along with water conservation in karst rocky desertification region. Research of Environmental Sciences, 26, 759-764.
[ 李军峰, 王智慧, 张朝晖 (2013). 喀斯特石漠化山区苔藓多样性及水土保持研究. 环境科学研究, 26, 759-764.]
37 Li T, Wang HY, Zhou ZJ, Chen XQ, Zhou JM (2015). A nano-scale study of the mechanisms of non-exchangeable potassium release from micas. Applied Clay Science, 118, 131-137.
38 Li W, Yu LJ, Yu JF, Jia LP, Wu Y (2005). Effects of karst environmental factors on expression and activity of bacterial extracellular carbonic anhydrase. Microbiology China, 5, 35-39.
[ 李为, 余龙江, 余俊峰, 贾丽萍, 吴云 (2005). 岩溶环境因子对细菌胞外碳酸酐酶表达及活性的影响. 微生物学通报, 5, 35-39.]
39 Li W, Yu LT, Wu Y, Jia LP, Yuan DX (2006). Enhancement of Ca 2+ release from limestone by microbical extracelluar carbonic anhydrase . Bioresource Technology, 98, 950-953.
40 Li ZK, Wu QM, Wang ZH, Zhang ZH (2018). Diversity and ecological characteristics of bryophytes from peak cluster under the background of karst urban. Bulletin of Botanical Research, 38, 433-443.
[ 李泽科, 吴启美, 王智慧, 张朝晖 (2018). 岩溶城市背景下贵阳市峰丛苔藓植物多样性分布及其生态特征. 植物研究, 38, 433-443.]
41 Lian B, Chen Y, Zhu LJ, Yang RD (2008). Progress in the study of the weathering of carbonate rock by microbes. Earth Science Frontiers, 15, 90-99.
[ 连宾, 陈烨, 朱立军, 杨瑞东 (2008). 微生物对碳酸盐岩的风化作用. 地学前缘, 15, 90-99.]
42 Lian B, Yuan DX, Liu ZH (2011). Effect of microbes on karstification in karst ecosystems. Chinese Science Bulletin, 56, 2158-2161.
[ 连宾, 袁道先, 刘再华 (2011). 岩溶生态系统中微生物对岩溶作用影响的认识. 科学通报, 56, 2158-2161.]
43 Liang FY, Xu B (2014). Discrimination of tower, cockpit, and non-karst landforms in Guilin, Southern China, based on morphometric characteristics. Geomorphology, 204, 42-48.‌
44 Liu MX, Xu XL, Wang DB, Alexander YS, Wang KL (2016). Karst catchments exhibited higher degradation stress from climate change than the non-karst catchments in southwest China: An ecohydrological perspective. Journal of Hydrology, 535, 173-180.
45 Liu SL, Zhu SL, Li J, Yang Y, Li JG (2017). A study on the ability of different organic acids to dissolve tricalcium phosphate. Acta Agriculturae Universitatis Jiangxiensis, 39, 1010-1016.
[ 刘胜亮, 朱舒亮, 李静, 杨越, 李建贵 (2017). 不同有机酸对磷酸三钙溶解能力的研究. 江西农业大学学报, 39, 1010-1016.]
46 Liu TL, Cong CL, Hu D, Wang SJ, Zhang XQ (2017). Carbonic anhydrase activity of six epilithic mosses and their underlying soil in the Puding karst area, Guizhou Province. Carsologica Sinica, 36, 187-192.
[ 刘天雷, 从春蕾, 胡丹, 王世杰, 张显强 (2017). 贵州普定6种喀斯特石生植物及其土壤的碳酸酐酶活性. 中国岩溶, 36, 187-192.]
47 Liu Y, Pi CY, Tian S (2015). Relationships between characteristics of ground bryophyte communities and environmental factors in urban area of Chongqing, China. Chinese Journal of Applied Ecology, 26, 3145-3152.
[ 刘艳, 皮春燕, 田尚 (2015). 重庆主城区地面苔藓植物群落特征及其与环境的关系. 应用生态学报, 26, 3145-3152.]
48 Lou HX (2012). Bryophyte Chemistry and Biology. Science Press, Beijing.
[ 娄红祥 (2012). 苔藓化学与生物学. 科学出版社, 北京.]
49 Lou YX (2013). Study on Response Mechanism and Biological Indicators of Bryophytes to Heavy Metal Pollution. PhD dissertation, Shanghai Normal University, Shanghai.
娄玉霞 (2013). 苔藓植物对重金属污染的响应机理和生物指示的研究. 博士学位论文, 上海师范大学, 上海.]
50 Miliša M, Habdija I, Primc-Habdija B, Radanović I, Kepčija RM (2006). The role of flow velocity in the vertical distribution of particulate organic matter on moss-covered travertine barriers of the Plitvice Lakes (Croatia). Hydrobiologia, 553, 231-243.
51 Mod HK, Heikkinen RK, le Roux PC, Väre H, Luoto M (2016). Contrasting effects of biotic interactions on richness and distribution of vascular plants, bryophytes and lichens in an arctic-alpine landscape. Polar Biology, 39, 649-657.
52 Mwangi P, Brady PV, Radonjic M, Thyne G (2018). The effect of organic acids on wettability of sandstone and carbonate rocks. Journal of Petroleum Science & Engineering, 165, 428-435.
53 Pachana K, Zuddas P, Censi P (2012). Influence of pH and temperature on the early stage of mica alteration. Applied Geochemistry, 27, 1738-1744.
54 Pang JP, Wang ZH, Zhang ZH (2018). Characteristics of bryophyte communities and their successional patterns in different habitats from karst dolomite rocky desertification areas. Ecological Science, 37, 59-66.
[ 庞嘉鹏, 王智慧, 张朝晖 (2018). 喀斯特白云岩石漠化区域不同生境条件下苔藓植物群落特征及演替模式研究. 生态科学, 37, 59-66.]
55 Peters K, Gorzolka K, Bruelheide H, Neumann S (2018). Seasonal variation of secondary metabolites in nine different bryophytes. Ecology and Evolution, 8, 9105-9117.
56 Pharo EJ, Zartman CE (2006). Bryophytes in a changing landscape: The hierarchical effects of habitat fragmentation on ecological and evolutionary processes. Biological Conservation, 135, 315-325.
57 Proctor MCF (2000). The bryophyte paradox: Tolerance of desiccation, evasion of drought. Plant Ecology, 151, 41-49.
58 Proctor MCF, Pence VC (2002). Vegetative tissues: Bryophytes vascular “resurrection plants” and vegetative propagules. In: Pritchard H, Back M eds. Desiccation and Plant Survival. CABI Publishing, Wallingford, UK. 207-237.
59 Schneider J (1976). Biological and inorganic factors in the destruction of limestone coasts. Contributions to Sedimentology, 6, 112-116.
60 Shen JC, Zhang ZH, Wang HH, Huang H, Wang ZH (2017). Water retention capacity of autumn mosses in south stone forest of Guiyang karst park. Journal of Ecology and Rural Environment, 33, 907-912.
[ 申家琛, 张朝晖, 王慧慧, 黄欢, 王智慧 (2017). 贵阳喀斯特公园南石林秋季藓类植物的持水特性. 生态与农村环境学报, 33, 907-912.]
61 Shen JC, Zhang ZH, Wang HH, Huang H, Wang ZH (2018a). Corrosion effects and environmental correlation of bryophytes on limestone in Guiyang karst park. Carsologica Sinica, 37, 175-184.
[ 申家琛, 张朝晖, 王慧慧, 黄欢, 王智慧 (2018a). 苔藓植物对石灰岩的溶蚀作用及环境相关性研究. 中国岩溶, 37, 175-184.]
62 Shen JC, Zhang ZH, Wang ZH (2018b). The effects of rocky desertification degree on bryophyte diversity and soil chemical properties of crusts. Acta Ecologica Sinica, 38, 6043-6054.
[ 申家琛, 张朝晖, 王智慧 (2018b). 石漠化程度对苔藓植物多样性及其结皮土壤化学性质的影响. 生态学报, 38, 6043-6054.]
63 Shen TM (2018). Contribution and Mechanism of Microbes and Carbonic Anhydrase to Carbon Storage Soil Ecosystems. PhD dissertation, Huazhong University of Science and Technology, Wuhan.
[ 申泰铭(2018). 微生物及碳酸酐酶对岩溶土壤生态系统碳储存的贡献及其机制. 博士学位论文, 华中科技大学, 武汉.]
64 Shen TM, Xin BG, Li W, Yu LJ (2014). Characteristics of carbonate rock corrosion by different kinds of microbea and their carbonic anhydras in the CO2-H2O-carbonate system. Bulletin of Mineralogy, Petrology and Geochemistry, 33, 797-800.
[ 申泰铭, 邢必果, 李为, 余龙江 (2014). 不同种类微生物及其碳酸酐酶对CO2-H2O-碳酸盐系统中碳酸盐岩的溶蚀作用. 矿物岩石地球化学通报, 33, 797-800.]
65 Smith EC, Griffiths H (2000). The role of carbonic anhydrase in photosynthesis and the activity of the carbon- concentrating-mechanism in bryophytes of the class anthocerotae. New Phytologist, 145, 29-37.
66 St. Martin P, Mallik AU (2017). The status of non-vascular plants in trait-based ecosystem function studies. Perspectives in Plant Ecology, Evolution and Systematics, 27, 1-8.
67 Street LE, Subke J-A, Sommerkorn M, Sloan V, Ducrotoy H, Phoenix GK, Williams M (2013). The role of mosses in carbon uptake and partitioning in arctic vegetation. New Phytologist, 199, 163-175.
68 Voinot A, Lemarchand D, Collignon C, Granet M, Chabaux F, Turpault M-P (2013). Experimental dissolution vs. transformation of micas under acidic soil conditions: Clues from boron isotopes. Geochimica et Cosmochimica Acta, 117, 144-160.
69 Wang FX, Cao JH, Huang JF (1998). Biokarst in the cave twilight zones. Carsologica Sinica, 17, 42-48.
[ 王福星, 曹建华, 黄俊发 (1998). 洞穴弱光带的生物岩溶. 中国岩溶, 17, 42-48.]
70 Wang FX, Cao JH, Huang JF, Jiang LD, Huang JF, Wang J (1993). Biokarst. Geological Publishing House, Beijing.
[ 王福星, 曹建华, 黄俊发, 江利登, 黄基富, 王晶 (1993). 生物岩溶. 地质出版社, 北京.]
71 Wang GM, Xiong ZH, Zhang J, Zhang B (2017). Dissolution experiment and transformation condition analysis of Paleogene aragonite in the Jiyang Depression, China. Australian Journal of Earth Sciences, 64, 343-352.
72 Wang HJ, Yan H, Liu ZH (2014). Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimatic interpretations. Geochimica et Cosmochimica Acta, 125, 34-48.
73 Wang SJ, Ji HB, Ouyang ZY, Zhou DQ, Zheng LP, Li TY (1999). Preliminary study on weathering and soil formation of carbonate rocks. Science in China (Series D), 29, 441-449.
[ 王世杰, 季宏兵, 欧阳自远, 周德全, 郑乐平, 黎廷宇 (1999). 碳酸盐岩风化成土作用的初步研究. 中国科学(D辑: 地球科学), 29, 441-449.]
74 Won-Pyo P, Bon-Jun K, Chang AC, Ferko TE, Parker JR, Ward TH, Lara SV, Nguyen CM (2016). Dissolution of metals from biosolid-treated soils by organic acid mixtures. Applied and Environmental Soil Science, 2016, 1-15.
75 Wu YH, Huang GH, Gao Q, Cao T (2001). Research advance in response and adaptation of bryophytes to environmental change. Chinese Journal of Applied Ecology, 12, 943-946.
[ 吴玉环, 黄国宏, 高谦, 曹同 (2001). 苔藓植物对环境变化的响应及适应性研究进展. 应用生态学报, 12, 943-946.]
76 Wu YW, Zhang JC (2015). Microbial carbonic anhydrase action and application on carbon cycling in karst dynamic system: A review. Journal of Biology, 32, 78-83.
[ 吴雁雯, 张金池 (2015). 微生物碳酸酐酶在岩溶系统碳循环中的作用与应用研究进展. 生物学杂志, 32, 78-83.]
77 Xie CF, Lou HX (2009). Secondary metabolites in bryophytes: An ecological aspect. Chemistry & Biodiversity, 6, 303-312.
78 Xie M (2018). Determination of DNA C-values and Analysis of Variation Characteristics of Bryophytes. Master degree dissertation, Shanghai Normal University, Shanghai.
[ 解梦 (2018). 苔藓植物DNA C-值测定及其变异特点分析. 硕士学位论文, 上海师范大学, 上海.]
79 Xue JH (2013). Forest Ecology. China Forestry Publishing House, Beijing.
[ 薛建辉(2013). 森林生态学. 中国林业出版社, 北京.]
80 Yan H, Liu ZH, Sun HL (2017). Effect of in-stream physicochemical processes on the seasonal variations in δ 13C and δ 18O values in laminated travertine deposits in a mountain stream channel . Geochimica et Cosmochimica Acta, 202, 179-189.
81 Yan ZW, Liu HL, Zhang ZW (2009). Influences of temperature and PCO2 on the solubility of calcite and dolomite. Carsologica Sinica, 28, 7-10.
[ 闫志为, 刘辉利, 张志卫 (2009). 温度及CO2对方解石、白云石溶解度影响特征分析. 中国岩溶, 28, 7-10.]
82 Zhang DG, Li J, Liu H (2015). Effect of exogenous low molecular weight organic acids on calcium migration in soil. Journal of Soil and Water Conservation, 29, 152-155.
[ 张大庚, 栗杰, 刘慧 (2015). 外源低分子量有机酸对土壤中钙素迁移特征的影响. 水土保持学报, 29, 152-155.]
83 Zhang J (1993). Biological role in the formation of karst barrier lakes in Mianshan limestone area, northwest Sichuan. Journal of Lake Sciences, 5, 33-39.
[ 张捷 (1993). 川西北眠山灰岩区岩溶堰塞湖形成中的生物作用. 湖泊科学, 5, 33-39.]
84 Zhang KY (2017). The Dissolution of Limestone by Some of the Mosses and the Microorganism in Karst Area in Guizhou Province. Master degree dissertation, Southwestern University, Chongqing.
[ 张楷燕 (2017). 贵州喀斯特几种石生苔藓和土壤微生物对石灰岩的溶蚀作用. 硕士学位论文, 西南大学, 重庆.]
85 Zhang ML, Deng ZQ (1994). The soil and soil-forming processes in karst area of South China. Journal Guizhou Institute of Technology, 23, 67-75.
[ 张美良, 邓自强 (1994). 我国南方岩溶地区的土壤及其形成. 贵州工学院学报, 23, 67-75.]
86 Zhang XQ, Liu TL, Cong CL (2018a). Study on soil conservation and pedogenic function of five bryophytes in the karst areas of Guizhou Province. Carsologica Sinica, 37, 708-713.
[ 张显强, 刘天雷, 从春蕾 (2018 a). 贵州5种喀斯特石生藓类成土及保土生态功能研究. 中国岩溶, 37, 708-713.]
87 Zhang XQ, Long HY, Liu TL, Cong CL (2018b). Comparison of water absorption characteristic and water retention capacity of five epilithic mosses in the karst areas of Guizhou Province. Carsologica Sinica, 37, 835-841.
[ 张显强, 龙华英, 刘天雷, 从春蕾 (2018 b). 贵州喀斯特地区5种石生藓类的持水性能及吸水特征比较. 中国岩溶, 37, 835-841.]
88 Zhang XQ, ZhaoYZ, Wang SJ (2017). Responses of antioxidant defense system of epilithic mosses to drought stress in karst rock desertified areas. Acta Geochimica, 36, 205-212.
89 Zhang ZH, Chen JK (2007). Floristic characteristics of aquatic bryophytes and their biokarst deposition types at waterfalls in central Guizhou, China. Carsologica Sinica, 26, 171-177.
[ 张朝晖, 陈家宽 (2007). 黔中瀑布水生苔藓植物区系及其生物喀斯特沉积生态类型研究. 中国岩溶, 26, 171-177.]
90 Zhang ZH, Peng T, Li XN, Zhao CH (2004). Bryophytes in karst cave entrance zone of Kunming, China. Carsologica Sinica, 23, 230-233.
[ 张朝晖, 彭涛, 李晓娜, 赵传海 (2004). 中国昆明地区岩溶洞穴洞口带苔藓植物研究. 中国岩溶, 23, 230-233.]
91 Zhao ZM, Luan Y, Quan SC, Wu JL, Liang Y, Zeng Z (2018). Effect of functional groups for the organic acid on the crystal transition of phosphogypsum crystal. Journal of Building Materials, 21, 247-252.
[ 赵志曼, 栾扬, 全思臣, 吴佳丽, 梁祎, 曾众 (2018). 含辅助官能团类有机酸对磷石膏晶体的影响. 建筑材料学报, 21, 247-252.]
92 Zheng YP, Zhao JC, Zhang BC, Li L, Zhang YM (2009). Research progress of algae and bryophytes in desert biological crusts. Journal of Integrative Plant Biology, 44, 371-378.
[ 郑云普, 赵建成, 张丙昌, 李琳, 张元明 (2009). 荒漠生物结皮中藻类和苔藓植物研究进展. 植物学报, 44, 371-378.]
93 Zhu XM (1995). The process of the original soil formation. Research of Water and Soil Conservation, 4, 83-89.
[ 朱显谟 (1995). 论原始土壤的成土过程. 水土保持研究, 4, 83-89.]
[1] Xian-hui TANG Yong-Le CHEN Fang LI. Water isotope analysis for tracing ecosystem processes: measurement techniques, ecological applications, and future challenges [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[2] Youting Ye. Effects of Global Change on Key Processes of Primary Production in Marine Ecosystems [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[3] Jinyuan Su Yu Yan Chong Li Dan Li Fang DU. The endangerment mechanism and conservation strategy of plant species with extremely small population size based on genetic diversity: Gymnosperms as an example [J]. Biodiv Sci, 2020, 28(3): 0-0.
[4] Lu ZHANG. Nitrogen utilization mechanism in C3 and C4 plants [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[5] Lingyun Xiao, Chen Cheng, Huawei Wan, Dehai Zhang, Yongcai Wang, Tsedan , Peng Hou, Juan Li, Xin Yang, Zhi Lü, Yuping Liu. Defining conservation priority areas of snow leopard habitat in the Sanjiangyuan Region [J]. Biodiv Sci, 2019, 27(9): 943-950.
[6] Shun Li, Liang Zou, Yinan Gong, Haitao Yang, Tianming Wang, Limin Feng, Jianping Ge. Advances in LiDAR technology in the field of animal ecology [J]. Biodiv Sci, 2019, 27(9): 1021-1031.
[7] Jun Liu, Ning Wang, Daizong Cui, Lei Lu, Min Zhao. Community structure and diversity of soil bacteria in different habitats of Da Liangzihe National Forest Park in the Lesser Khinggan Mountains [J]. Biodiv Sci, 2019, 27(8): 911-918.
[8] Chen Xing, Zhao Lianjun, Hu Xixi, Luo Chunping, Liang Chunping, Jiang Shiwei, Liang Lei, Zheng Weichao, Guan Tianpei. Impact of livestock terrain utilization patterns on wildlife: A case study of Wanglang National Nature Reserve [J]. Biodiv Sci, 2019, 27(6): 630-637.
[9] YAN Ya-Nan, YE Xiao-Qi, WU Ming, YAN Ming, ZHANG Xin-Li. Diversity and potassium-solubilizing activity of rhizosphere potassium-solubilizing bacteria of invasive Solidago canadensis [J]. Chin J Plant Ecol, 2019, 43(6): 543-556.
[10] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[11] HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 471-479.
[12] Liu Jiayi, Wang Jiaxin, Song Haichao, Zhang Zhengke, Xu Xiangbin, Ji Xuncong, Shi Xuequn. Antifungal Activity and Mechanisms of Natamycin Against Colletotrichum gloeosporioides in Postharvest Mango Fruit [J]. Chin Bull Bot, 2019, 54(4): 455-463.
[13] Hu Wenzhao, Zhao Jimin, Zhang Yanwen. Fitness advantage and maintenance mechanisms of dimorphic mixed- mating plants [J]. Biodiv Sci, 2019, 27(4): 468-474.
[14] SHI Na-Na, XIAO Neng-Wen, WANG Qi, HAN Yu, GAO Xiao-Qi, FENG Jin, QUAN Zhan-Jun. Spatio-temporal dynamics of normalized differential vegetation index and its driving factors in Xilin Gol, China [J]. Chin J Plant Ecol, 2019, 43(4): 331-341.
[15] FENG Chan-Ying, ZHENG Cheng-Yang, TIAN Di. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(3): 185-196.
Full text



[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chin Bull Bot, 1985, 3(01): 57 -58 .
[4] DU Gui-Sen;ZANG Yu-Long and WANG Mei-Zhi. Study on Spore Morphology of 6 Species of The Family Pottiaceae in China[J]. Chin Bull Bot, 1998, 15(03): 57 -60 .
[5] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chin Bull Bot, 1999, 16(04): 470 -476 .
[6] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[7] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chin Bull Bot, 2001, 18(05): 554 -559 .
[8] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[9] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chin Bull Bot, 2009, 44(02): 178 -184 .
[10] Li Yunxiang, Liu Yucheng, Zhong Zhangcheng. Quantitative Structure and Dynamics of Leaf Populations of Gordonia acuminata on Jinyun Mountain[J]. Chin J Plan Ecolo, 1997, 21(1): 67 -76 .