植物生态学报 ›› 2005, Vol. 29 ›› Issue (4): 559-568.DOI: 10.17521/cjpe.2005.0075
所属专题: 碳循环
收稿日期:
2004-09-09
接受日期:
2004-12-15
出版日期:
2005-09-09
发布日期:
2005-07-31
通讯作者:
周国逸
基金资助:
TANG Xu-Li1,2, ZHOU Guo-Yi1,*()
Received:
2004-09-09
Accepted:
2004-12-15
Online:
2005-09-09
Published:
2005-07-31
Contact:
ZHOU Guo-Yi
About author:
* E-mail: gyzhou@scib.ac.cn摘要:
森林生态系统中的粗死木质残体(Coarse woody debris, CWD)不仅能够为其它生物提供生境,维持森林结构,而且对生物地球化学循环起着不可忽视的作用,CWD作为森林生态系统中重要的结构和功能元素,已经引起广泛关注。然而,华南地区典型亚热带森林生态系统中CWD的结构和功能方面的研究很少。该文报道了鼎湖山自然保护区内典型南亚热带森林生态系统中CWD的贮量及其特征,所选择的森林包括马尾松(Pinus massoniana)林、针阔叶混交林和季风常绿阔叶林,它们分别代表该气候区域内处于森林演替早期、中期和后期3个阶段的森林类型。其中马尾松林和针阔叶混交林都起源于20世纪30年代人工种植的马尾松纯林,由于长期受到包括收割松针、CWD和林下层植物等在内的人为活动的干扰,到2003年调查时马尾松林仍属于针叶林;而混交林样地自种植之后就未受到人为活动的干扰,自然过渡为针阔叶混交林类型。人为干扰对马尾松人工林的结构和功能产生了巨大的影响,马尾松林的生物量仅为针阔叶混交林生物量的35%。组成马尾松林、针阔叶混交林和季风常绿阔叶林CWD的树种数量分别为7、18和29;马尾松林中几乎没有CWD存在(贮量仅为0.1 Mg C·hm-2),针阔叶混交林CWD的贮量为8.7 Mg C·hm-2,季风常绿阔叶林CWD的贮量为13.2 Mg C·hm-2,分别占地上部分生物量的9.1%和11.3%;针阔叶混交林和季风常绿阔叶林中只有将近10%的CWD以枯立的方式存在。该区域内CWD的分解速率较快,在区域碳循环中将扮演重要角色,保留林地中的CWD是维持本区域森林生产力和森林可持续管理的重要举措。
唐旭利, 周国逸. 南亚热带典型森林演替类型粗死木质残体贮量及其对碳循环的潜在影响. 植物生态学报, 2005, 29(4): 559-568. DOI: 10.17521/cjpe.2005.0075
TANG Xu-Li, ZHOU Guo-Yi. COARSE WOODY DEBRIS BIOMASS AND ITS POTENTIAL CONTRI-BUTION TO THE CARBON CYCLE IN SUCCESSIONAL SUBTROPICAL FORESTS OF SOUTHERN CHINA. Chinese Journal of Plant Ecology, 2005, 29(4): 559-568. DOI: 10.17521/cjpe.2005.0075
林型 Forest type | 演替阶段 Successional stage | 林龄 Stand age (a) | 受保护时间 Years under protection (a) | 样地面积 Plot size (m2) | 生物量 Biomass (Mg·hm-2) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
马尾松林 Pine massoniana forest | 早期 Early-succession | 70 | ~14(莫江明等, | 10 000 | 60~80 (彭少麟和方炜, | |||||||||||||||||
针阔叶混交林 Mixed coniferous broud-leaved forest | 中期 Mid-succession | 70 | 70 | 1 200 | 261~283(彭少麟和张祝平, | |||||||||||||||||
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 后期 Advanced-succession | >400 | >400 (魏平和温达志, | 10 000 | 3081) |
表1 样地概况
Table 1 Description of study sites
林型 Forest type | 演替阶段 Successional stage | 林龄 Stand age (a) | 受保护时间 Years under protection (a) | 样地面积 Plot size (m2) | 生物量 Biomass (Mg·hm-2) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
马尾松林 Pine massoniana forest | 早期 Early-succession | 70 | ~14(莫江明等, | 10 000 | 60~80 (彭少麟和方炜, | |||||||||||||||||
针阔叶混交林 Mixed coniferous broud-leaved forest | 中期 Mid-succession | 70 | 70 | 1 200 | 261~283(彭少麟和张祝平, | |||||||||||||||||
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 后期 Advanced-succession | >400 | >400 (魏平和温达志, | 10 000 | 3081) |
特征 Character | 分解等级 Decay class | ||||
---|---|---|---|---|---|
轻度分解 Early | 中度分解 Intermediate | 高度分解Advanced | |||
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | |
叶Leaves | 存在Present | - | - | - | - |
枝Branches and twigs | 直径小于3 cm的细枝尚存,粗枝完整Twigs less than 3 cm present, large branches keep intact | 直径小于3 cm的细枝部分存在,粗枝完整 Twigs less than 3 cm partly present, large branches keep intact | 无细枝,粗枝部分存在,大部分断裂Absent of twigs, large branches present, but mostly broken | 无细枝,粗枝部分存在Absent of twigs, large branches partly present | - |
皮Bark | 完整,坚固Intact, tight | 基本完整,坚固Intact on the whole, tight | 部分存在,松驰Partly present, loose | 少量,松驰Trace present, loose | - |
木质结构Wood consistency | 坚固Solid | 坚固Solid | 较坚固Semi-solid | 部分坚固,易破裂Party solid, breakable | 松软,易破碎为粉末状Soft, powdery |
苔藓和真菌Moss and fungi | - | 覆盖面积小于表面积的25% Cover less than 25% of surface area | 覆盖面积为表面积的25%~50% Cover 25%-50% of surface area | 覆盖面积超过表面积的50% Cover more than 50% of surface area | 覆盖面积超过表面积的50% Cover more than 50% of surface area |
根系入侵 Invading root | - | - | - | 边材部分可见In sapwood | 心材部分可见In heartwood |
表2 鼎湖山CWD分解等级划分标准1)
Table 2 Classification system of CWD decay classes in forests at Dinghushan Nature Reserve
特征 Character | 分解等级 Decay class | ||||
---|---|---|---|---|---|
轻度分解 Early | 中度分解 Intermediate | 高度分解Advanced | |||
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | |
叶Leaves | 存在Present | - | - | - | - |
枝Branches and twigs | 直径小于3 cm的细枝尚存,粗枝完整Twigs less than 3 cm present, large branches keep intact | 直径小于3 cm的细枝部分存在,粗枝完整 Twigs less than 3 cm partly present, large branches keep intact | 无细枝,粗枝部分存在,大部分断裂Absent of twigs, large branches present, but mostly broken | 无细枝,粗枝部分存在Absent of twigs, large branches partly present | - |
皮Bark | 完整,坚固Intact, tight | 基本完整,坚固Intact on the whole, tight | 部分存在,松驰Partly present, loose | 少量,松驰Trace present, loose | - |
木质结构Wood consistency | 坚固Solid | 坚固Solid | 较坚固Semi-solid | 部分坚固,易破裂Party solid, breakable | 松软,易破碎为粉末状Soft, powdery |
苔藓和真菌Moss and fungi | - | 覆盖面积小于表面积的25% Cover less than 25% of surface area | 覆盖面积为表面积的25%~50% Cover 25%-50% of surface area | 覆盖面积超过表面积的50% Cover more than 50% of surface area | 覆盖面积超过表面积的50% Cover more than 50% of surface area |
根系入侵 Invading root | - | - | - | 边材部分可见In sapwood | 心材部分可见In heartwood |
演替阶段 Successional stage | ||||
---|---|---|---|---|
早期(马尾松林) Early (Pine massoniana forest)1) | 中期(针阔叶混交林) Middle (Mixed coniferous broad-leaved forest) | 后期(季风常绿阔叶林) Advanced (Monsoon evergreen broad-leaved forest)2) | ||
植被碳贮量 Total living biomass (Mg C·hm-2) | 40.605 | 116.180 | 147.80 | |
CWD碳贮量 CWD biomass (Mg C·hm-2) | 枯立木 Snags | 0.054 (0.071) | 0.885 (0.604) | 1.896 (0.026) |
倒木Logs | 0.048 (0.068) | 7.827 (5.814) | 11.316 (0.239) | |
合计Total | 0.102 (0.095) | 8.712 (5.672) | 13.210 (0.239) |
表3 鼎湖山演替序列典型森林生态系统CWD的贮量
Table 3 Estimation CWD biomass in successional forests at Dinghushan Nature Reserve
演替阶段 Successional stage | ||||
---|---|---|---|---|
早期(马尾松林) Early (Pine massoniana forest)1) | 中期(针阔叶混交林) Middle (Mixed coniferous broad-leaved forest) | 后期(季风常绿阔叶林) Advanced (Monsoon evergreen broad-leaved forest)2) | ||
植被碳贮量 Total living biomass (Mg C·hm-2) | 40.605 | 116.180 | 147.80 | |
CWD碳贮量 CWD biomass (Mg C·hm-2) | 枯立木 Snags | 0.054 (0.071) | 0.885 (0.604) | 1.896 (0.026) |
倒木Logs | 0.048 (0.068) | 7.827 (5.814) | 11.316 (0.239) | |
合计Total | 0.102 (0.095) | 8.712 (5.672) | 13.210 (0.239) |
图1 不同分解状态CWD的比例 A: 马尾松林Pinus massoniana forest B: 针阔叶混交林Mixed coniferous broad-leaved forest C: 季风常绿阔叶林 Monsoon evergreen broad-leaved forest
Fig.1 Relative distribution of CWD biomass among decay states in successional forests at Dinghushan Nature Reserve
林型 Forest type | 树种 Species | CWD 贮量 CWD biomass (Mg C·hm-2) | 比例 Percentage (%) |
---|---|---|---|
马尾松林Pine massoniana forest | 马尾松 Pinus massoniana | 0.088 | 88 |
桃金娘 Rhodomyrtus tomentosa | 0.006 | 6 | |
三叉苦 Evodia lepta | 0.004 | 4 | |
其余4种 Other 4 species | 0.002 | 2 | |
针阔叶混交林Mixed Coniferous broad-leaved forest | 马尾松 Pinus massoniana | 6.900 | 79 |
豺皮樟Litsea rotundigfolia | 0.600 | 7 | |
黄果厚壳桂 Cryptocarya concinna | 0.500 | 5 | |
其余15种 Other 15 species | 0.800 | 9 | |
季风常绿阔叶林Monsoon evergreen broad-leaved forest | 黄果厚壳桂 Cryptocarya concinna | 6.200 | 47 |
锥栗 Castanpsis chinensis | 3.400 | 26 | |
厚壳桂 Cryptocarya chinensis | 1.700 | 13 | |
荷木 Schima superba | 1.000 | 8 | |
其余25种 Other 25 species | 0.900 | 6 |
表4 CWD的种类组成
Table 4 Species classification of CWD
林型 Forest type | 树种 Species | CWD 贮量 CWD biomass (Mg C·hm-2) | 比例 Percentage (%) |
---|---|---|---|
马尾松林Pine massoniana forest | 马尾松 Pinus massoniana | 0.088 | 88 |
桃金娘 Rhodomyrtus tomentosa | 0.006 | 6 | |
三叉苦 Evodia lepta | 0.004 | 4 | |
其余4种 Other 4 species | 0.002 | 2 | |
针阔叶混交林Mixed Coniferous broad-leaved forest | 马尾松 Pinus massoniana | 6.900 | 79 |
豺皮樟Litsea rotundigfolia | 0.600 | 7 | |
黄果厚壳桂 Cryptocarya concinna | 0.500 | 5 | |
其余15种 Other 15 species | 0.800 | 9 | |
季风常绿阔叶林Monsoon evergreen broad-leaved forest | 黄果厚壳桂 Cryptocarya concinna | 6.200 | 47 |
锥栗 Castanpsis chinensis | 3.400 | 26 | |
厚壳桂 Cryptocarya chinensis | 1.700 | 13 | |
荷木 Schima superba | 1.000 | 8 | |
其余25种 Other 25 species | 0.900 | 6 |
地区及森林类型 Region and forest type | 演替阶段 Successional stage | CWD贮量 CWD biomass (Mg C·hm-2) | 参考文献 References | |||
---|---|---|---|---|---|---|
倒木Logs | 枯立木Snags | |||||
平均值Mean | 范围Range | 平均值Mean | 范围Range | |||
北美(西海岸)针叶林 Coniferous forest, North American (West coast) | 早期-中期 Early-mid (40~195) | 16.50 | 7.00~26.00 | 13.50 | 9.50~20.00 | Spies et al., |
老龄 Old-growth (200~900) | 31.50 | 27.00~36.80 | 27.00 | 20.50~31.50 | Spies et al., | |
北美落叶林 Deciduous forest, North American | 早期-中期 Early-mid (10~83) | 8.00 | 2.50~16.00 | 3.50 | 2.00~6.00 | Harmon et al., |
老龄 Old-growth (200 to >300) | 12.50 | 8.00~19.00 | 5.50 | - | Harmon et al., | |
美国(Harvard森林)针叶林和落叶林 Coniferous and deciduous forest, America (Harvard forest) | 针叶林 Coniferous forest (N/A) | 20.40 | - | - | - | Currie & Nadelhoffer, |
落叶林 Deciduous forest (N/A) | 13.80 | - | - | - | Currie & Nadelhoffer, | |
智利常绿阔叶林 Evergreen broad-leaved forest, Chile | 早期-中期 Early-mid (11~112) | 15.00 | 4.50~21.00 | 29.50 | 2.50~84.00 | Carmona et al., |
老龄 Old-growth (133~200) | 23.50 | 15.50~32.50 | 63.00 | 6.50~174.50 | Carmona et al., | |
中国华南地区南亚热带演替序列森林 Successional subtropical forests, Southern China | 早期 Early (70~80) | 0.05 | - | 0.05 | - | 本文This study |
中期 Middle (70~80) | 7.80 | - | 0.90 | - | 本文This study | |
老龄 Old-growth (>400) | 11.30 | - | 1.90 | - | 本文This study | |
澳大利亚低地热带雨林 Lowland tropical rainforest, Australian | 老龄 Old-growth (N/A) | 4.70 | - | 1.80 | - | Grove, |
砍伐后森林 Forest after logging (N/A) | 3.60 | - | 4.70 | - | Grove, | |
次生林 Secondary forest (>90) | 2.50 | - | 1.80 | - | Grove, | |
委内瑞拉热带荆棘林 Tropical thorn woodland, Venezuela | 0.70 | 0.06~1.37 | 1.20 | 0.33~2.10 | Delaney et al., | |
委内瑞拉热带干热森林 Tropical very dry forest, Venezuela | 1.45 | 0.99~1.66 | 2.40 | 2.09~2.70 | Delaney et al., | |
地区及森林类型 Region and forest type | 演替阶段 Successional stage | CWD贮量 CWD biomass (Mg C·hm-2) | 参考文献 References | |||
倒木Logs | 枯立木Snags | |||||
平均值Mean | 范围Range | 平均值Mean | 范围Range | |||
委内瑞拉热带干湿过渡森林 Tropical moist transition dry forest, Venezuela | 1.40 | 0~5.70 | 3.30 | 1.26~6.95 | Delaney et al., | |
委内瑞拉热带湿润森林 Tropical moist forest, Venezuela | 7.40 | 0~22.60 | 16.70 | 10.90~27.60 | Delaney et al., | |
委内瑞拉热带低山湿润森林 Tropical lower montane moist forest, Venezuela | 10.70 | 4.10~26.30 | 21.20 | 10.32~38.31 | Delaney et al., | |
委内瑞拉热带山地湿润森林 Tropical montane wet forest, Venezuela | 13.20 | 2.95~23.40 | 17.30 | 6.73~27.73 | Delaney et al., |
表5 不同森林生态系统CWD贮量的比较
Table 5 Comparison of CWD biomass in various forest ecosystems
地区及森林类型 Region and forest type | 演替阶段 Successional stage | CWD贮量 CWD biomass (Mg C·hm-2) | 参考文献 References | |||
---|---|---|---|---|---|---|
倒木Logs | 枯立木Snags | |||||
平均值Mean | 范围Range | 平均值Mean | 范围Range | |||
北美(西海岸)针叶林 Coniferous forest, North American (West coast) | 早期-中期 Early-mid (40~195) | 16.50 | 7.00~26.00 | 13.50 | 9.50~20.00 | Spies et al., |
老龄 Old-growth (200~900) | 31.50 | 27.00~36.80 | 27.00 | 20.50~31.50 | Spies et al., | |
北美落叶林 Deciduous forest, North American | 早期-中期 Early-mid (10~83) | 8.00 | 2.50~16.00 | 3.50 | 2.00~6.00 | Harmon et al., |
老龄 Old-growth (200 to >300) | 12.50 | 8.00~19.00 | 5.50 | - | Harmon et al., | |
美国(Harvard森林)针叶林和落叶林 Coniferous and deciduous forest, America (Harvard forest) | 针叶林 Coniferous forest (N/A) | 20.40 | - | - | - | Currie & Nadelhoffer, |
落叶林 Deciduous forest (N/A) | 13.80 | - | - | - | Currie & Nadelhoffer, | |
智利常绿阔叶林 Evergreen broad-leaved forest, Chile | 早期-中期 Early-mid (11~112) | 15.00 | 4.50~21.00 | 29.50 | 2.50~84.00 | Carmona et al., |
老龄 Old-growth (133~200) | 23.50 | 15.50~32.50 | 63.00 | 6.50~174.50 | Carmona et al., | |
中国华南地区南亚热带演替序列森林 Successional subtropical forests, Southern China | 早期 Early (70~80) | 0.05 | - | 0.05 | - | 本文This study |
中期 Middle (70~80) | 7.80 | - | 0.90 | - | 本文This study | |
老龄 Old-growth (>400) | 11.30 | - | 1.90 | - | 本文This study | |
澳大利亚低地热带雨林 Lowland tropical rainforest, Australian | 老龄 Old-growth (N/A) | 4.70 | - | 1.80 | - | Grove, |
砍伐后森林 Forest after logging (N/A) | 3.60 | - | 4.70 | - | Grove, | |
次生林 Secondary forest (>90) | 2.50 | - | 1.80 | - | Grove, | |
委内瑞拉热带荆棘林 Tropical thorn woodland, Venezuela | 0.70 | 0.06~1.37 | 1.20 | 0.33~2.10 | Delaney et al., | |
委内瑞拉热带干热森林 Tropical very dry forest, Venezuela | 1.45 | 0.99~1.66 | 2.40 | 2.09~2.70 | Delaney et al., | |
地区及森林类型 Region and forest type | 演替阶段 Successional stage | CWD贮量 CWD biomass (Mg C·hm-2) | 参考文献 References | |||
倒木Logs | 枯立木Snags | |||||
平均值Mean | 范围Range | 平均值Mean | 范围Range | |||
委内瑞拉热带干湿过渡森林 Tropical moist transition dry forest, Venezuela | 1.40 | 0~5.70 | 3.30 | 1.26~6.95 | Delaney et al., | |
委内瑞拉热带湿润森林 Tropical moist forest, Venezuela | 7.40 | 0~22.60 | 16.70 | 10.90~27.60 | Delaney et al., | |
委内瑞拉热带低山湿润森林 Tropical lower montane moist forest, Venezuela | 10.70 | 4.10~26.30 | 21.20 | 10.32~38.31 | Delaney et al., | |
委内瑞拉热带山地湿润森林 Tropical montane wet forest, Venezuela | 13.20 | 2.95~23.40 | 17.30 | 6.73~27.73 | Delaney et al., |
土壤微生物 Soil microbe | 马尾松林 Pinus massoniana forest | 针阔叶混交林 Mixed coniferous broad-leaved forest | 季风常绿阔叶林 Monsoon evergreen broad-leaved forest | |
---|---|---|---|---|
微生物数量Microbe amount | 1.168 0 | 1.365 0 | 2.085 0 | |
细菌Bacteria | 数量Amount | 1.034 0 | 1.157 0 | 1.953 0 |
百分比Percentage(%) | 88.53 | 84.76 | 93.67 | |
真菌Fungi | 数量Amount | 0.097 3 | 0.122 0 | 0.066 0 |
百分比Percentage(%) | 8.30 | 8.94 | 3.17 | |
放线菌Actinomycetes | 数量Amount | 0.036 9 | 0.086 2 | 0.066 0 |
百分比Percentage(%) | 3.17 | 6.30 | 3.17 |
表6 不同森林类型土壤微生物数量及其组成(106·g-1干土)(引自周丽霞等, 2002)
Table 6 Amount and composition of soil microbes in successional forests (106·g-1 dry soil) (from Zhou et al., 2002)
土壤微生物 Soil microbe | 马尾松林 Pinus massoniana forest | 针阔叶混交林 Mixed coniferous broad-leaved forest | 季风常绿阔叶林 Monsoon evergreen broad-leaved forest | |
---|---|---|---|---|
微生物数量Microbe amount | 1.168 0 | 1.365 0 | 2.085 0 | |
细菌Bacteria | 数量Amount | 1.034 0 | 1.157 0 | 1.953 0 |
百分比Percentage(%) | 88.53 | 84.76 | 93.67 | |
真菌Fungi | 数量Amount | 0.097 3 | 0.122 0 | 0.066 0 |
百分比Percentage(%) | 8.30 | 8.94 | 3.17 | |
放线菌Actinomycetes | 数量Amount | 0.036 9 | 0.086 2 | 0.066 0 |
百分比Percentage(%) | 3.17 | 6.30 | 3.17 |
[1] | Amaranthus MP, Trappe JM, Bednar L, Arthur D (1994). Hypogeal fungal production in mature Douglas-fir forest fragments and surrounding plantations and its relation to coarse woody debris and animal mycophagy. Canadian Journal of Forest Management, 24,2157-2165. |
[2] | Aumen NG (1990). Influence of coarse woody debris on nutrient retention in catastrophically disturbed streams. Hydrobiologia, 190,183-192. |
[3] | Bowman JC, Sleep D, Forbes GJ, Edwards M (2000). The association of small mammals with coarse woody debris at log and stand scales. Forest Ecology and Management, 129,119-124. |
[4] |
Brown S (2002). Measuring carbon in forests: current status and future challenges. Environmental Pollution, 116,363-372.
URL PMID |
[5] | Brown S, Lenart M, Mo JM (1995). Structure and organic matter dynamics of a human-impacted pine forest in a MAB reserve of subtropical China. Biotropica, 27,276-289. |
[6] | Busse MD (1994). Downed bole-wood decomposition in lodgepole pine forests of central Oregon. Soil Scientist Society of American Journal, 58,221-227. |
[7] | Carmona MR, Armesto JJ, Aravena JC, Pérez CA (2002). Coarse woody debris biomass in successional and primary temperate forests in Chiloé Island, Chile. Forest Ecology and Management, 164,265-275. |
[8] | Chambers JQ, Higuchi N, Schimel JP, Ferreica LV, Melack JM (2000). Decomposition and carbon cycling of dead trees in tropical forestsof the central Amazon. Oecologia, 122,380-388. |
[9] | Chambers JQ, Schimel JP, Nobre AD (2001). Respiration from coarse woody litter in central Amazon Forests. Biogeochemistry, 52,115-131. |
[10] | Clark DB, Clark DA, Brown S, Oberbauer SF, Veldkamp E (2002). Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. Forest Ecology and Management, 164,237-248. |
[11] | Crowford RH, Li CY, Floyd M (1997). Nitrogen fixation in root-colonized large woody residue of Oregon coastal forests. Forest Ecology and Management, 92,229-234. |
[12] | Currie WS, Nadelhoffer KJ (2002). The imprint of land-use history: patterns of carbon and nitrogen in downed woody debris at the Harvest Forest. Ecosystems, 5,446-460. |
[13] | Delaney M, Brown S, Lugo AE, Lezama AT, Quintero NB (1998). The quantity and turnover of dead wood in permanent forest in six life zones of Venezuela. Biotropica, 30,2-11. |
[14] | Dobbertin M, Ringling D, Baltensweiler A (2001). Tree mortality in an unmanaged mountain pine (Pinus mugo var. uncinata) stand in the Swiss National Park impacted by root rot fungi. Forest Ecology and Management, 145,79-89. |
[15] | Fahey TJ (1983). Nutrient dynamics of aboveground detritus in lodgepole pine (Pinus contorta ssp. latifolia) ecosystems, southeastern Wyoming. Ecology Monograph, 53,51-72. |
[16] | Fang YT(方运霆), Mo JM(莫江明), Peng SL (彭少麟), Li DJ(李德军) (2003). Role of forest succession on carbon sequestration of forest ecosystems in lower subtropical China. Acta Ecologica Sinica (生态学报), 23,1685-1694. (in Chinese with English abstract) |
[17] | Foster JR, Lang GE (1982). Decomposition of red spruce and balsam fir boles in the White Mountains of New Hampshire. Canadian Journal of Forest Research, 12,617-626. |
[18] | France RL (1997). The importance of beaver lodges in structuring littoral communities in boreal headwater lakes. Canadian Journal of Zoology, 75,1009-1013. |
[19] | Graham RL, Cromack KC (1982). Mass, nutrient content, and decay rate of dead booles in rain forests of Olympic National Park. Canadian Journal of Forest Research, 12,511-521. |
[20] | Grier CC (1978). A Tsuga heterophylla-Picea sitchensis ecosystem of coastal Oregon: decomposition and nutrient balances of fallen logs . Canadian Journal of Forest Research, 8,198-206. |
[21] | Grove SJ (2001). Extent and ecomposition of dead wood in Australian lowland tropical rainforest with different management histories. Forest Ecology and Management, 154,35-53. |
[22] | Harmon ME, Brown S, Gower ST (1993). Consequences of tree mortality to the global carbon cycle. In: Vinson TS, Kolchugina TPeds. Carbon Cycling in Boreal and Subarctic Ecosystems, Biosphertic Response and Feedbacks to Global Climate Change. Symposium Proceedings. USEPA, Corvallis, OR,167-176. |
[23] | Harmon ME, Chen H (1991). Coarse woody debris dynamics in two old-growth ecosystems. BioScience, 41,604-610. |
[24] | Harmon ME, Ferrel WK, Franklin JF (1990). Effects on carbon storage of conversion of old-growth forests to young forests. Science, 247,699-702. |
[25] | Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Latin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW (1986). Ecology of coarse woody debris in temperate ecosystems. In: Macfadyen A, Ford EDeds. Ecology of Coarse Woody Debris in Temperate Ecosystems. Academic Press, London,133-302. |
[26] | Harmon ME, Sexton J, Caldwell BA, Carpenter SE (1994). Fungal sporocarp mediated losses of Ca, Fe, K, Mg, Mn, N, P, and Zn from conifer logs in the early stages of decomposition. Canadian Journal of Forest Research, 24,1883-1893. |
[27] | Huang ZL (黄忠良), Kong GH(孔国辉), Wei P(魏平) (1998). Plant species diversity dynamics in Dinghu mountain forests. Chinese Biodiversity (生物多样性), 6,116-121. (in Chinese with English abstract) |
[28] | Hughes RF, Kauffman JB, Jaramillo VJ (2000). Ecosystem-scale impacts of deforestation and land use in a humid tropical region of Mexico. Ecological Applications, 10,515-527. |
[29] | Idol TW, Ponder F, Figler RA, Pope PE (2001). Characterization of coarse woody debris across a 100 year chronosequence of upland oak-hickory forests. Forest Ecology and Management, 149,153-161. |
[30] | Johnson EA, Greene DF (1991). A method for studying dead bole dynamics in Pinus contorta var. latifolia-Picea engelmannii forests . Journal of Vegetation Science, 2,523-530. |
[31] | Kimoto AT, Mizuyama UT, Li C (2002). Influences of human activities on sediment discharge from devastated weathered granite hills of southern China: effects of 4-year elimination of human activities. Catena, 48,217-233. |
[32] | Kong GH(孔国辉), Mo JM(莫江明) (2002). Population dynamics of a human-impacted Masson pine plantation in Dinghushan. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 10,193-200. (in Chinese with English abstract) |
[33] | Kong GH, Liang C, Wu HM, Huang ZL (1993). Dinghushan Biosphere Reserve: Ecological Research History and Perspective. Science Press, Beijing,2-12. |
[34] | Mackensen J, Jügen B (2003). Density loss and respiration rates in coarse woody debirs of Pinus radiata, Eucalyptus regnanas and Eucalyptus maculata. Soil Biology & Biochemistry, 35,177-186. |
[35] | McKenny HJA, Kirkpatrick JB (1999). The role of fallen logs in the regeneration of tree species in Tasmanian mixed forest. Australian Journal of Botany, 47,745-753. |
[36] | Means JE, Cromack K, MacMillan PC (1985). Comparison of decomposition models using wood density of Douglas-fir logs. Canadian Journal of Forest Research, 15,1092-1098. |
[37] | Mo JM (莫江明), Kong GH(孔国辉), Brown S, Fang YT(方运霆), Zhang YC(张佑昌) (2001). Litterfall response to human impacts in a Dinghushan pine forest. Acta Phytoecologica Sinica (植物生态学报), 25,656-664. (in Chinese with English abstract) |
[38] | Mo JM(莫江明), Kong GH(孔国辉), Brown S, Lenart M (1997). Effects of litter and understory removal on soil N availability in a subtropical pine forest of China. Acta Ecologica Sinica (生态学报), 17,109-112. (in Chinese with English abstract) |
[39] | Muller RN (2003). Landscape patterns of change in coarse woody debris accumulation in an old-growth deciduous forest on the Cumberland Plateau, southeastern Kentucky. Canadian Journal of Forest Research, 33,763-769. |
[40] | Muller RN, Liu Y (1991). Coarse woody debris in an old-growth deciduous forest on the Cumberland Plateau, southeastern Kentucky. Canadian Journal of Forest Research, 21,1567-1572. |
[41] | Nakamura F, Swanson FJ (1994). Distribution of coarse woody debris in a mountain stream, western Cascade Range Oregon. Canadian Journal of Forest Research, 24,2395-2403. |
[42] | Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44,322-331. |
[43] | Peng SL(彭少麟), Fang W(方炜) (1995). Features of biomass and productivity dynamics in successional process of low subtropical forest. Ecologic Science (生态科学), 2,1-9. (in Chinese with English abstract) |
[44] | Peng SL(彭少麟), Zhang ZP(张祝平) (1994). Studies on the biomass, primary productivity and energy use efficiency of the mixed forest community in Mt. Dinghushan, Guangdong. Acta Ecologica Sinica (生态学报), 14,300-305. (in Chinese with English abstract) |
[45] | Rouvinen S, Kuuluvainen T, Karjalainen L (2002). Coarse woody debris in old Pinus sylvestris dominated forests along a geographic and human impact gradient in boreal Fennoscandia. Canadian Journal of Forest Research, 32,2184-2200. |
[46] | Smil V (1983). Deforestation in China. Ambio, 12,226-231. |
[47] | Sollins P (1982). Input and decay of coarse woody debris in coniferous stands in western Oregon and Washington. Canadian Journal of Forest Research, 12,18-28. |
[48] | Spetich MA, Shifley SR, Parker GR (1999). Regional distribution and dynamics of coarse woody debris in Miderwestern old-growth forest. Forest Science, 45,302-313. |
[49] | Spies TA, Franklin JP, Thomas TB (1988). Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology, 69,1689-1702. |
[50] | Sturtevant BR, Bissonette JA, Long JN, Roberts DW (1997). Coarse woody debris as a function of age, stand structure, and disturbance in boreal Newfoundland. Ecological Applications, 7,702-712. |
[51] | Tang XL(唐旭利), Zhou GY(周国逸), Wen DZ(温达志), Zhang DQ(张德强), Yan JH(闫俊华) (2003a). Distribution of carbon storage in a lower subtropical monsoon evergreen broad-leaved forest in Dinghushan Nature Reserve. Acta Ecologica Sinica (生态学报), 23,90-99. (in Chinese with English abstract) |
[52] | Tang XL(唐旭利), Zhou GY(周国逸), Zhou X(周霞), Wen DZ(温达志), Zhang QM(张倩媚), Yin GC(尹光彩) (2003b). Coarse woody debris in monsoon evergreen broad-leaved forests of Dinghushan Nature Reserve. Acta Phytoecologica Sinica (植物生态学报), 27,484-489. (in Chinese with English abstract) |
[53] | Tyrrell LE, Crow TR (1994). Dynamis of dead wood in old-grwoth hemlock-hardwood forests of northern Wisconsin and northern Michigan. Canadian Journal of Forest Ecology, 24,1672-1683. |
[54] | Veblen TT, Alaback PB (1996). A comparative review of forest dynamics and disturbance in the temperate rainforests of North and South America. In: Lawford RG, Alaback PB, Fuentes Eeds. High Latitude Rainforest and Associated Ecosystems of the West Coast of the Americas. Springer Verlag, New York,173-213. |
[55] | Wei P(魏平), Wen DZ(温达志), Huang ZL(黄忠良), Zhang QM(张倩媚), Kong GH(孔国辉) (1997). The biomass and characteristic o the dead trees in monsoon evergreen broad-leaved forest in Dinghushan. Acta Ecologica Sinica (生态学报), 17,505-510. (in Chinese with English abstract) |
[56] | Wei P (魏平), Wen DZ(温达志) (1999). Effects of religious culture on forest resource conservation in Dinghu mountain. Chinese Biodiversity (生物多样性), 7,250-254. (in Chinese with English abstract) |
[57] | Wen DZ(温达志), Wei P(魏平), Kong GH(孔国辉), Zhang QM(张倩媚), Huang ZL(黄忠良) (1997). Biomass study of the community of Castanopsis chinensis+ Cryptocarya concinna+ Schima superba in a southern China reserve. Acta Ecologica Sinica (生态学报), 17,497-504. (in Chinese with English abstract) |
[58] | Wen DZ(温达志), Zhang DQ(张德强), Wei P(魏平), Kong GH(孔国辉) (1998). Vegetation biomass, coarse woody debris storage and litter dynamics of the community of Castanopsis chinensis, Cryptocarya concinna. Tropical and Subtropical Forest Ecosystem Research (热带亚热带森林生态系统研究), 8,47-52. (in Chinese with English abstract) |
[59] | Xu GL(徐国良), Huang ZL(黄忠良), Ouyang XJ(欧阳学军), Peng SJ(彭闪江) (2002). Preliminary studies on aboveground invertebrates in Dinghushan Nature Reserve. Tropical and Subtropical Forest Ecosystem Research (热带亚热带森林生态系统研究), 9,203-208. (in Chinese with English abstract) |
[60] | Zhou LX(周丽霞), Yi WM(蚁伟民), Yi ZG(易志刚), Ding MM(丁明懋) (2002). Soil microbial characteristics of several vegetations at different elevation in Dinghushan Biosphere Reserve. Tropical and Subtropical Forest Ecosystem Research (热带亚热带森林生态系统研究), 9,169-174. (in Chinese with English abstract) |
[1] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[2] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[3] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[4] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[5] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[6] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[7] | 车俭, 郑洁, 蒋娅, 金毅, 乙引. 中国亚热带森林动态监测样地常绿和落叶木本被子植物谱系结构及生态习性差异[J]. 植物生态学报, 2020, 44(10): 1007-1014. |
[8] | 张振振, 赵平, 张锦秀, 斯瑶. 亚热带常绿阔叶林散孔材和环孔材树种导管及叶片功能性状的比较[J]. 植物生态学报, 2019, 43(2): 131-138. |
[9] | 谭正洪, 于贵瑞, 周国逸, 韩士杰, 夏禹九, 前田高尚, 小杉绿子, 山野井克己, 李胜功, 太田岳史, 平田竜一, 安田幸生, 中野隆志, 小南裕志, 北村兼三, 溝口康子, 廖志勇, 赵俊福, 杨廉雁. 亚洲东部森林的小气候特征: 1. 辐射和能量的平衡[J]. 植物生态学报, 2015, 39(6): 541-553. |
[10] | 徐婷, 曹林, 申鑫, 佘光辉. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算[J]. 植物生态学报, 2015, 39(4): 309-321. |
[11] | 申鑫, 曹林, 徐婷, 佘光辉. 基于高分辨率与高光谱遥感影像的北亚热带马尾松及次生落叶树种的分类[J]. 植物生态学报, 2015, 39(12): 1125-1135. |
[12] | 范跃新,杨玉盛,郭剑芬,杨智杰,陈光水,谢锦升,钟小剑,徐玲琳. 中亚热带常绿阔叶林不同演替阶段土壤呼吸及其温度敏感性的变化[J]. 植物生态学报, 2014, 38(11): 1155-1165. |
[13] | 韩天丰, 周国逸, 李跃林, 刘菊秀, 张德强. 中国南亚热带森林不同演替阶段土壤呼吸的分离量化[J]. 植物生态学报, 2011, 35(9): 946-954. |
[14] | 李荣华, 邓琦, 周国逸, 张德强. 起始时间对亚热带森林凋落物分解速率的影响[J]. 植物生态学报, 2011, 35(7): 699-706. |
[15] | 周文嘉, 石兆勇, 王娓. 中国东部亚热带森林土壤呼吸的时空格局[J]. 植物生态学报, 2011, 35(7): 731-740. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19