Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (12): 1091-1103.doi: 10.17521/cjpe.2019.0194

• Research Articles • Previous Articles    

Forest soil phosphorus stocks and distribution patterns in Qinghai, China

TANG Li-Tao,LIU Dan,LUO Xue-Ping,HU Lei,WANG Chang-Ting()   

  1. Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
  • Received:2019-08-05 Accepted:2019-11-11 Online:2020-01-03 Published:2019-12-20
  • Contact: WANG Chang-Ting E-mail:wangct6@163.com
  • About author:TANG Li-Tao ORCID:0000-0002-4192-6518
  • Supported by:
    Supported by the National Natural Science Foundation(31870407);Supported by the National Natural Science Foundation(31370542);Special Fund Project for Basic Scientific Research Business Expenses of Central Universities(2020NZD03);Sichuan Science and Technology Plan to focus on Research and Development Project(2018SZ033)

Abstract:

Aims Our objectives were to investigate the soil phosphorus (P) stocks and distribution patterns in forests of Qinghai Province, and to determine the relationships between soil phosphorus stocks and environmental factors.
Methods Phosphorus stocks in forest soils of Qinghai Province were estimated from measurement data of 240 standard sampling plots in combination with the forest type information in the Qinghai Forest Resources Inventory data. The distribution patterns were examined by spatial analysis.
Important findings Forest soil P stocks in Qinghai Province is estimated at 1.74 Tg. The average soil P density to 1 m depth is about 4.65 Mg·hm -2, displaying of pattern of zonal distribution. Soil P density significantly decreases first and then increases with altitude, and is largest in Cinnamon forest soils and less in brown forest soils and dark cinnamon forest soils. Soil P content decreases significantly with altitude. The P content was highest in brown forest soils and lowest in dark cinnamon soils. Total P in the soil profile exhibited characteristics of surface accumulation. The structure equation model (SEM) shows that soil type, altitude, temperature, and soil moisture content have direct impacts on soil P content, with temperature and altitude being among the key factors. Soil P content, altitude, soil moisture content, soil depth, and soil bulk density all have significant effects on soil P density, with soil bulk density being the most prominent factor.

Key words: phosphorus stocks, forest soil, spatial distribution pattern, environmental factor, Qinghai

Fig. 1

Distribution of sampling sites of forest soil in Qinghai Province."

Table 1

Basic information of sampling sites of forest soil in Qinghai Province"

森林类型
Forest type
采样区域
Sample area
优势树
Dominants species
样地数
Number of plots
土壤类型
Soil type
海拔
Altitude (m)
阔叶林
Broadleaf forest
循化、互助、民和、同仁、湟源、湟中、大通、门源、同德、化隆、兴海
Xunhua, Huzhu, Minhe, Tongren,
Huangyuan, Huangzhong, Datong,
Menyuan, Tongde, Hualong, Xinghai
白桦 Betula platyphylla 35 山地褐色针叶林土、山地灰褐色森林土、山地暗褐土
Cinnamon coniferous forest soil, gray cinnamon forest soil, dark cinnamon forest soil
2 200-3 000
毛白杨 Populus tomentosa 13
红桦 Betula albosinensis 5
青杨 Populus cathayana 3
山杨 Populus davidiana 9
针叶林
Coniferous forest
乐都、贵德、互助、门源、化隆、湟中、尖扎、同仁、祁连、玛沁、班玛、同德、玉树、囊谦、大通、都兰、循化、江西林场
Ledu, Guide, Huzhu, Menyuan, Hualong, Huangzhong, Jianzha, Tongren, Qilian, Maqin, Baima, Tongde, Yushu, Nangqien, Datong, Dulan, Xunhua, Jiangxi Forest Farm
青海云杉 Picea crassifolia 130 山地褐色针叶林土、山地灰褐色森林土、山地棕色暗针叶林土、山地暗褐土Cinnamon coniferous forest soil, gray cinnamon forest soil, brown forest soil, dark cinnamon forest soil
2 100-3 900
青扦 Picea wilsonii 9
圆柏 Juniperus chinensis 33
落叶松 Larix gmelinii 3

Table 2

Phosphorus stocks in forest of Qinghai Province"

林型 Forest type 面积 Area
(100 hm2)
磷储量 Phosphorus stock (Mg)
0-10 cm 10-20 cm 20-30 cm 30-50 cm 50-100 cm 合计 Total
阔叶林
Broadleaved forest
桦木 Betula 606 19 392 20 604 25 452 59 664 177 558 302 670
杨树 Populus 404 15 352 15 756 19 796 42 420 113 524 206 848
针叶林
Coniferous forest
青扦 Picea wilsonii 56 2 296 2 632 3 472 8 624 15 232 32 256
落叶松 Larix gmelinii 72 3 168 3 672 3 888 11 232 21 960 43 920
柏木 Cupressus funebris 1 383 58 086 60 852 70 533 142 449 330 537 662 457
青海云杉 Picea crassifolia 982 33 388 40 262 50 082 102 128 264 158 490 018
总计 Total 3 503 131 682 143 778 173 223 366 517 922 969 1 738 169

Table 3

Forest soil phosphorus density distribution in Qinghai Province"

林型 Forest type 面积 Area
(100 hm2)
磷密度 Phosphors density (Mg·hm-2)
0-10 cm 10-20 cm 20-30 cm 30-50 cm 50-100 cm 0-100 cm
阔叶林
Broadleaved forest
桦木 Betula 606 0.32 ± 0.02 0.34 ± 0.02 0.42 ± 0.03 0.94 ± 0.06 2.93 ± 0.24 4.71
杨树 Populus 404 0.38 ± 0.02 0.39 ± 0.02 0.49 ± 0.03 1.05 ± 0.08 2.81 ± 0.20 4.62
平均值 Mean 0.37 0.35 0.46 1.03 2.86 4.68
针叶林
Coniferous forest
青扦 Picea wilsonii 56 0.41 ± 0.05 0.47 ± 0.11 0.62 ± 0.13 1.54 ± 0.33 2.72 ± 0.31 5.76
落叶松 Larix gmelinii 72 0.44 ± 0.07 0.51 ± 0.05 0.54 ± 0.09 1.56 ± 0.01 3.05 ± 0.04 6.09
柏木 Cupressus funebris 1 383 0.42 ± 0.03 0.44 ± 0.02 0.50 ± 0.03 1.03 ± 0.05 2.39 ± 0.12 4.50
青海云杉 Picea crassifolia 982 0.31 ± 0.02 0.41 ± 0.02 0.51 ± 0.02 1.04 ± 0.04 2.69 ± 0.10 4.48
平均值 Mean 0.34 0.42 0.52 1.06 2.59 4.58
平均值 Mean 0.35 0.40 0.50 1.05 2.66 4.65

Fig. 2

Spatial distribution patterns of forest soil phosphorus density in Qinghai Province."

Fig. 3

Phosphorus density of different soil layers (mean ± SE). Different uppercase letters indicate significant differences in soil phosphorus density between soil layers (p < 0.05)."

Fig. 4

Relationships between forest soil phosphorus content and altitude in Qinghai Province. A, B, 0-10 cm; C, D, 10-20 cm; E, F, 20-30 cm; G, H, 30-50 cm; I, J, 50-100 cm. Solid line, p < 0.05; dotted line, p > 0.05."

Fig. 5

Changes in soil phosphorus density with altitude in Qinghai Province."

Fig. 6

Soil phosphorus content in different soil types of forests in Qinghai Province (mean ± SE). Different uppercase letters indicate significant differences in soil phosphorus content between different soil types in the same soil layer (p < 0.05); different lowercase letters indicate significant differences in soil phosphorus content between different soil layers of the same soil type (p < 0.05)."

Fig. 7

Soil phosphorus density in the 0-100 cm soil layer of different soil types (mean ± SE). Different uppercase letters indicate significant differences in soil phosphorus density between different soil types (p < 0.05)."

Fig. 8

Relationships between soil phosphorus and environmental factors. The red line represents a positive correlation, the blue line a negative correlation, and the dotted line an insignificant correlation. *, p < 0.05; **, p < 0.01; ***, p < 0.001. AGFI, adjusted goodness-of-fit index; CHI, Chi-Square; DF, degrees of freedom; GFI, goodness-of-fit index; RMSEA, root mean square error of approximation."

[1] Ahern CR, MacNish SE ( 1983). Comparative study of phosphorus and potassium levels of basaltic soils associated with scrub and forest communities on the Darling Downs. Soil Research, 21, 527-538.
doi: 10.1071/SR9830527
[2] Allen SK, Plattner GK, Nauels A, Xia Y, Stocker TF ( 2013). Climate change 2013: The physical science basis. An overview of the working group Ι contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Computational Geometry, 18, 95-123.
[3] Augusto L, Achat DL, Jonard M, Vidal D, Ringeval B ( 2017). Soil parent material—A major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biology, 23, 3808-3824.
doi: 10.1111/gcb.13691 pmid: 28317232
[4] Baeten L, Verstraeten G, de Frenne P, Vanhellemont M, Wuyts K, Hermy M, Verheyen K ( 2011). Former land use affects the nitrogen and phosphorus concentrations and biomass of forest herbs. Plant Ecology, 212, 901-909.
doi: 10.1007/s11258-010-9876-9
[5] Bai JH, Ouyang H, Xiao R, Gao JQ, Gao HF, Cui BS, Huang LB ( 2010). Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China. Australian Journal of Soil Research, 48, 730-736.
[6] Barrow NJ ( 1983). A mechanistic model for describing the sorption and desorption of phosphate by soil. Journal of Soil Science, 34, 733-750.
doi: 10.1016/j.watres.2017.09.025 pmid: 28961494
[7] Carrino-Kyker SR, Kluber LA, Petersen SM, Coyle KP, Hewins CR, DeForest JL, Smemo KA, Burke DJ ( 2016). Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests. FEMS Microbiology Ecology, 92, fiw024. DOI: 10.1093/femsec/fiw024.
doi: 10.1093/femsec/fiw024 pmid: 26850158
[8] Cassagne N, Remaury M, Gauquelin T, Fabre A ( 2000). Forms and profile distribution of soil phosphorus in alpine Inceptisols and Spodosols (Pyrenees, France). Geoderma, 95, 161-172.
doi: 10.1016/S0016-7061(99)00093-2
[9] Chapin III FS, Matson PA, Mooney HA ( 2002). Principles of Terrestrial Ecosystem Ecology. Springer, New York.
[10] Chen ML, Chen H, Mao QG, Zhu XM, Mo JM ( 2016). Effect of nitrogen deposition on the soil phosphorus cycle in forest ecosystems: A review. Acta Ecologica Sinica, 36, 4965-4976.
[ 陈美领, 陈浩, 毛庆功, 朱晓敏, 莫江明 ( 2016). 氮沉降对森林土壤磷循环的影响. 生态学报, 36, 4965-4976.]
[11] Cheng H, Gong YB, Wu Q, Li Y, Liu Y, Zhu DW ( 2018). Content and ecological stoichiometry characteristics of organic carbon, nitrogen and phosphorus of typical soils in sub-alpine/alpine mountain of western Sichuan. Journal of Natural Resources, 33, 161-172.
[ 程欢, 宫渊波, 吴强, 李瑶, 刘颖, 朱德雯 ( 2018). 川西亚高山/高山典型土壤类型有机碳、氮、磷含量及其生态化学计量特征. 自然资源学报, 33, 161-172.]
[12] Compilation Group of Technical Specifications for Ecosystem Carbon Sequestration Project ( 2015). Technical Specifications for Observation and Investigation of Ecosystem Carbon Sequestration. Science Press, Beijing.
[ 生态系统固碳项目技术规范编写组 ( 2015). 生态系统固碳观测与调查技术规范. 科学出版社, 北京.]
[13] Cross AF, Schlesinger WH ( 2001). Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry, 52, 155-172.
doi: 10.1023/A:1006437504494
[14] Dambrine E, Dupouey JL, Laüt L, Humbert L, Thinon M, Beaufils T, Richard H ( 2007). Present forest biodiversity patterns in France related to former Roman agriculture. Ecology, 88, 1430-1439.
doi: 10.1890/05-1314 pmid: 17601136
[15] Editorial Committee of Forest in Qinghai ( 1993). Forest in Qinghai. China Forestry Press, Beijing.
[ 青海森林编委会 ( 1993). 青海森林. 中国林业出版社, 北京.]
[16] Fahey TJ, Woodbury PB, Battles JJ, Goodale CL, Hamburg SP, Ollinger SV, Woodall CW ( 2010). Forest carbon storage: Ecology, management, and policy. Frontiers in Ecology and the Environment, 8, 245-252.
[17] FAO ( 2005). Global forest resource assessment: Progress towards sustainable forest management. In: FAO ed. FAO Forestry Paper 147. Food and Agriculture Organization of the United Nations, Rome.
[18] Frolking S, Roulet NT, Moore TR, Richard PJH, Lavoie M, Muller SD ( 2001). Modeling northern peatland decomposition and peat accumulation. Ecosystems, 4, 479-498.
doi: 10.1007/s10021-001-0105-1
[19] Fukami T, Wardle DA ( 2005). Long-term ecological dynamics: Reciprocal insights from natural and anthropogenic gradients. Proceedings of the Royal Society B: Biological Sciences, 272, 2105-2115.
doi: 10.1098/rspb.2005.3277 pmid: 16191623
[20] Gahoonia TS, Raza S, Nielsen NE ( 1994). Phosphorus depletion in the rhizosphere as influenced by soil moisture. Plant and Soil, 159, 213-218.
doi: 10.1007/BF00009283
[21] Guo YP, Yang X, Mohhamot A, Liu HY, Ma WH, Yu SL, Tang ZY ( 2017). Storage of carbon, nitrogen and phosphorus in temperate shrubland ecosystems across Northern China. Chinese Journal of Plant Ecology, 41, 14-21.
[ 郭焱培, 杨弦, 安尼瓦尔·买买提, 刘鸿雁, 马文红, 于顺利, 唐志尧 ( 2017). 中国北方温带灌丛生态系统碳、氮、磷储量. 植物生态学报, 41, 14-21.]
[22] Hou EQ, Chen CR, Luo YQ, Zhou GY, Kuang YW, Zhang YG, Heenan M, Lu XK, Wen DZ ( 2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24, 3344-3356.
doi: 10.1111/gcb.14093 pmid: 29450947
[23] Hu L, Xiang ZY, Wang GX, Rafique R, Liu W, Wang CT ( 2016). Changes in soil physicochemical and microbial properties along elevation gradients in two forest soils. Scandinavian Journal of Forest Research, 31, 242-253.
doi: 10.1080/02827581.2015.1125522
[24] Ippolito JA, Blecker SW, Freeman CL, McCulley RL, Blair JM, Kelly EF ( 2010). Phosphorus biogeochemistry across a precipitation gradient in grasslands of central North America. Journal of Arid Environments, 74, 954-961.
doi: 10.1016/j.jaridenv.2010.01.003
[25] Jobbágy EG, Jackson RB ( 2004). The uplift of soil nutrients by plants: Biogeochemical consequences across scales. Ecology, 85, 2380-2389.
doi: 10.1890/03-0245
[26] Khitrov NB, Zazovskaya EP, Rogovneva LV ( 2018). Morphology, radiocarbon age, and genesis of Vertisols of the Eisk Peninsula (the Kuban-Azov Lowland). Eurasian Soil Science, 51, 731-743.
doi: 10.1134/S1064229318070050
[27] Li ZW, Cui LT, Geng SG, Zhang YP ( 2007). Environmental factors affecting soil phosphorus desorption. Soil and Water Conservation in China, ( 6), 33-34.
[ 李志伟, 崔力拓, 耿世刚, 张艳萍 ( 2007). 影响土壤磷素解吸的环境因素研究. 中国水土保持, ( 6), 33-34.]
[28] Liu Q, Zheng X, Deng BL, Zheng LY, Huang LJ, Wang SL, Zhang L, Guo XM ( 2017). Effect of altitude on the phosphorus contents of soil and plant litter deposits in a Wugong Mountain meadow. Pratacultural Science, 34, 2183-2190.
[ 刘倩, 郑翔, 邓邦良, 郑利亚, 黄立君, 王书丽, 张令, 郭晓敏 ( 2017). 武功山草甸不同海拔对土壤和植物凋落物磷含量的影响. 草业科学, 34, 2183-2190.]
[29] Liu Y, Villalba G, Ayres RU, Schroder H ( 2008). Global phosphorus flows and environmental impacts from a consumption perspective. Journal of Industrial Ecology, 12, 229-247.
doi: 10.1111/jiec.2008.12.issue-2
[30] Lu ZQ, Huang QX, Yang XB ( 2014). Research on hydrological effects of forest litters and soil of Pinus tabuliformis plantations in the different altitudes of Wuling Mountains in Hebei. Journal of Soil and Water Conservation, 28, 112-116.
[ 卢振启, 黄秋娴, 杨新兵 ( 2014). 河北雾灵山不同海拔油松人工林枯落物及土壤水文效应研究. 水土保持学报, 28, 112-116.]
[31] Ma LM, Rena D, Zhang M, Zhao JF ( 2010). Phosphorus fractions and soil release in alternately waterlogged and drained environments at the water-fluctuation-zone of the Three Gorges Reservoir. Journal of Food Agriculture and Environment, 8, 1329-1335.
[32] Marklein AR, Houlton BZ ( 2011). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.
doi: 10.1111/j.1469-8137.2011.03967.x pmid: 22122515
[33] Moreira A, Moraes LAC, Zaninetti RA, Canizella BT ( 2013). Phosphorus dynamics in the conversion of a secondary forest into a rubber tree plantation in the Amazon rainforest. Soil Science, 178, 618-625.
doi: 10.1097/SS.0000000000000025
[34] Özgül M, Günes A, Esringü A, Turan M ( 2012). The effects of freeze-and-thaw cycles on phosphorus availability in highland soils in Turkey. Journal of Plant Nutrition and Soil Science, 175, 827-839.
doi: 10.1002/jpln.201100407
[35] Prescott CE, Maynard DG, Laiho R ( 2000b). Humus in northern forests: Friend or foe? Forest Ecology and Management, 133, 23-36.
[36] Prescott CE, Zabek LM, Staley CL, Kabzems R ( 2000a). Decomposition of broadleaf and needle litter in forests of British Columbia: Influences of litter type, forest type, and litter mixtures. Canadian Journal of Forest Research, 30, 1742-1750.
[37] Qinghai Provincial Agricultural Resources Regionalization Office ( 1997). The Soil in Qinghai Province. China Agriculture Press, Beijing.
[ 青海省农业资源区划办公室 ( 1997). 青海土壤. 中国农业出版社, 北京.]
[38] Reed SC, Yang XJ, Thornton PE ( 2015). Incorporating phosphorus cycling into global modeling efforts: A worthwhile, tractable endeavor. New Phytologist, 208, 324-329.
doi: 10.1111/nph.13521 pmid: 26115197
[39] Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
doi: 10.1073/pnas.0403588101 pmid: 15213326
[40] Ruttenberg KC ( 2003). The global phosphorus cycle. Treatise on Geochemistry, 585-643.
[41] Siebers N, Sumann M, Kaiser K, Amelung W ( 2017). Climatic effects on phosphorus fractions of native and cultivated north American grassland soils. Soil Science Society of America Journal, 81, 299-309.
[42] Smil V ( 2000). Phosphorus in the environment: Natural flows and human interferences. Annual Review of Energy and the Environment, 25, 53-88.
[43] Tang LT, Zi HB, Hu L, Ade LJ, Wang CT ( 2019). Forest biomass and its influencing factors in Qinghai Province. Acta Ecologica Sinica, 39, 3677-3686.
[ 唐立涛, 字洪标, 胡雷, 阿的鲁骥, 王长庭 ( 2019). 青海省森林细根生物量及其影响因子. 生态学报, 39, 3677-3686.]
[44] Vincent AG, Schleucher J, Gröbner G, Vestergren J, Persson P, Jansson M, Giesler R ( 2012). Changes in organic phosphorus composition in boreal forest humus soils: The role of iron and aluminium. Biogeochemistry, 108, 485-499.
[45] Vincent AG, Sundqvist MK, Wardle DA, Giesler R ( 2014). Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape. PLOS ONE, 9, e92942. DOI: 10.1371/journal.pone.0092942.
[46] Viscarra Rossel RA, Bui EN ( 2016). A new detailed map of total phosphorus stocks in Australian soil. Science of the Total Environment, 542, 1040-1049.
[47] Vitousek PM, Porder S, Houlton BZ, Chadwick OA ( 2010). Terrestrial phosphorus limitation: Mechanisms, implica- tions, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
[48] Vogt KA, Grier CC, Vogt DJ ( 1986). Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Advances in Ecological Research, 15, 303-377.
[49] Wan D, Liang B, Nie XG, Yu W, Zhang B ( 2018). Research on vertical zonation of soil physical properties in Sygera Mountain, Tibet. Acta Ecologica Sinica, 38, 1065-1074.
[ 万丹, 梁博, 聂晓刚, 喻武, 张博 ( 2018). 西藏色季拉山土壤物理性质垂直地带性. 生态学报, 38, 1065-1074.]
[50] Wang T, Yang YH, Ma WH ( 2008). Storage, patterns and environmental controls of soil phosphorus in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 44, 945-952.
[ 汪涛, 杨元合, 马文红 ( 2008). 中国土壤磷库的大小、分布及其影响因素. 北京大学学报(自然科学版), 44, 945-952.]
[51] Wang WT, Tang XL, Huang M, Zhou GY, Yin GC, Wang JX, Wen DZ (2018). Carbon Storage of Forest Ecosystem in China—Dynamics and Mechanisms. Science Press, Beijing.
[ 王万同, 唐旭利, 黄玫, 周国逸, 尹光彩, 王金霞, 温达志 (2018). 中国森林生态系统碳储量——动态及机制. 科学出版社, 北京.]
[52] Wang X, Luo XP, Zi HB, Yang WG, Hu L, Wang CT ( 2019). Ecological stoichiometry characteristics of forest litter and its influencing factors in Qinghai Province. Acta Prataculturae Sinica, 28, 1-14.
[ 王鑫, 罗雪萍, 字洪标, 杨文高, 胡雷, 王长庭 ( 2019). 青海森林凋落物生态化学计量特征及其影响因子. 草业学报, 28, 1-14.]
[53] Wang YL, Zi HB, Cheng RX, Tang LT, Suoer A, Luo XP, Li J, Wang CT ( 2019). Forest soil organic carbon and nitrogen storage and characteristics of vertical distribution in Qinghai Province. Acta Ecologica Sinica, 39, 4096-4105.
[ 王艳丽, 字洪标, 程瑞希, 唐立涛, 所尔阿芝, 罗雪萍, 李洁, 王长庭 ( 2019). 青海省森林土壤有机碳氮储量及其垂直分布特征. 生态学报, 39, 4096-4105.]
[54] Wei LL, Chen CR, Xu ZH ( 2010). Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils. Biology and Fertility of Soils, 46, 765-769.
[55] Wright RF ( 1998). Effect of increased carbon dioxide and temperature on runoff chemistry at a forested catchment in southern Norway (CLIMEX project). Ecosystems, 1, 216-225.
[56] Yuan ZY, Jiao F, Shi XR, Sardans J, Maestre FT, Delgado-Baquerizo M, Reich PB, Peñuelas J ( 2017). Experimental and observational studies find contrasting responses of soil nutrients to climate change. eLife, 6, e23255. DOI: 10.7554/eLife.23255.
[57] Yue K, Yang WQ, Peng Y, Peng CH, Tan B, Xu ZF, Zhang L, Ni XY, Zhou W, Wu FZ ( 2018). Individual and combined effects of multiple global change drivers on terrestrial phosphorus pools: A meta-analysis. Science of The Total Environment, 630, 181-188.
[58] Zhang C, Tian HQ, Liu JY, Wang SQ, Liu ML, Pan SF, Shi XZ ( 2005). Pools and distributions of soil phosphorus in China. Global Biogeochemical Cycles, 19, GB1020. DOI: 10.1029/2004GB002296.
[59] Zhang TD, Wang CK, Zhang QZ ( 2017). Vertical variation in stoichiometric relationships of soil carbon, nitrogen and phosphorus in five forest types in the Maoershan region, Northeast China. Chinese Journal of Applied Ecology, 28, 3135-3143.
[ 张泰东, 王传宽, 张全智 ( 2017). 帽儿山5种林型土壤碳氮磷化学计量关系的垂直变化. 应用生态学报, 28, 3135-3143.]
[60] Zheng SX, Shangguan ZP ( 2007). Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China. Trees, 21, 357-370.
[61] Zheng YC, Gao SH, Zhong XH ( 1988). Soil in Siguniang Mountain region and its vertical distribution. Mountain Research, 6, 227-234.
[ 郑远昌, 高生淮, 钟祥浩 ( 1988). 四姑娘山区土壤及其垂直分布. 山地研究, 6, 227-234.]
[62] Zhou J, Bing HJ, Wu YH, Sun SQ, Luo J ( 2016). Variations in soil P biogeochemistry and its impact factors along an altitudinal gradient in the Yanzigou, eastern slope of the Gongga Mountain. Mountain Research, 34, 385-392.
[ 周俊, 邴海健, 吴艳宏, 孙守琴, 罗辑 ( 2016). 贡嘎山燕子沟土壤磷海拔梯度特征及影响因素. 山地学报, 34, 385-392.]
[63] Zi HB, Xiang ZY, Wang GX, Ade LJ, Wang CT ( 2017). Profile of soil microbial community under different stand types in Qinghai Province. Scientia Silvae Sinicae, 53(3), 21-32.
[ 字洪标, 向泽宇, 王根绪, 阿的鲁骥, 王长庭 ( 2017). 青海不同林分土壤微生物群落结构(PLFA). 林业科学, 53(3), 21-32.]
[1] Xinghui Lu,Runguo Zang,Yi Ding,Jihong Huang,Yue Xu. Habitat characteristics and its effects on seedling abundance of Hopea hainanensis, a Wild Plant with Extremely Small Populations [J]. Biodiv Sci, 2020, 28(3): 289-295.
[2] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow [J]. Biodiv Sci, 2020, 28(2): 107-116.
[3] ZHANG Chan, AN Yu-Meng, Yun JÄSCHKE, WANG Lin-Lin, ZHOU Zhi-Li, WANG Li-Ping, YANG Yong-Ping, DUAN Yuan-Wen. Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands [J]. Chin J Plant Ecol, 2020, 44(1): 1-21.
[4] LI Pin, Muledeer TUERHANBAI, TIAN Di, FENG Zhao-Zhong. Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 532-542.
[5] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[6] Tu Yanli,Wang Liping,Wang Xilong,Wang Linlin,Duan Yuanwen. Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators [J]. Biodiv Sci, 2019, 27(3): 306-313.
[7] Rijin Jiang,Linlin Zhang,Kaida Xu,Pengfei Li,Yi Xiao,Ziwei Fan. Characteristics and diversity of nekton functional groups in the coastal waters of south-central Zhejiang Province [J]. Biodiv Sci, 2019, 27(12): 1330-1338.
[8] CAI Qin, DING Jun-Xiang, ZHANG Zi-Liang, HU Jun, WANG Qi-Tong, YIN Ming-Zhen, LIU Qing, YIN Hua-Jun. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2019, 43(12): 1048-1060.
[9] YANG Ji-Hong, LI Ya-Nan, BU Hai-Yan, ZHANG Shi-Ting, QI Wei. Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(10): 863-876.
[10] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(1): 77-84.
[11] CHEN Ke-Yu, ZI Hong-Biao, ADE Luji, HU Lei, WANG Gen-Xu, WANG Chang-Ting. Current stocks and potential of carbon sequestration of the forest tree layer in Qinghai Province, China [J]. Chin J Plan Ecolo, 2018, 42(8): 831-840.
[12] CHEN Yi-Chao, ZHAO Ying, SONG Xi-Qiang, REN Ming-Xun. Difference in spatial distribution patterns and population structures of Rhododendron hainanense between both sides of riparian bends [J]. Chin J Plan Ecolo, 2018, 42(8): 841-849.
[13] ZHANG Yun, YIN Ding-Cai, TIAN Kun, ZHANG Wei-Guo, HE Rong-Hua, HE Wen-Qing, SUN Jiang-Mei, LIU Zhen-Ya. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China [J]. Chin J Plan Ecolo, 2018, 42(6): 629-639.
[14] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[15] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plan Ecolo, 2018, 42(5): 585-594.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Cui Gao;Yuxia Chen;Ying Bao;Min Feng;Anming Lu. Studies on Sexual Organs and Embryological Development Morphology of Speirantha gardenii (Convallariaceae)[J]. Chin Bull Bot, 2010, 45(06): 705 -712 .
[2] Jiang Gao-ming. The Impact of Globae Increasing of CO2 on Plants[J]. Chin Bull Bot, 1995, 12(04): 1 -7 .
[3] Zhang Jun Han Bi-wen. Advance in the Study of Histochemical Localization for[J]. Chin Bull Bot, 1995, 12(专辑3): 131 -142 .
[4] Tang Yan-cheng. A Short Guide to the International Code of Botanical Nomenclature V.[J]. Chin Bull Bot, 1984, 2(04): 51 -57 .
[5] Xu Ji. The Protective Protein of Nitrogenase Against Oxygen Damage-Fe-S Protein[J]. Chin Bull Bot, 1986, 4(12): 1 -4 .
[6] . [J]. Chin Bull Bot, 2001, 18(05): 633 .
[7] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens-Oryza sativa Ecosystem(I) The Growing Characteristic of Taxodium Ascendens in the Ecosystem[J]. Chin Bull Bot, 1996, 13(02): 48 -51 .
[8] GU Rui-Sheng;LIU Qun-Lu;CHEN Xue-Mei and JIANG Xiang-Ning. Comparison and Optimization of the Methods on Protein Extraction and SDS-PAGE in Woody Plants[J]. Chin Bull Bot, 1999, 16(02): 171 -177 .
[9] Jiang Gao-ming. LI-6400 Portable Photosynthesis System: Principle, Function, Basic Operation and Main Problems and Solutions During Measurement[J]. Chin Bull Bot, 1996, 13(增刊): 72 -76 .
[10] Li Ling;Luo Yun-xiu;He Jian-hui and Pan Rui-chi. Promoting the Formation of Adventitious Roots in Cutting of Some Woody Plants by GL Reagent[J]. Chin Bull Bot, 1996, 13(增刊): 63 -65 .