Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (12): 1079-1090.doi: 10.17521/cjpe.2019.0055

• Research Articles • Previous Articles     Next Articles

Difference in fungal communities between in roots and in root-associated soil of nine orchids in Liaoning, China

JIANG Yu-Ling1,CHEN Xu-Hui1,MIAO Qing1,QU Bo1,2,*()   

  1. 1 College of Biological Technology, Shenyang Agricultural University, Shenyang 110161, China
    2 Key Laboratory of Biological Invasions and Global Changes, Shenyang 110161, China
  • Received:2019-03-12 Accepted:2019-11-18 Online:2020-01-03 Published:2019-12-20
  • Contact: QU Bo
  • Supported by:
    Supported by the Natural Science Foundation of Liaoning Province(201602656)


Aims Orchid plants generally grow better when they are mycorrhizal since mycorrhizal fungi are likely to assist in orchid seeds’ germination. However, there is little quantitative work on it. Thus we hope to better understand this mechanism to benefit the orchid plants protection.
Methods We studied nine small population species of orchids grown in Liaoning Province, China. We analyzed the composition of orchid mycorrhizal fungi (OMF) and fungal communities in the roots, in the rhizosphere soil as well as bulk soil, by taking advantage of the next generation sequencing technology.
Important findings Our study showed that there was a significant difference in fungal communities among in the roots, the rhizosphere soil and the bulk soil, especially in the total operational taxonomic unit (OTU) number. Although the OTU number was far smaller in the roots than in the rhizosphere soil and bulk soil, the species and abundances of OMF were less relative to each other. FunGuild, an indicator to predict the functional fungi, indicated that Arbuscular Mycorrhizal fungi were abundence in the rhizosphere while were rare in the roots of orchids. In general, the fungal communities in the roots were not tightly correlated with that in the root-associated soil.

Key words: orchids, mycorrhizal fungi, soil, internal transcribed spacer (ITS), high-throughput sequencing

Table 1

Species identification and location of nine orchids in Liaoning, China"

Growth stage
Amitostigma gracile
1 辽宁大连庄河市塔子沟
Tazigou, Zhuanghe, Dalian, Liaoning
Waterside cliff under a broad-leaved forest
Vegetative period
1 辽宁大连庄河市塔子沟
Tazigou, Zhuanghe, Dalian, Liaoning
Mixed broadleaf-conifer forest
Flowering phase
Goodyera repens
1 辽宁大连庄河市塔子沟
Tazigou, Zhuanghe, Dalian, Liaoning
Waterside cliff under a broad-leaved forest
Flowering phase
Platanthera chlorantha
4 辽宁凤城市、凌源市、本溪市与庄河市
Fengcheng, Lingyuan, Benxi and Zhuanghe, Liaoning
Mixed broadleaf-conifer forest
Vegetative period
& Flowering phase
Tulotis fuscescens
1 辽宁丹东凤城市
Fengcheng, Dandong, Liaoning
Mixed broadleaf-conifer forest
Flowering phase
Liparis campylostalix
1 辽宁大连庄河市姑庵庙
Gu’anmiao, Zhuanghe, Dalian, Liaoning
Mixed broadleaf-conifer forest
Vegetative period
Corallorhiza trifida
1 辽宁凌源与河北承德市交界处
Junction of Lingyuan, Liaoning and Chengde, Hebei
Broad-leaved forest
Vegetative period
Spiranthes sinensis
3 辽宁阜新市杜家店水库
Dujiadian Reservoir, Fuxin, Liaoning
Meadow beside a lake
Flowering phase
Oreorchis patens
2 辽宁本溪市本溪县沟门和老秃顶子
Goumen and Laotudingzi in Benxi County, Benxi, Liaoning
Mixed broadleaf-conifer forest
Flowering phase

Fig. 1

Principal Component Analysis (PCA) of fungal communities in roots and soils of nine orchids in Liaoning, China. A, root; B, rhizosphere soil; C, bulk soil."

Fig. 2

UPGMA clustering analysis of fungal communities in roots and soils of nine orchids in Liaoning, China based on Unifrac distance. Samples are clustered according to their similarity, and shorter branching length means more similar. b, root; c, rhizosphere soil; d, bulk soil. Uppercase letters and number in right column indicate sample number."

Fig. 3

Comparative analysis of differences in the fungal communities of roots and soils based on Unifrac distance. A, root; B, rhizosphere soil; C, bulk soil."

Fig. 4

Top 15 fungi in root, rhizosphere soil and bulk soil of nine orchids in Liaoning, China."

Fig. 5

Trophic mode of fungi in orchid’s root, rhizosphere soil and bulk soil of nine orchids in Liaoning, China."

Fig. 6

Guild of fungi in orchid’s root, rhizosphere soil and bulk soil of nine orchids in Liaoning Province, China."

Fig. 7

Comparison of mycorrhizal fungi Spiranthes sinensis’s root, rhizosphere soil and bulk soil in Liaoning."

[1] Batty AL, Dixon KW, Brundrett M, Sivasithamparam K ( 2001). Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. New Phytologist, 152, 511-520.
[2] Bidartondo MI, Read DJ ( 2008). Fungal specificity bottlenecks during orchid germination and development. Molecular Ecology, 17, 3707-3716.
doi: 10.1111/j.1365-294X.2008.03848.x pmid: 18627452
[3] Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG ( 2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10, 57-59.
doi: 10.1038/nmeth.2276 pmid: 23202435
[4] Bougoure J, Ludwig M, Brundrett M, Grierson P ( 2009). Identity and specificity of the fungi forming mycorrhizas with the rare mycoheterotrophic orchid Rhizanthella gardneri. Mycological Research, 113, 1097-1106.
doi: 10.1016/j.mycres.2009.07.007 pmid: 19619652
[5] Cao W, Wu YY, Li Y, Cong XX ( 2013). Priority conservation regions of threatened plants in Northeast China. Chinese Journal of Applied Ecology, 24, 326-330.
pmid: 23705374
[ 曹伟, 吴雨洋, 李岩, 丛欣欣 ( 2013). 中国东北受威胁植物的优先保护区域. 应用生态学报, 24, 326-330.]
pmid: 23705374
[6] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R ( 2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131
[7] Cevallos S, Sánchez-Rodríguez A, Decock C, Declerck S, Suárez JP ( 2017). Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids? Mycorrhiza, 27, 225-232.
doi: 10.1007/s00572-016-0746-8 pmid: 27882467
[8] Chao A ( 1984). NonparaMetric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265-270.
[9] Chao A, Yang MCK ( 1993). Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika, 80, 193-201.
doi: 10.1093/biomet/80.1.193
[10] Dearnaley JDW, Martos F, Selosse MA (2012). Orchid mycorrhizas: Molecular ecology, physiology, evolution and conservation aspects. In: Hock B ed. Fungal Associations, The Mycota IX. 2nd edn. Springer-Verlag, Berlin. 207-230.
[11] Diez JM ( 2007). Hierarchical patterns of symbiotic orchid germination linked to adult proximity and environmental gradients. Journal of Ecology, 95, 159-170.
[12] Edgar RC ( 2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461.
doi: 10.1093/bioinformatics/btq461 pmid: 20709691
[13] Egidi E, May TW, Franks AE ( 2018). Seeking the needle in the haystack: Undetectability of mycorrhizal fungi outside of the plant rhizosphere associated with an endangered Australian orchid. Fungal Ecology, 33, 13-23.
[14] Ercole E, Adamo M, Rodda M, Gebauer G, Girlanda M, Perotto S ( 2015). Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio. New Phytologist, 205, 1308-1319.
doi: 10.1111/nph.13109 pmid: 25382295
[15] Esposito F, Jacquemyn H, Waud M, Tyteca D ( 2016). Mycorrhizal fungal diversity and community composition in two closely related Platanthera (Orchidaceae) species. PLOS ONE, 11, e0164108. DOI: 10.1371/journal.pone.0164108.
doi: 10.1371/journal.pone.0164108 pmid: 27695108
[16] Ezzi MI, Lynch JM ( 2002). Cyanide catabolizing enzymes in Trichoderma spp. Enzyme and Microbial Technology, 31, 1042-1047.
[17] Gremion F, Chatzinotas A, Harms H ( 2003). Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environmental Microbiology, 5, 896-907.
doi: 10.1046/j.1462-2920.2003.00484.x pmid: 14510843
[18] Han JY, Xiao HF, Gao JY ( 2016). Seasonal dynamics of mycorrhizal fungi in Paphiopedilum spicerianum (Rchb. f) Pfitzer—A critically endangered orchid from China. Global Ecology & Conservation, 6, 327-338.
[19] Jacquemyn H, Brys R, Vandepitte K, Honnay O, Roldán-Ruiz I, Wiegand T ( 2007). A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytologist, 176, 448-459.
doi: 10.1111/j.1469-8137.2007.02179.x pmid: 17888122
[20] Jacquemyn H, Waud M, Lievens B, Brys R ( 2016). Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Annals of Botany, 118, 105-114.
doi: 10.1093/aob/mcw015 pmid: 26946528
[21] Jiang YL ( 2018). Mycorrhizal Fungi Diversity of Nine Orchids in Liaoning Province. Master degree dissertation, Shenyang Agricuttural University, Shenyang.
[ 蒋玉玲 ( 2018). 辽宁省内九种兰科植物菌根真菌多样性研究. 硕士学位论文, 沈阳农业大学, 沈阳.]
[22] Kartzinel TR, Trapnell DW, Shefferson RP ( 2013). Highly diverse and spatially heterogeneous mycorrhizal symbiosis in a rare epiphyte is unrelated to broad biogeographic or environmental features. Molecular Ecology, 22, 949-5961.‌
[23] Kӧljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiß M, Larsson KH ( 2013). Towards a unified paradigm for ‌sequence-based identification of fungi. Molecular Ecology, 22, 5271-5277.
doi: 10.1111/mec.12481 pmid: 24112409
[24] Liu T, Li CM, Han YL, Chiang TY, Chiang YC, Sung HM ( 2015). Highly diversified fungi are associated with the achlorophyllous orchid Gastrodia flavilabella. BMC Genomics, 16, 1422-1435.
doi: 10.1186/s12864-015-1422-7 pmid: 25886817
[25] Lozupone CA, Hamady M, Kelley ST, Knight R ( 2007). Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology, 73, 1576-1585.
doi: 10.1128/AEM.01996-06 pmid: 17220268
[26] Lozupone CA, Knight R ( 2005). Unifrac: A new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71, 8228-8235.
doi: 10.1128/AEM.71.12.8228-8235.2005 pmid: 16332807
[27] Ma XY, Kang JC, Nontachaiyapoom S, Wen TC, Hyde KD ( 2015). Non-mycorrhizal endophytic fungi from orchids. Current Science, 109, 72-87.
doi: 10.1007/s00572-011-0404-0 pmid: 21779810
[28] McCormick MK, Lee Taylor D, Juhaszova K, Burnett Jr RK, Whigham DF, O’Neill JP ( 2012). Limitations on orchid recruitment: Not a simple picture. Molecular Ecology, 21, 1511-1523.
doi: 10.1111/j.1365-294X.2012.05468.x pmid: 22272942
[29] McCormick MK, Taylor DL, Whigham DF, Burnett Jr RK ( 2016). Germination patterns in three terrestrial orchids relate to abundance of mycorrhizal fungi. Journal of Ecology, 104, 744-754.
[30] McKendrick SL, Leake JR, Taylor DL, Read DJ ( 2000). Symbiotic germination and development of myco-heterotrophic plants in nature: Ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytologist, 145, 523-537.
[31] Novotná A, Benítez Á, Herrera P, Cruz D, Filipczyková E, Suárez JP ( 2018). High diversity of root-associated fungi isolated from three epiphytic orchids in southern Ecuador. Mycoscience, 59, 24-32.
[32] Oja J, Kohout P, Tedersoo L, Kull T, Kõljalg U ( 2015). Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytologist, 205, 1608-1618.
doi: 10.1111/nph.13223 pmid: 25546739
[33] Ran YZ, Xu JT ( 1988). Studies on the inhibition of seed germination of Gastrodia elata Bl. by Armillaria mellea Qul. Traditional Chinese Medicine Journal, 13(10), 15-17.
[ 冉砚珠, 徐锦堂 ( 1988). 蜜环菌抑制天麻种子发芽的研究. 中药通报, 13(10), 15-17.]
[34] Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbé J, Muchero W, Bonito G, Vilgalys R, Tuskan G, Podar M, Schadt CW ( 2013). A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLOS ONE, 8, e76382. DOI: 10.1371/journal.pone.0076382.
doi: 10.1371/journal.pone.0076382 pmid: 24146861
[35] Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. Academic Press, Cambridge, UK.
[36] Sun FH, Yuan J, Lu S ( 2006). The change and test of climate in northeast China over the last 100 Years. Climatic and Environmental Research, 11, 101-108.
[ 孙凤华, 袁健, 路爽 ( 2006). 东北地区近百年气候变化及突变检测. 气候与环境研究, 11, 101-108.]
[37] Vincenot L, Tedersoo L, Richard F, Horcine H, Kõljalg U, Selosse MA ( 2008). Fungal associates of Pyrola rotundifolia, a mixotrophic Ericaceae, from two Estonian boreal forests. Mycorrhiza, 19, 15-25.
doi: 10.1007/s00572-008-0199-9
[38] Voyron S, Ercole E, Ghignone S, Perotto S, Girlanda M ( 2017). Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytologist, 213, 1428-1439.
doi: 10.1111/nph.14286 pmid: 27861936
[39] Vujanovic V, St-Arnaud M, Barabé D, Thibeault G ( 2000). Viability testing of orchid seed and the promotion of colouration and germination. Annals of Botany, 86, 79-86.
doi: 10.1006/anbo.2000.1162
[40] Wang SQ, Zhou CH, Liu JY, Li KR, Yang XM ( 2001). Simulation analyses of terrestrial carbon cycle balance model in Northeast China. Acta Geographica Sinica, 56, 390-400.
[ 王绍强, 周成虎, 刘纪远, 李克让, 杨晓梅 ( 2001). 东北地区陆地碳循环平衡模拟分析. 地理学报, 56, 390-400.]
[41] Wang ZH, Li PJ, Wang YS, Hu T, Gong ZQ, Sun TH, Wan ZC, Chen DG ( 2005). Ecological function zoning in Liaoning Province. Chinese Journal of Ecology, 24, 1339-1342.
[ 王治江, 李培军, 王延松, 胡涛, 巩宗强, 孙铁珩, 万忠成, 陈大光 ( 2005). 辽宁省生态功能分区研究. 生态学杂志, 24, 1339-1342.]
[42] Waud M, Brys R, van Landuyt W, Lievens B, Jacquemyn H ( 2017). Mycorrhizal specificity does not limit the distribution of an endangered orchid species. Molecular Ecology, 26, 1687-1701.
doi: 10.1111/mec.14014 pmid: 28100022
[43] Waud M, Busschaert P, Lievens B, Jacquemyn H ( 2016). Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecology, 20, 155-165.
[44] Xu JT ( 2013). Review of the 50-year research of the cultivation of Gastrodia elate Bl. in China. Edible and Medicinal Mushrooms, 21, 58-63.
[ 徐锦堂 ( 2013). 我国天麻栽培50年研究历史的回顾. 食药用菌, 21, 58-63.]
[45] Zimmer K, Meyer C, Gebauer G ( 2008). The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco- heterotroph. New Phytologist, 178, 395-400.
doi: 10.1111/j.1469-8137.2007.02362.x pmid: 18221248
[1] Xiao-Juan FENG YiYun Wang Ting Liu Juan JIA Guo-Hua DAI Tian MA Zong-Guang LIU. Biomarkers and their applications in ecosystem research [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[2] Da TiGe Dongdong Wang Zhenke Zhu Liang Wei Xiaomeng Wei. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[3] Gui-Feng GAO. Techniques and methods of microbiomics and their applications [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[4] Ying Chen. Techniques and methods for field warming manipulation experiments in terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[5] Zhao-Zhong FENG Li Pin You GuoZhang Zheng-zhen Li Qin Ping Long JinPeng Shuo Liu. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: Problems and prospective [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[6] Ben-Feng HAN Xin Zhou Xue Zhang. Verification of virus identity and host association using genomics technologies [J]. Biodiv Sci, 2020, 28(5): 0-0.
[7] . Patterns and influence factors of fine root turnover in forest ecosystems [J]. Chin Bull Bot, 2020, 55(3): 0-0.
[8] WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92.
[9] HU Shu-Ya,DIAO Hua-Jie,WANG Hui-Ling,BO Yuan-Chao,SHEN Yan,SUN Wei,DONG Kuan-Hu,HUANG Jian-Hui,WANG Chang-Hui. Response of soil respiration to addition of different forms of nitrogen and mowing in a saline-alkali grassland in the northern agro-pastoral ecotone [J]. Chin J Plant Ecol, 2020, 44(1): 70-79.
[10] JING Hong-Xia,SUN Ning-Xiao,Muhammad UMAIR,LIU Chun-Jiang,DU Hong-Mei. Stoichiometric characteristics of soils and dominant shrub leaves and their responses to water addition in different seasons in degraded karst areas in Southern Yunnan of China [J]. Chin J Plant Ecol, 2020, 44(1): 56-69.
[11] Yibo Tan,Wenhui Shen,Zi Fu,Wei Zheng,Zhiyang Ou,Zhangqiang Tan,Yuhua Peng,Shilong Pang,Qinfei He,Xiaorong Huang,Feng He. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests [J]. Biodiv Sci, 2019, 27(9): 970-983.
[12] Qi Lu,Qiang Hu,Xiaogang Shi,Senlong Jin,Sheng Li,Meng Yao. Metabarcoding diet analysis of snow leopards (Panthera uncia) in Wolong National Nature Reserve, Sichuan Province [J]. Biodiv Sci, 2019, 27(9): 960-969.
[13] Jun Liu, Ning Wang, Daizong Cui, Lei Lu, Min Zhao. Community structure and diversity of soil bacteria in different habitats of Da Liangzihe National Forest Park in the Lesser Khinggan Mountains [J]. Biodiv Sci, 2019, 27(8): 911-918.
[14] CHEN Xu, LIU Hong-Kai, ZHAO Chun-Zhou, WANG Qiang, WANG Yan-Ping. Responses of foliar anatomical traits to soil conditions in 11 tree species on coastal saline-alkali sites of Shandong, China [J]. Chin J Plant Ecol, 2019, 43(8): 697-708.
[15] CUI Li, GUO Feng, ZHANG Jia-Lei, YANG Sha, WANG Jian-Guo, MENG Jing-Jing, GENG Yun, LI Xin-Guo, WAN Shu-Bo. Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae [J]. Chin J Plant Ecol, 2019, 43(8): 718-728.
Full text



[1] . [J]. Chin Bull Bot, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[3] HE Wei-Ming and ZHONG Zhang-Cheng. Effects of Soil Fertility on Gynostemma pentaphyllum Makino Population Behavior[J]. Chin Bull Bot, 1999, 16(04): 425 -428 .
[4] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chin Bull Bot, 2001, 18(06): 727 -734 .
[5] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chin Bull Bot, 2010, 45(05): 566 -578 .
[6] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chin Bull Bot, 2017, 52(2): 218 -224 .
[7] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chin Bull Bot, 2017, 52(2): 235 -240 .
[8] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[9] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[10] HU Bao-Zhong, LIU Di, HU Guo-Fu, ZHANG A-Ying, JIANG Shu-Jun. Random Amplified Polymorphic DNA Study of Local Breeds in Chinese lfalfa[J]. Chin J Plan Ecolo, 2000, 24(6): 697 -701 .