植物生态学报 ›› 2017, Vol. 41 ›› Issue (4): 409-417.DOI: 10.17521/cjpe. 2016.0338
收稿日期:
2016-11-03
接受日期:
2017-02-28
出版日期:
2017-04-10
发布日期:
2017-05-19
通讯作者:
马克明
基金资助:
Received:
2016-11-03
Accepted:
2017-02-28
Online:
2017-04-10
Published:
2017-05-19
Contact:
Ke-Ming MA
摘要:
互花米草(Spartina alterniflora)是全球海岸带相当成功的外来入侵种, 对红树林的威胁越来越严峻(尤其在中国)。不仅如此, 海洋和近海海岸带受重金属污染的胁迫也日趋严重, 但是互花米草对红树林湿地沉积物重金属累积的效应仍不明确。为了探究互花米草入侵对红树林湿地沉积物重金属累积的效应及潜在机制, 该文作者在广东湛江红树林国家级自然保护区设置两组对比生境: 裸滩对比互花米草群落和海榄雌(Avicennia marina)群落对比海榄雌+互花米草混生群落, 调查分析各对比组内沉积物重金属元素砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、镍(Ni)、铅(Pb)、锌(Zn)和锰(Mn)含量的差异及其与环境因素的关系。结果表明, 互花米草能提高红树林湿地沉积物重金属的含量, 尤其是Cr、Cu、Ni、Zn和Mn有显著的提高。污染等级评价显示只有Cd的污染等级达到偏中度水平。互花米草能促进湛江红树林湿地沉积物重金属累积, 但并不一定会造成污染危害。进一步分析显示沉积物重金属含量与沉积物有机物质、全碳、全氮、全硫和全钾含量存在密切的共线性。归根结底, 互花米草密集的地上与地下生物学结构可能是其促进沉积物重金属累积的主要因素。
陈权, 马克明. 互花米草入侵对红树林湿地沉积物重金属累积的效应与潜在机制. 植物生态学报, 2017, 41(4): 409-417. DOI: 10.17521/cjpe. 2016.0338
Quan CHEN, Ke-Ming MA. Effects of Spartina alterniflora invasion on enrichment of sedimental heavy metals in a mangrove wetland and the underlying mechanisms. Chinese Journal of Plant Ecology, 2017, 41(4): 409-417. DOI: 10.17521/cjpe. 2016.0338
生境 Habitat | 地理坐标 Geographical location | 植物群落结构特征 Plant community characteristics | |||
---|---|---|---|---|---|
平均株高 Mean plant height (m) | 盖度 Coverage | 植株密度 Plant density (ind.·m-2) | 根系生物量 Root biomass (g·m-3) | ||
裸滩 Unvegetated shoal (US) | 109.78° E, 21.51° N | - | - | - | - |
互花米草 Spartina alterniflora (SA) | 109.77° E, 21.42° N | 1.16 ± 0.01** | 0.91 ± 0.01** | 42.55 ± 0.56** | 1 165.77 ± 151.25** |
海榄雌 Avicennia marina (AM) | 109.76° E, 21.52° N | 1.58 ± 0.03** | 0.88 ± 0.01** | 0.33 ± 0.02** | 1 685.82 ± 63.67** |
互花米草+海榄 Spartina alterniflora + Avicennia marina (MIX) | 109.79° E, 21.49° N | 1.25 ± 0.08 | 0.56 ± 0.02 | 22.00 ± 0.29 | 1 176.04 ± 125.72 |
表1 湛江红树林湿地互花米草入侵区两组对比生境的植被特征
Table 1 Vegetation characteristics in two pairs of comparative habitats in a mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
生境 Habitat | 地理坐标 Geographical location | 植物群落结构特征 Plant community characteristics | |||
---|---|---|---|---|---|
平均株高 Mean plant height (m) | 盖度 Coverage | 植株密度 Plant density (ind.·m-2) | 根系生物量 Root biomass (g·m-3) | ||
裸滩 Unvegetated shoal (US) | 109.78° E, 21.51° N | - | - | - | - |
互花米草 Spartina alterniflora (SA) | 109.77° E, 21.42° N | 1.16 ± 0.01** | 0.91 ± 0.01** | 42.55 ± 0.56** | 1 165.77 ± 151.25** |
海榄雌 Avicennia marina (AM) | 109.76° E, 21.52° N | 1.58 ± 0.03** | 0.88 ± 0.01** | 0.33 ± 0.02** | 1 685.82 ± 63.67** |
互花米草+海榄 Spartina alterniflora + Avicennia marina (MIX) | 109.79° E, 21.49° N | 1.25 ± 0.08 | 0.56 ± 0.02 | 22.00 ± 0.29 | 1 176.04 ± 125.72 |
生境 Habitat | 容重 Bulk density | 盐度 Salinity (%) | 砂粒 Sand (%) | 粉粒 Silt (%) | 黏粒 Clay (%) | pH |
---|---|---|---|---|---|---|
US | 1.44 ± 0.02** | 8.75 ± 0.34 | 5.42 ± 0.13** | 90.46 ± 0.38 | 2.67 ± 0.28 | 6.62 ± 0.02 |
SA | 0.65 ± 0.02 | 29.29 ± 1.07** | 2.08 ± 0.08 | 89.53 ± 0.53 | 8.12 ± 0.53** | 6.58 ± 0.03 |
AM | 0.91 ± 0.03** | 15.43 ± 0.51 | 2.56 ± 0.13 | 86.90 ± 1.76 | 6.31 ± 1.01 | 6.43 ± 0.02 |
MIX | 0.61 ± 0.02 | 33.50 ± 0.64** | 2.38 ± 0.08 | 86.14 ± 0.75 | 10.80 ± 0.76** | 6.52 ± 0.02** |
生境 Habitat | 有机质 Organic matter (%) | 全氮 Total nitrogen (%) | 全硫 Total sulphur (%) | 全磷 Total phosphorus (%) | 全钾 Total potassium (%) | 全碳 Total carbon (%) |
US | 1.01 ± 0.03 | 0.06 ± 0.001 | 0.17 ± 0.01 | 0.015 ± 0.000 | 0.42 ± 0.01 | 0.65 ± 0.02 |
SA | 2.15 ± 0.04** | 0.14 ± 0.004** | 0.36 ± 0.01** | 0.031 ± 0.001** | 0.69 ± 0.02** | 1.48 ± 0.03** |
AM | 2.23 ± 0.06 | 0.12 ± 0.002 | 0.41 ± 0.03 | 0.019 ± 0.001 | 0.59 ± 0.01 | 1.55 ± 0.04 |
MIX | 2.40 ± 0.06 | 0.15 ± 0.004** | 0.41 ± 0.01 | 0.032 ± 0.001** | 0.69 ± 0.0.02** | 1.62 ± 0.04** |
表2 湛江红树林湿地互花米草入侵区两组对比生境的沉积物物理化学性质
Table 2 Physicochemical properties of sediments in two pairs of comparative habitats in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
生境 Habitat | 容重 Bulk density | 盐度 Salinity (%) | 砂粒 Sand (%) | 粉粒 Silt (%) | 黏粒 Clay (%) | pH |
---|---|---|---|---|---|---|
US | 1.44 ± 0.02** | 8.75 ± 0.34 | 5.42 ± 0.13** | 90.46 ± 0.38 | 2.67 ± 0.28 | 6.62 ± 0.02 |
SA | 0.65 ± 0.02 | 29.29 ± 1.07** | 2.08 ± 0.08 | 89.53 ± 0.53 | 8.12 ± 0.53** | 6.58 ± 0.03 |
AM | 0.91 ± 0.03** | 15.43 ± 0.51 | 2.56 ± 0.13 | 86.90 ± 1.76 | 6.31 ± 1.01 | 6.43 ± 0.02 |
MIX | 0.61 ± 0.02 | 33.50 ± 0.64** | 2.38 ± 0.08 | 86.14 ± 0.75 | 10.80 ± 0.76** | 6.52 ± 0.02** |
生境 Habitat | 有机质 Organic matter (%) | 全氮 Total nitrogen (%) | 全硫 Total sulphur (%) | 全磷 Total phosphorus (%) | 全钾 Total potassium (%) | 全碳 Total carbon (%) |
US | 1.01 ± 0.03 | 0.06 ± 0.001 | 0.17 ± 0.01 | 0.015 ± 0.000 | 0.42 ± 0.01 | 0.65 ± 0.02 |
SA | 2.15 ± 0.04** | 0.14 ± 0.004** | 0.36 ± 0.01** | 0.031 ± 0.001** | 0.69 ± 0.02** | 1.48 ± 0.03** |
AM | 2.23 ± 0.06 | 0.12 ± 0.002 | 0.41 ± 0.03 | 0.019 ± 0.001 | 0.59 ± 0.01 | 1.55 ± 0.04 |
MIX | 2.40 ± 0.06 | 0.15 ± 0.004** | 0.41 ± 0.01 | 0.032 ± 0.001** | 0.69 ± 0.0.02** | 1.62 ± 0.04** |
理化性质 Physicochemical properties | 植被特征 Vegetation characteristics | p | R2 | 回归方程 Regression equation |
---|---|---|---|---|
有机质含量 Organic matter content (COM) | PH | <0.001 | 0.848 | COM = 0.89PH + 1.09 |
全氮含量 Total nitrogen content (CTN) | PD, PH, C | <0.001 | 0.923 | CTN = 0.001PD + 0.08PH - 0.07C + 0.06 |
全磷含量 Total phosphorus content (CTP) | PD | <0.001 | 0.689 | CTP = 0.0003PD + 0.02 |
全硫含量 Total sulphur content (CTS) | PH | <0.001 | 0.860 | CTS = 0.16PH + 0.18 |
全钾含量 Total potassium content (CTK) | PD, PH, C | 0.001 | 0.903 | CTK = 0.05PD + 0.21PH - 0.19C + 0.42 |
全碳含量 Total carbon content (CTC) | PH, PD, C | 0.047 | 0.887 | CTC = 0.58PH + 0.005PD + 0.67 |
容重 Bulk density (BD) | PD, PH, C | 0.001 | 0.961 | BD = 0.68CC - 0.014PD - 0.71PH + 1.43 |
盐度 Salinity (Sal) | PD, PH, C | <0.001 | 0.939 | Sal = 0.006PD + 0.25PH - 0.38C + 0.91 |
pH | PD, PH | 0.022 | 0.608 | pH = 0.003PD - 0.122PH + 6.62 |
砂粒比例 Sand ratio (Sa) | C | <0.001 | 0.837 | Sa = 5.11 - 3.41C |
粉粒比例 Silt ratio (Si) | PH | 0.03 | 0.295 | Si = 90.55 - 2.31PH |
黏粒比例 Clay ratio (Cl) | PD, PH, C | 0.003 | 0.807 | Cl = 0.15PD + 9.48PH - 12.97C + 2.74 |
表3 湛江红树林湿地互花米草入侵区沉积物理化特征与植被特征逐步回归分析
Table 3 Relationships (by stepwise regression analysis) between vegetation characteristics and physicochemical properties in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
理化性质 Physicochemical properties | 植被特征 Vegetation characteristics | p | R2 | 回归方程 Regression equation |
---|---|---|---|---|
有机质含量 Organic matter content (COM) | PH | <0.001 | 0.848 | COM = 0.89PH + 1.09 |
全氮含量 Total nitrogen content (CTN) | PD, PH, C | <0.001 | 0.923 | CTN = 0.001PD + 0.08PH - 0.07C + 0.06 |
全磷含量 Total phosphorus content (CTP) | PD | <0.001 | 0.689 | CTP = 0.0003PD + 0.02 |
全硫含量 Total sulphur content (CTS) | PH | <0.001 | 0.860 | CTS = 0.16PH + 0.18 |
全钾含量 Total potassium content (CTK) | PD, PH, C | 0.001 | 0.903 | CTK = 0.05PD + 0.21PH - 0.19C + 0.42 |
全碳含量 Total carbon content (CTC) | PH, PD, C | 0.047 | 0.887 | CTC = 0.58PH + 0.005PD + 0.67 |
容重 Bulk density (BD) | PD, PH, C | 0.001 | 0.961 | BD = 0.68CC - 0.014PD - 0.71PH + 1.43 |
盐度 Salinity (Sal) | PD, PH, C | <0.001 | 0.939 | Sal = 0.006PD + 0.25PH - 0.38C + 0.91 |
pH | PD, PH | 0.022 | 0.608 | pH = 0.003PD - 0.122PH + 6.62 |
砂粒比例 Sand ratio (Sa) | C | <0.001 | 0.837 | Sa = 5.11 - 3.41C |
粉粒比例 Silt ratio (Si) | PH | 0.03 | 0.295 | Si = 90.55 - 2.31PH |
黏粒比例 Clay ratio (Cl) | PD, PH, C | 0.003 | 0.807 | Cl = 0.15PD + 9.48PH - 12.97C + 2.74 |
图1 湛江红树林湿地互花米草入侵区两组对比生境沉积物重金属污染元素含量(平均值±标准误差)。**表示每组对比生境的相应指数间基于成对样品t-检验存在极显著差异(p < 0.01)。生境同表1。
Fig. 1 Contents of sedimental heavy metals in two pairs of comparative habitats (mean ± SE) in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China. Values in columns followed by ** indicate significant differences in each pair of comparative habitats based on paired-sample t-tests (p < 0.01). See Table 1 for information on habitats.
生境 Habitat | 砷 As (µg·g-1) | 镉 Cd (µg·g-1) | 铬 Cr (µg·g-1) | 铜 Cu (µg·g-1) | 镍 Ni (µg·g-1) | 铅 Pb (µg·g-1) | 锌 Zn (µg·g-1) | 锰 Mn (µg·g-1) |
---|---|---|---|---|---|---|---|---|
US | 16.64 ± 3.90 | 1.29 ± 0.77 | 23.41 ± 0.45c | 5.89 ± 0.35c | 3.34 ± 3.40b | 28.54 ± 1.41b | 27.80 ± 0.52c | 64.21 ± 1.54b |
SA | 15.91 ± 2.42 | 1.50 ± 0.41 | 45.17 ± 1.17a | 12.49 ± 0.51a | 12.58 ± 2.53a | 33.30 ± 1.83ab | 54.07 ± 1.58a | 87.58 ± 4.17a |
AM | 15.59 ± 3.21 | 1.43 ± 0.48 | 35.42 ± 0.90b | 9.22 ± 0.33b | 5.40 ± 2.92b | 37.52 ± 1.34a | 41.95 ± 1.49b | 67.82 ± 5.36b |
MIX | 16.13 ± 3.36 | 1.43 ± 0.40 | 46.33 ± 0.99a | 12.72 ± 0.41a | 14.92 ± 4.48a | 34.09 ± 2.17ab | 56.66 ± 1.40a | 86.15 ± 3.35a |
表4 湛江红树林湿地互花米草入侵区4种生境沉积物重金属含量
Table 4 Contents of sedimental heavy metals in four habitats in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
生境 Habitat | 砷 As (µg·g-1) | 镉 Cd (µg·g-1) | 铬 Cr (µg·g-1) | 铜 Cu (µg·g-1) | 镍 Ni (µg·g-1) | 铅 Pb (µg·g-1) | 锌 Zn (µg·g-1) | 锰 Mn (µg·g-1) |
---|---|---|---|---|---|---|---|---|
US | 16.64 ± 3.90 | 1.29 ± 0.77 | 23.41 ± 0.45c | 5.89 ± 0.35c | 3.34 ± 3.40b | 28.54 ± 1.41b | 27.80 ± 0.52c | 64.21 ± 1.54b |
SA | 15.91 ± 2.42 | 1.50 ± 0.41 | 45.17 ± 1.17a | 12.49 ± 0.51a | 12.58 ± 2.53a | 33.30 ± 1.83ab | 54.07 ± 1.58a | 87.58 ± 4.17a |
AM | 15.59 ± 3.21 | 1.43 ± 0.48 | 35.42 ± 0.90b | 9.22 ± 0.33b | 5.40 ± 2.92b | 37.52 ± 1.34a | 41.95 ± 1.49b | 67.82 ± 5.36b |
MIX | 16.13 ± 3.36 | 1.43 ± 0.40 | 46.33 ± 0.99a | 12.72 ± 0.41a | 14.92 ± 4.48a | 34.09 ± 2.17ab | 56.66 ± 1.40a | 86.15 ± 3.35a |
污染程度 Pollution level | 无 No | 轻度 Mild | 偏中度 Partial-moderate | 中度 Moderate | 偏重 Partial-hazardous | 重 Hazardous | 严重 Severe |
---|---|---|---|---|---|---|---|
级别 Level | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
累积指数 Accumulation index (I) | ≤0 | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | >5 |
表5 重金属污染等级评价标准
Table 5 Heavy metal pollution level and evaluation criteria
污染程度 Pollution level | 无 No | 轻度 Mild | 偏中度 Partial-moderate | 中度 Moderate | 偏重 Partial-hazardous | 重 Hazardous | 严重 Severe |
---|---|---|---|---|---|---|---|
级别 Level | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
累积指数 Accumulation index (I) | ≤0 | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | >5 |
生境 Habitat | 砷 As | 镉 Cd | 铬 Cr | 铜 Cu | 镍 Ni | 铅 Pb | 锌 Zn | 锰 Mn |
---|---|---|---|---|---|---|---|---|
裸滩 US | -0.80 ± 0.32 | 0.92 ± 0.21 | -1.99 ± 0.03 | -3.55 ± 0.09 | -2.37 ± 0.40 | -0.86 ± 0.07 | -2.40 ± 0.03 | -3.50 ± 0.03 |
互花米草 SA | -0.70 ± 0.24 | 1.27 ± 0.11 | -1.04 ± 0.04 | -2.45 ± 0.06 | -1.13 ± 0.08 | -0.64 ± 0.08 | -1.44 ± 0.05 | -3.06 ± 0.07 |
海榄雌 AM | -1.26 ± 0.57 | 1.15 ± 0.17 | -1.40 ± 0.04 | -2.88 ± 0.05 | -2.65 ± 0.34 | -0.45 ± 0.05 | -1.80 ± 0.05 | -3.46 ± 0.11 |
混生群落 MIX | -1.22 ± 0.66 | 1.21 ± 0.11 | -1.01 ± 0.03 | -2.42 ± 0.05 | -0.91 ± 0.12 | -0.61 ± 0.09 | -1.37 ± 0.04 | -3.08 ± 0.06 |
总和 Total | -1.00 ± 0.23 | 1.14 ± 0.08 | -1.36 ± 0.06 | -2.82 ± 0.07 | -1.76 ± 0.17 | -0.64 ± 0.04 | -1.75 ± 0.06 | -3.28 ± 0.05 |
表6 湛江红树林湿地互花米草入侵区测定的沉积物重金属元素的污染等级水平
Table 6 Pollution levels for individual sedimental heavy metal in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
生境 Habitat | 砷 As | 镉 Cd | 铬 Cr | 铜 Cu | 镍 Ni | 铅 Pb | 锌 Zn | 锰 Mn |
---|---|---|---|---|---|---|---|---|
裸滩 US | -0.80 ± 0.32 | 0.92 ± 0.21 | -1.99 ± 0.03 | -3.55 ± 0.09 | -2.37 ± 0.40 | -0.86 ± 0.07 | -2.40 ± 0.03 | -3.50 ± 0.03 |
互花米草 SA | -0.70 ± 0.24 | 1.27 ± 0.11 | -1.04 ± 0.04 | -2.45 ± 0.06 | -1.13 ± 0.08 | -0.64 ± 0.08 | -1.44 ± 0.05 | -3.06 ± 0.07 |
海榄雌 AM | -1.26 ± 0.57 | 1.15 ± 0.17 | -1.40 ± 0.04 | -2.88 ± 0.05 | -2.65 ± 0.34 | -0.45 ± 0.05 | -1.80 ± 0.05 | -3.46 ± 0.11 |
混生群落 MIX | -1.22 ± 0.66 | 1.21 ± 0.11 | -1.01 ± 0.03 | -2.42 ± 0.05 | -0.91 ± 0.12 | -0.61 ± 0.09 | -1.37 ± 0.04 | -3.08 ± 0.06 |
总和 Total | -1.00 ± 0.23 | 1.14 ± 0.08 | -1.36 ± 0.06 | -2.82 ± 0.07 | -1.76 ± 0.17 | -0.64 ± 0.04 | -1.75 ± 0.06 | -3.28 ± 0.05 |
理化性质 Physicochemical properties | 砷 As | 镉 Cd | 铬 Cr | 铜 Cu | 镍 Ni | 铅 Pb | 锌 Zn | 锰 Mn |
---|---|---|---|---|---|---|---|---|
有机质含量 Organic matter content (COM) | -0.100 | 0.201 | 0.886** | 0.863** | 0.703** | 0.729** | 0.880** | 0.560* |
全氮含量 Total nitrogen content (CTN) | -0.094 | 0.405 | 0.980** | 0.963** | 0.838** | 0.607* | 0.973** | 0.732** |
全磷含量 Total phosphorus content (CTP) | -0.060 | 0.249 | 0.950** | 0.961** | 0.932** | 0.339 | 0.957** | 0.398 |
全硫含量 Total sulphur content (CTS) | -0.020 | 0.179 | 0.779** | 0.747** | 0.589* | 0.712** | 0.774** | 0.812** |
全钾含量 Total potassium content (CTK) | -0.059 | 0.214 | 0.990** | 0.974** | 0.848** | 0.580* | 0.980** | 0.782** |
全碳含量 Total carbon content (CTC) | -0.120 | 0.223 | 0.876** | 0.853** | 0.680** | 0.737** | 0.868** | 0.534* |
容重 Bulk density (BD) | 0.043 | -0.154 | -0.973** | -0.941** | -0.854** | -0.527* | -0.967** | -0.790** |
盐度 Salinity (Sal) | -0.024 | -0.150 | 0.956** | 0.955** | 0.943** | 0.331 | 0.960** | 0.855** |
pH | -0.059 | -0.226 | -0.238 | -0.217 | -0.007 | -0.623** | -0.237 | 0.268 |
砂粒比例 Sand ratio (Sa) | 0.150 | -0.107 | -0.904** | -0.870** | -0.679** | -0.647** | -0.886** | -0.662** |
粉粒比例 Silt ratio (Si) | 0.398 | 0.234 | -0.426 | -0.430 | -0.378 | -0.586* | -0.417 | -0.230 |
黏粒比例 Clay ratio (Cl) | -0.281 | -0.017 | 0.898** | 0.981** | 0.868** | 0.497* | 0.895** | 0.776** |
表7 湛江红树林湿地互花米草入侵区沉积物重金属元素含量与理化特征相关分析
Table 7 Summary of Pearson correlation analyses between the sedimental heavy metal contents and the physicochemical properties in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
理化性质 Physicochemical properties | 砷 As | 镉 Cd | 铬 Cr | 铜 Cu | 镍 Ni | 铅 Pb | 锌 Zn | 锰 Mn |
---|---|---|---|---|---|---|---|---|
有机质含量 Organic matter content (COM) | -0.100 | 0.201 | 0.886** | 0.863** | 0.703** | 0.729** | 0.880** | 0.560* |
全氮含量 Total nitrogen content (CTN) | -0.094 | 0.405 | 0.980** | 0.963** | 0.838** | 0.607* | 0.973** | 0.732** |
全磷含量 Total phosphorus content (CTP) | -0.060 | 0.249 | 0.950** | 0.961** | 0.932** | 0.339 | 0.957** | 0.398 |
全硫含量 Total sulphur content (CTS) | -0.020 | 0.179 | 0.779** | 0.747** | 0.589* | 0.712** | 0.774** | 0.812** |
全钾含量 Total potassium content (CTK) | -0.059 | 0.214 | 0.990** | 0.974** | 0.848** | 0.580* | 0.980** | 0.782** |
全碳含量 Total carbon content (CTC) | -0.120 | 0.223 | 0.876** | 0.853** | 0.680** | 0.737** | 0.868** | 0.534* |
容重 Bulk density (BD) | 0.043 | -0.154 | -0.973** | -0.941** | -0.854** | -0.527* | -0.967** | -0.790** |
盐度 Salinity (Sal) | -0.024 | -0.150 | 0.956** | 0.955** | 0.943** | 0.331 | 0.960** | 0.855** |
pH | -0.059 | -0.226 | -0.238 | -0.217 | -0.007 | -0.623** | -0.237 | 0.268 |
砂粒比例 Sand ratio (Sa) | 0.150 | -0.107 | -0.904** | -0.870** | -0.679** | -0.647** | -0.886** | -0.662** |
粉粒比例 Silt ratio (Si) | 0.398 | 0.234 | -0.426 | -0.430 | -0.378 | -0.586* | -0.417 | -0.230 |
黏粒比例 Clay ratio (Cl) | -0.281 | -0.017 | 0.898** | 0.981** | 0.868** | 0.497* | 0.895** | 0.776** |
重金属元素 Heavy metals | 植被特征 Vegetation characteristics | p | R2 | 回归方程 Regression equation |
---|---|---|---|---|
砷 As | – | – | – | – |
镉 Cd | – | – | – | – |
铬 Cr | PD, PH, C | <0.001 | 0.901 | Cr = 0.44PD + 19.31PH - 21.40C + 23.72 |
铜 Cu | PD, PH, C | <0.001 | 0.855 | Cu = 0.14PD + 5.66PH - 6.51C + 5.99 |
镍 Ni | PD | <0.001 | 0.573 | Ni = 0.22PD + 5.44 |
铅 Pb | PH | 0.001 | 0.509 | Pb = 5.00PH + 28.39 |
锌 Zn | PD, PH, C | <0.001 | 0.909 | Zn = 0.58PD + 26.16PH - 31.22C + 28.09 |
锰 Mn | PD | <0.001 | 0.630 | Mn = 0.55PD + 67.47 |
表8 湛江红树林湿地互花米草入侵区沉积物重金属元素含量与植被特征逐步回归分析
Table 8 Relationships (by stepwise regression analysis) between the sedimental heavy metal contents and the vegetation characteristics in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
重金属元素 Heavy metals | 植被特征 Vegetation characteristics | p | R2 | 回归方程 Regression equation |
---|---|---|---|---|
砷 As | – | – | – | – |
镉 Cd | – | – | – | – |
铬 Cr | PD, PH, C | <0.001 | 0.901 | Cr = 0.44PD + 19.31PH - 21.40C + 23.72 |
铜 Cu | PD, PH, C | <0.001 | 0.855 | Cu = 0.14PD + 5.66PH - 6.51C + 5.99 |
镍 Ni | PD | <0.001 | 0.573 | Ni = 0.22PD + 5.44 |
铅 Pb | PH | 0.001 | 0.509 | Pb = 5.00PH + 28.39 |
锌 Zn | PD, PH, C | <0.001 | 0.909 | Zn = 0.58PD + 26.16PH - 31.22C + 28.09 |
锰 Mn | PD | <0.001 | 0.630 | Mn = 0.55PD + 67.47 |
[1] | Banerjee K, Senthilkumar B, Purvaja R, Ramesh R (2012). Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, Northeast coast of India.Environmental Geochemistry and Health, 34, 27-42. |
[2] | Bortolus A, Carlton JT, Schwindt E (2015). Reimagining South American coasts: Unveiling the hidden invasion history of an iconic ecological engineer.Diversity and Distributions, 21, 1267-1283. |
[3] | Bradley BA, Blumenthal DM, Early R, Grosholz ED, Lawler JJ, Miller LP, Sorte CJ, D’Antonio CM, Diez JM, Dukes JS (2011). Global change, global trade, and the next wave of plant invasions.Frontiers in Ecology and the Environment, 10, 20-28. |
[4] | Caetano M, Vale C, Cesario R, Fonseca N (2008). Evidence for preferential depths of metal retention in roots of salt marsh plants.Science of the Total Environment, 390, 466-474. |
[5] | Chen H, Chen GZ, Ye ZH (2009). Research progress of heavy metal pollution in mangrove wetlands.Acta Ecologica Sinica, 29, 3893-3900. (in Chinese with English abstract)[程皓, 陈桂珠, 叶志鸿 (2009). 红树林重金属污染生态学研究进展. 生态学报, 29, 3893-3900.] |
[6] | Chen L, Wang W, Zhang Y, Lin G (2009). Recent progresses in mangrove conservation, restoration and research in China. Journal of Plant Ecology, 2, 45-54. |
[7] | Chen LZ, Wang WQ, Zhang YH, Huang L, Zhao CL, Yang SC, Yang ZW, Chen YC, Xu HL, Zhong CR, Su B, Fang BZ, Chen NM, Zeng CZ, Lin GH (2010). Damage to mangroves from extreme cold in early 2008 in southern China.Chinese Journal of Plant Ecology, 34, 186-194. (in Chinese with English abstract)[陈鹭真, 王文卿, 张宜辉, 黄丽, 赵春磊, 杨盛昌, 杨志伟, 陈粤超, 徐华林, 钟才荣, 苏博, 方柏州, 陈乃明, 曾传志, 林光辉 (2010). 2008年南方低温对我国红树植物的破坏作用. 植物生态学报, 34, 186-194.] |
[8] | Chen Q, Li J, Zhang L, Lu H, Ren H, Jian S (2015). Changes in the macrobenthic faunal community during succession of a mangrove forest at Zhanjiang, South China.Journal of Coastal Research, 31, 315-325. |
[9] | Chen Q, Ma KM (2015). Research overview and trend on biological invasion in mangrove forests.Chinese Journal of Plant Ecology, 39, 283-299. (in Chinese with English abstract)[陈权, 马克明 (2015). 红树林生物入侵研究概况与趋势. 植物生态学报, 39, 283-299.] |
[10] | Chung CH (2006). Forty years of ecological engineering with Spartina plantations in China.Ecological Engineering, 27, 49-57. |
[11] | Clemens S, Palmgren MG, Krämer U (2002). A long way ahead: Understanding and engineering plant metal accumulation.Trends in Plant Science, 7, 309-315. |
[12] | Craft C, Reader J, Sacco JN, Broome SW (1999). Twenty-five years of ecosystem development of constructed Spartina alterniflora( Loisel) marshes.Ecological Applications, 9, 1405-1419. |
[13] | Elton CS (1958). The Ecology of Invasions by Plants and Animals. Methuen, London. |
[14] | Fonseca EF, Neto JAB, Silva CG (2013). Heavy metal accumulation in mangrove sediments surrounding a large waste reservoir of a local metallurgical plant, Sepetiba Bay, SE, Brazil.Environmental Earth Sciences, 70, 643-650. |
[15] | Gan HY, Zheng ZC, Liang K, Chen TH (2010). Spatial distribution and source of heavy metals in surface sediment from near-shore area of Beihai, Guangxi.Marine Environmental Science, 29, 698-704. (in Chinese with English abstract)[甘华阳, 郑志昌, 梁开, 陈太浩 (2010). 广西北海近岸海域表层沉积物的重金属分布及来源分析. 海洋环境科学, 29, 698-704.] |
[16] | Islam MS, Tanaka M (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis.Marine Pollution Bulletin, 48, 624-649. |
[17] | Kathiresan K, Bingham BL (2001). Biology of mangroves and mangrove ecosystems.Advances in Marine Biology, 40, 81-251. |
[18] | Li B, Liao CH, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ (2009). Spartina alterniflora invasions in the Yangtze River estuary, China: An overview of current status and ecosystem effects.Ecological Engineering, 35, 511-520. |
[19] | Li LQ (2008). Heavy Metals in the Mangrove Wetlands of China. PhD dissertation, Xiamen University, Xiamen. (in Chinese with English abstract)[李柳强 (2008). 中国红树林湿地重金属污染研究. 博士学位论文, 厦门大学, 厦门.] |
[20] | Li LQ, Ding ZH, Liu JL, Lin HN, Wu H (2008). Distribution of heavy metals in surficial sediments from main mangrove wetlands of China and their influence factors.Acta Oceanologica Sinica, 30(5), 159-164. (in Chinese with English abstract)[李柳强, 丁振华, 刘金铃, 林慧娜, 吴浩 (2008). 中国主要红树林表层沉积物中重金属的分布特征及其影响因素. 海洋学报, 30(5), 159-164.] |
[21] | Liao C, Luo Y, Jiang L, Zhou X, Wu X, Fang C, Chen J, Li B (2007). Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems, 10, 1351-1361. |
[22] | Lin GX, Lu WZ (2011). Investigation of plant resources in Zhanjiang Gaoqiao Mangrove and the surrounding regions, Guangdong Province.Guangdong Forestry Science and Technology, 27(5), 38-43. (in Chinese with English abstract)[林广旋, 卢伟志 (2011). 湛江高桥红树林及周边地区植物资源调查. 广东林业科技, 27(5), 38-43.] |
[23] | Ma RL, He YS, Yang Y, Xia N, Guo YP, Zhang GC, Lu S (2012). Geochemical characteristics of surface sediments from the Qiongzhou Strait.Marine Science Bulletin, 31(2), 131-135. (in Chinese with English abstract)[马荣林, 何玉生, 杨奕, 夏南, 郭跃品, 张固成, 陆珊 (2012). 琼州海峡表层沉积物元素地球化学特征. 海洋通报, 31(2), 131-135.] |
[24] | Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000). Biotic invasions: Causes, epidemiology, global consequences, and control.Ecological Applications, 10, 689-710. |
[25] | Nagajyoti PC, Lee KD, Sreekanth TVM (2010). Heavy metals, occurrence and toxicity for plants: A review.Environmental Chemistry Letters, 8, 199-216. |
[26] | Nath B, Birch G, Chaudhuri P (2013). Trace metal biogeochemistry in mangrove ecosystems: A comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.Science of the Total Environment, 463, 667-674. |
[27] | Nawab J, Khan S, Shah MT, Gul N, Ali A, Khan K, Huang Q (2016). Heavy metal bioaccumulation in native plants in chromite impacted sites: A search for effective remediating plant species.Clean-Soil Air Water, 44, 37-46. |
[28] | Pan K, Wang WX (2012). Trace metal contamination in estuarine and coastal environments in China.Science of the Total Environment, 421, 3-16. |
[29] | Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009). The remediation of heavy metals contaminated sediment.Journal of Hazardous Materials, 161, 633-640. |
[30] | Piazzolla D, Scanu S, Frattarelli FM, Mancini E, Tiralongo F, Brundo MV, Tibullo D, Pecoraro R, Copat C, Ferrante M, Marcelli M (2015). Trace-metal enrichment and pollution in coastal sediments in the Northern Tyrrhenian Sea, Italy.Archives of Environmental Contamination and Toxicology, 69, 470-481. |
[31] | Rainbow PS (2002). Trace metal concentrations in aquatic invertebrates: Why and so what?Environmental Pollution, 120, 497-507. |
[32] | Rashed MN (2010). Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. Journal of Hazardous Materials, 178, 739-746. |
[33] | Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, Garcia-Berthou E, Pascal M, Pysek P, Sousa R, Tabacchi E, Vila M (2013). Impacts of biological invasions: What’s what and the way forward?Trends in Ecology & Evolution, 28, 58-66. |
[34] | Tilman D (1999). The ecological consequences of changes in biodiversity: A search for general principles.Ecology, 80, 1455-1474. |
[35] | Usman ARA, Alkredaa RS, Al-Wabel MI (2013). Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bio-accumulator. Ecotoxicology and Environmental Safety, 97, 263-270. |
[36] | Wang AJ, Chen J, Li DY (2008). Impact of Spartina altemiflora on sedimentary environment of coastal wetlands of the Quanzhou Bay. The Ocean Engineering, 26(4), 60-69. (in Chinese with English abstract)[王爱军, 陈坚, 李东义 (2008). 互花米草对福建泉州湾海岸湿地沉积环境影响. 海洋工程, 26(4), 60-69.] |
[37] | Wang Q, An SQ, Ma ZJ, Zhao B, Chen JK, Li B (2005). Invasive Spartina alterniflora: Biology, ecology and management. Acta Phytotaxonomica Sinica, 44, 559-588. (in Chinese with English abstract)[王卿, 安树青, 马志军, 赵斌, 陈家宽, 李博 (2006). 入侵植物互花米草——生物学、生态学及管理. 植物分类学报, 44, 559-588.] |
[38] | Yadav A, Ram A, Majithiya D, Salvi S, Sonavane S, Kamble A, Ghadigaonkar S, Jaiswar JRM, Gajbhiye SN (2015). Effect of heavy metals on the carbon and nitrogen ratio in Avicennia marina from polluted and unpolluted regions. Marine Pollution Bulletin, 101, 359-365. |
[39] | Zhang JP, Ren H, Shen WJ, Jian SG, Lu HF (2009). Community composition, species diversity and population biomass of the Gaoqiao mangrove forest in Southern China. In: Herrera JR ed. International Wetlands: Ecology, Conservation and Restoration. Nova Science, New York. 177-190. |
[40] | Zhang MY, Cui LJ, Sheng LX, Wang YF (2009). Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China.Ecological Engineering, 35, 563-569. |
[41] | Zhang Y, Huang G, Wang W, Chen L, Lin G (2012). Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology, 93, 588-597. |
[42] | Zhang ZW, Xu XR, Sun YX, Yu S, Chen YS, Peng JX (2014). Heavy metal and organic contaminants in mangrove ecosystems of China: A review.Environmental Science and Pollution Research, 21, 11938-11950. |
[43] | Zou F, Zhang H, Dahmer T, Yang Q, Cai J, Zhang W, Liang C (2008). The effects of benthos and wetland area on shorebird abundance and species richness in coastal mangrove wetlands of Leizhou Peninsula, China.Forest Ecology and Management, 255, 3813-3818. |
[1] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[2] | 史欢欢, 雪穷, 于振林, 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(1): 77-87. |
[3] | 孙慧敏, 姜姜, 崔莉娜, 张水锋, 张金池. 互花米草入侵对漳江口红树林湿地土壤有机碳官能团特征的影响[J]. 植物生态学报, 2018, 42(7): 774-784. |
[4] | 王丹, 张荣, 熊俊, 郭海强, 赵斌. 互花米草入侵对滨海湿地土壤碳库的贡献——基于稳定同位素的研究[J]. 植物生态学报, 2015, 39(10): 941-949. |
[5] | 胡楚琦, 刘金珂, 王天弘, 王文琳, 卢山, 周长芳. 三种盐胁迫对互花米草和芦苇光合作用的影响[J]. 植物生态学报, 2015, 39(1): 92-103. |
[6] | 黄艺, 王东伟, 蔡佳亮, 郑维爽. 球囊霉素相关土壤蛋白根际环境功能研究进展[J]. 植物生态学报, 2011, 35(2): 232-236. |
[7] | 傅晓萍, 豆长明, 胡少平, 陈新才, 施积炎, 陈英旭. 有机酸在植物对重金属耐性和解毒机制中的作用[J]. 植物生态学报, 2010, 34(11): 1354-1358. |
[8] | 吴福忠, 杨万勤, 张健, 周利强. 镉胁迫对桂花生长和养分积累、分配与利用的影响[J]. 植物生态学报, 2010, 34(10): 1220-1226. |
[9] | 张崇邦, 王江, 柯世省, 金则新. 五节芒定居对尾矿砂重金属形态、微生物群落功能及多样性的影响[J]. 植物生态学报, 2009, 33(4): 629-637. |
[10] | 李剑, 马建华, 宋博. 郑汴路路旁土壤-小麦系统重金属积累及其健康风险评价[J]. 植物生态学报, 2009, 33(3): 624-628. |
[11] | 赵聪蛟, 邓自发, 周长芳, 关保华, 安树青, 陈琳, 陆霞梅. 氮水平和竞争对互花米草与芦苇叶特征的影响[J]. 植物生态学报, 2008, 32(2): 392-401. |
[12] | 陈琳, 邓自发, 安树青, 赵聪蛟, 周长芳, 智颖飙. 淡咸水轮换浇灌抑制互花米草的克隆生长和繁殖[J]. 植物生态学报, 2007, 31(4): 645-651. |
[13] | 黄华梅, 张利权. 上海九段沙互花米草种群动态遥感研究[J]. 植物生态学报, 2007, 31(1): 75-82. |
[14] | 谭万能, 李志安, 邹碧. 植物对重金属耐性的分子生态机理[J]. 植物生态学报, 2006, 30(4): 703-712. |
[15] | 代全林, 袁剑刚, 方炜, 杨中艺. 玉米各器官积累Pb能力的品种间差异[J]. 植物生态学报, 2005, 29(6): 992-999. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19