植物生态学报 ›› 2014, Vol. 38 ›› Issue (11): 1155-1165.DOI: 10.3724/SP.J.1258.2014.00111
• 研究论文 • 下一篇
范跃新,杨玉盛,郭剑芬(),杨智杰,陈光水,谢锦升,钟小剑,徐玲琳
收稿日期:
2014-06-09
接受日期:
2014-08-29
出版日期:
2014-06-09
发布日期:
2014-11-17
通讯作者:
郭剑芬
基金资助:
FAN Yue-Xin,YANG Yu-Sheng,GUO Jian-Fen(),YANG Zhi-Jie,CHEN Guang-Shui,XIE Jin-Sheng,ZHONG Xiao-Jian,XU Ling-Lin
Received:
2014-06-09
Accepted:
2014-08-29
Online:
2014-06-09
Published:
2014-11-17
Contact:
GUO Jian-Fen
摘要:
为探明中亚热带地区常绿阔叶林演替序列土壤呼吸(Rs)的变化趋势及其影响机制, 在福建省建瓯市万木林自然保护区选取演替时间分别为15年(演替初期)、47年(演替中期)和110年(演替后期)三个不同演替阶段, 进行了为期1年的野外原位观测。结果发现: 演替初期、中期和后期的Rs分别为2.38、3.32和3.91 µmol·m -2·s -1, 温度敏感性(Q10值)分别为2.64、1.97和1.79; 与演替初期相比, 演替后期的Rs显著增加64.29%, Q10值显著降低32.30%; 不同演替阶段Rs的季节变化模式相似, 温度和含水量可分别解释季节变化的69.5% (初期)、81.9% (中期)和61.3% (后期); 回归分析发现, Rs与凋落物年归还量、细根生物量和土壤全氮和土壤有机质碳含量显著正相关。表明本研究区内植被演替促进了土壤碳排放, 降低了土壤呼吸的温度敏感性; 土壤碳输入增加、养分含量的提高和细根生物量增大是中亚热带常绿阔叶林Rs随演替进程逐渐增大的主要原因。
范跃新,杨玉盛,郭剑芬,杨智杰,陈光水,谢锦升,钟小剑,徐玲琳. 中亚热带常绿阔叶林不同演替阶段土壤呼吸及其温度敏感性的变化. 植物生态学报, 2014, 38(11): 1155-1165. DOI: 10.3724/SP.J.1258.2014.00111
FAN Yue-Xin,YANG Yu-Sheng,GUO Jian-Fen,YANG Zhi-Jie,CHEN Guang-Shui,XIE Jin-Sheng,ZHONG Xiao-Jian,XU Ling-Lin. Changes in soil respiration and its temperature sensitivity at different successional stages of evergreen broadleaved forests in mid-subtropical China. Chinese Journal of Plant Ecology, 2014, 38(11): 1155-1165. DOI: 10.3724/SP.J.1258.2014.00111
演替初期 Early successional stage | 演替中期 Middle successional stage | 演替后期 Later successional stage | |
---|---|---|---|
海拔 Elevation (m) | 307 | 290 | 355 |
坡度 Slope | 28.5° | 19.7° | 21.6° |
平均树高 Mean tree hight (m) | 6.7 | 10.2 | 15.4 |
平均胸径 Mean DBH (cm) | 8.3 | 13.4 | 17.6 |
郁闭度 Canopy closure (%) | 45 | >90 | >93 |
土壤容重 Soil bulk density (g·cm-3) | 1.35 | 1.22 | 1.14 |
土壤pH值 Soil pH value | 4.56 | 4.21 | 3.93 |
土壤全氮 Total soil nitrogen (g·kg-1) | 0.94 | 1.32 | 1.22 |
土壤全磷 Total soil phosphorus (g·kg-1) | 0.34 | 0.44 | 0.46 |
土壤全钾 Total soil potassium (g·kg-1) | 8.21 | 7.23 | 7.31 |
土壤有机碳 Soil organic carbon (SOC) (g·kg-1) | 14.5 | 18.9 | 20.3 |
表1 试验样地概况
Table 1 General information of the experimental sites
演替初期 Early successional stage | 演替中期 Middle successional stage | 演替后期 Later successional stage | |
---|---|---|---|
海拔 Elevation (m) | 307 | 290 | 355 |
坡度 Slope | 28.5° | 19.7° | 21.6° |
平均树高 Mean tree hight (m) | 6.7 | 10.2 | 15.4 |
平均胸径 Mean DBH (cm) | 8.3 | 13.4 | 17.6 |
郁闭度 Canopy closure (%) | 45 | >90 | >93 |
土壤容重 Soil bulk density (g·cm-3) | 1.35 | 1.22 | 1.14 |
土壤pH值 Soil pH value | 4.56 | 4.21 | 3.93 |
土壤全氮 Total soil nitrogen (g·kg-1) | 0.94 | 1.32 | 1.22 |
土壤全磷 Total soil phosphorus (g·kg-1) | 0.34 | 0.44 | 0.46 |
土壤全钾 Total soil potassium (g·kg-1) | 8.21 | 7.23 | 7.31 |
土壤有机碳 Soil organic carbon (SOC) (g·kg-1) | 14.5 | 18.9 | 20.3 |
图1 不同演替阶段土壤温度月动态(平均值±标准误差, n = 15)。E, 演替初期。L, 演替后期。M, 演替中期。
Fig. 1 Monthly dynamics of soil temperature in different successional stages (mean ± SE, n = 15). E, Early successional stage. L, Late successional stage. M, Middle successional stage.
图2 不同演替阶段土壤含水量月动态(平均值±标准误差, n = 15)。E, 演替初期。L, 演替后期。M, 演替中期。
Fig. 2 Monthly dynamics of soil water content in different successional stages (mean ± SE, n = 15). E, Early successional stage. L, Late successional stage. M, Middle successional stage.
图3 不同演替阶段土壤呼吸月动态(平均值±标准误差, n = 15)。E, 演替初期。L, 演替后期。M, 演替中期。字母不同表示不同月份土壤呼吸速率存在显著差异(p < 0.05)。
Fig. 3 Monthly dynamics of soil respiration in different successional stages (mean ± SE, n = 15). E, Early successional stage. L, Late successional stage. M, Middle successional stage. Different letters indicate significant differences among different months (p < 0.05).
演替阶段 Successional stage | Rs = aebT | Rs = aW+b | Rs = aebTWc | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | c | R2 | |||
演替初期 Early successional stage | 0.668 | 0.070 | 0.636** | -0.072 | 4.091 | 0.289 | 1.743 | 0.066 | -0.301 | 0.695** | ||
演替中期 Middle successional stage | 0.901 | 0.070 | 0.800** | -0.075 | 4.683 | 0.104 | 0.453 | 0.074 | 0.219 | 0.819** | ||
演替后期 Late successional stage | 1.668 | 0.048 | 0.582** | -0.048 | 4.995 | 0.041 | 0.706 | 0.052 | 0.258 | 0.613** |
表2 不同演替阶段土壤呼吸与土壤温度和含水量的关系模型
Table 2 Relationships of soil respiration with soil temperature and moisture in different successional stages
演替阶段 Successional stage | Rs = aebT | Rs = aW+b | Rs = aebTWc | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | c | R2 | |||
演替初期 Early successional stage | 0.668 | 0.070 | 0.636** | -0.072 | 4.091 | 0.289 | 1.743 | 0.066 | -0.301 | 0.695** | ||
演替中期 Middle successional stage | 0.901 | 0.070 | 0.800** | -0.075 | 4.683 | 0.104 | 0.453 | 0.074 | 0.219 | 0.819** | ||
演替后期 Late successional stage | 1.668 | 0.048 | 0.582** | -0.048 | 4.995 | 0.041 | 0.706 | 0.052 | 0.258 | 0.613** |
图4 不同演替阶段土壤呼吸速率和年通量(平均值±标准误差, n = 3)。E, 演替初期; L, 演替后期; M, 演替中期。字母不同表示不同演替阶段土壤呼吸差异显著(p < 0.05)。
Fig. 4 Annual soil respiration (Rs) and flux in different successional stages (mean ± SE, n = 3). E, early successional stage; L, late successional stage; M, middle successional stage. Different letters indicate significant differences among successional stages (p < 0.05).
图5 0-20 cm土层土壤有机碳含量(SOC)、全氮含量(TN)、细根生物量(Fine root)和凋落物量(Litter)与土壤呼吸的相关分析。
Fig. 5 Correlations of soil respiration with litterfall (Litter), fine root biomass (Fine root), contents of soil organic carbon (SOC) and total nitrogen (TN) in 0-20 cm soil layer.
图6 不同演替阶段土壤呼吸温度敏感性(Q10) (平均值±标准误差, n = 3)。E, 演替初期; L, 演替后期; M, 演替中期。不同字母表示不同演替阶段Q10值差异显著(p < 0.05)。
Fig. 6 Temperature sensitivity (Q10) of soil respiration in different successional stages (mean ± SE, n = 3). E, early successional stage; L, late successional stage; M, middle successional stage. Different letters indicate significant differences among successional stages (p < 0.05).
地理位置 Geographical location | 植被类型 Vegetation type | 演替时间 Succession time (a) | 变化率 Variation range | 参考文献 Reference |
---|---|---|---|---|
加拿大魁北克省Québec, Canada | 黒云杉 Picea mariana | 8-105 | 先增加69%, 后降低21% First increased 69%, than decreased 21% | Payeur-Poirier et al., 2012 |
美国阿拉斯加州 Alaska, U.S. | 黒云杉 Picea mariana | 1-140 | 增加59% Increased 59% | O’Neill et al., 2006 |
加拿大马尼托巴湖Manitoba, Canada | 黒云杉 Picea mariana | 11-130 | 先增加149%, 后降低30% First increased 149%, than decreased 30% | Litvak et al., 2003 |
美国威斯康辛州Wisconsin, U.S. | 美洲山杨、美洲糖槭 Populus tremuloides, Acer saccharum | 3-350 | 先增加7%, 后降低29% First increased 7%, than decreased 29% | Tang et al., 2009 |
美国俄勒冈州西部、 华盛顿州南部 Western Oregon and southern Washington, U.S. | 花旗松、异叶铁杉 Pseudotsuga menziesii, Tsuga heterophylla | 13-795 | 降低47% Decreased 47% | Sun et al., 2004 |
异叶铁杉、花旗松 Tsuga heterophylla, Pseudotsuga menziesii | 12-185 | 增加36% Increased 36% | ||
美国黄松、北美翠柏 Pinus contorta, Calocedrus decurrens | 9-316 | 增加66% Increased 66% | ||
中国河南 Henan, China | 锐齿槲栎 Quercus aliena var. acuteserrata | 40-143 | 增加40% Increased 40% | Luan et al., 2011 |
中国浙江 Zhejiang, China | 茶树 Tea bush | 10-90 | 增加62% Increased 62% | 俞慎等, 2003 |
本研究 This study | 杉木林、混交林、常绿阔叶林 Chinese fir, coniferous and broad-leaved mixed forest, evergreen broad-leaved forest | 15-110 | 增加64% Increased 64% | 本研究数据 This study |
中国广东 Guangdong, China | 马尾松、混交林、常绿阔叶林 Coniferous Masson pine forest, coniferous and broad-leaved mixed forest, evergreen broad-leaved forest | 50-400 | 增加174% Increased 174% | Yan et al., 2006 |
表3 植被演替对不同气候带森林土壤呼吸的影响
Table 3 The influence of forest succession on soil respiration in different climatic zones
地理位置 Geographical location | 植被类型 Vegetation type | 演替时间 Succession time (a) | 变化率 Variation range | 参考文献 Reference |
---|---|---|---|---|
加拿大魁北克省Québec, Canada | 黒云杉 Picea mariana | 8-105 | 先增加69%, 后降低21% First increased 69%, than decreased 21% | Payeur-Poirier et al., 2012 |
美国阿拉斯加州 Alaska, U.S. | 黒云杉 Picea mariana | 1-140 | 增加59% Increased 59% | O’Neill et al., 2006 |
加拿大马尼托巴湖Manitoba, Canada | 黒云杉 Picea mariana | 11-130 | 先增加149%, 后降低30% First increased 149%, than decreased 30% | Litvak et al., 2003 |
美国威斯康辛州Wisconsin, U.S. | 美洲山杨、美洲糖槭 Populus tremuloides, Acer saccharum | 3-350 | 先增加7%, 后降低29% First increased 7%, than decreased 29% | Tang et al., 2009 |
美国俄勒冈州西部、 华盛顿州南部 Western Oregon and southern Washington, U.S. | 花旗松、异叶铁杉 Pseudotsuga menziesii, Tsuga heterophylla | 13-795 | 降低47% Decreased 47% | Sun et al., 2004 |
异叶铁杉、花旗松 Tsuga heterophylla, Pseudotsuga menziesii | 12-185 | 增加36% Increased 36% | ||
美国黄松、北美翠柏 Pinus contorta, Calocedrus decurrens | 9-316 | 增加66% Increased 66% | ||
中国河南 Henan, China | 锐齿槲栎 Quercus aliena var. acuteserrata | 40-143 | 增加40% Increased 40% | Luan et al., 2011 |
中国浙江 Zhejiang, China | 茶树 Tea bush | 10-90 | 增加62% Increased 62% | 俞慎等, 2003 |
本研究 This study | 杉木林、混交林、常绿阔叶林 Chinese fir, coniferous and broad-leaved mixed forest, evergreen broad-leaved forest | 15-110 | 增加64% Increased 64% | 本研究数据 This study |
中国广东 Guangdong, China | 马尾松、混交林、常绿阔叶林 Coniferous Masson pine forest, coniferous and broad-leaved mixed forest, evergreen broad-leaved forest | 50-400 | 增加174% Increased 174% | Yan et al., 2006 |
地理位置 Geographical location | 植被类型 Vegetation type | 演替时间 Succession time (a) | 变化率 Variation range | 参考文献 Reference |
---|---|---|---|---|
加拿大魁北克省 Québec, Canada | 黒云杉 Picea mariana | 8-105 | 增加31% Increased 31% | Payeur-Poirier et al., 2012 |
美国威斯康辛州Wisconsin, U.S. | 美洲山杨、美洲糖槭 Populus tremuloides, Acer saccharum | 3-350 | 降低58% Decreased 58% | Tang et al., 2009 |
中国河南 Henan, China | 锐齿槲栎 Quercus aliena var. acuteserrata | 40-143 | 先增加22%, 后降低15% First increased 22%, than decreased 15% | Luan et al., 2011 |
本研究 This study | 杉木林、混交林、常绿阔叶林 Chinese fir, coniferous and broad-leaved mixed forest, evergreen broad-leaved forest | 15-110 | 降低32% Decreased 32% | 本研究数据 This study |
中国广东 Guangdong, China | 马尾松、混交林、常绿阔叶林 Coniferous Masson pine forest, coniferous and broad-leaved mixed forest, evergreen broad-leaved forest | 50-400 | 降低5% Decreased 5% | Yan et al., 2009 |
表4 植被演替对不同气候带森林土壤呼吸Q10值的影响
Table 4 The influence of forest succession on Q10 value in different climatic zones
地理位置 Geographical location | 植被类型 Vegetation type | 演替时间 Succession time (a) | 变化率 Variation range | 参考文献 Reference |
---|---|---|---|---|
加拿大魁北克省 Québec, Canada | 黒云杉 Picea mariana | 8-105 | 增加31% Increased 31% | Payeur-Poirier et al., 2012 |
美国威斯康辛州Wisconsin, U.S. | 美洲山杨、美洲糖槭 Populus tremuloides, Acer saccharum | 3-350 | 降低58% Decreased 58% | Tang et al., 2009 |
中国河南 Henan, China | 锐齿槲栎 Quercus aliena var. acuteserrata | 40-143 | 先增加22%, 后降低15% First increased 22%, than decreased 15% | Luan et al., 2011 |
本研究 This study | 杉木林、混交林、常绿阔叶林 Chinese fir, coniferous and broad-leaved mixed forest, evergreen broad-leaved forest | 15-110 | 降低32% Decreased 32% | 本研究数据 This study |
中国广东 Guangdong, China | 马尾松、混交林、常绿阔叶林 Coniferous Masson pine forest, coniferous and broad-leaved mixed forest, evergreen broad-leaved forest | 50-400 | 降低5% Decreased 5% | Yan et al., 2009 |
1 |
Adachi M, Bekku YS, Rashidah W, Okuda T, Koizumi H ( 2006). Differences in soil respiration between different tropical ecosystems. Applied Soil Ecology, 34, 258-265.
DOI URL |
2 | Amiro BD, Barr AG, Barr JG, Black TA, Bracho R, Brown M, Chen J, Clark KL, Davis KJ, Desai AR, Dore S, Engel V, Fuentes JD, Goldstein AH, Goulden ML, Kolb TE, Lavigne MB, Law BE, Margolis HA, Martin T, McCaughey JH, Misson L, Montes-Helu M, Noormets A, Randerson JT, Starr G, Xiao J ( 2010). Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research, 115, doi: 10.1029/2010JG001390. |
3 |
Bolat İ ( 2013). The effect of thinning on microbial biomass C, N and basal respiration in black pine forest soils in Mudurnu, Turkey. European Journal of Forest Research, 133, 131-139.
DOI URL |
4 |
Bose AK, Schelhaas M-J, Mazerolle MJ, Bongers F ( 2014). Temperate forest development during secondary succes- sion: effects of soil, dominant species and management. European Journal of Forest Research, 133, 511-523.
DOI URL |
5 |
Chen GS, Yang YS, Gao R, Xie JS, Yang ZJ, Mao YL ( 2008). Changes in belowground carbon allocation in a Chinese fir chronosequence in Fujian Province, China. Journal of Plant Ecology (Chinese Version), 32, 1285-1293. (in Chinese with English abstract)
DOI URL |
陈光水, 杨玉盛, 高人, 谢锦升, 杨智杰, 毛艳玲 ( 2008). 杉木林年龄序列地下碳分配变化. 植物生态学报, 32, 1285-1293.]
DOI URL |
|
6 |
Davidson EA, Janssens IA ( 2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
DOI URL |
7 | de Baets SL, Lewis R, van de Weg MJ, Quine TA, Shaver GR, Hartley IP ( 2013). Fire, temperature and nutrient responses on the C balance of arctic tundra soils from surface, mineral horizons and permafrost. In: American Geophy- sical Union Fall Meeting 2013. http://adsabs.Harvard.edu/abs/2013AGUFM.B12D.04D.Cited 2014-05-20. |
8 |
Deng L, Wang KB, Chen ML, Shangguan ZP, Sweeney S ( 2013). Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. CATENA, 110, 1-7.
DOI URL |
9 | Fan YX ( 2011). The Soil Carbon Pool and Soil Respiration During Natural Succession of Mid-subtropical Evergreen Broadleaved Forest. Master degree dissertation, Fujian Normal University, Fuzhou. 37-44. (in Chinese) |
范跃新 ( 2011). 中亚热带常绿阔叶林不同演替阶段土壤碳库和土壤呼吸. 硕士学位论文, 福建师范大学, 福州. 37-44.] | |
10 |
Fan YX, Yang YS, Yang ZJ, Chen GS, Xie JS, Zhong XJ, Guo JF ( 2013). Seasonal dynamics and content of soil labile organic carbon of mid-subtropical evergreen broadleaved forest during natural succession. Acta Ecologica Sinica, 33, 5751-5759. (in Chinese with English abstract)
DOI URL |
3) [范跃新, 杨玉盛, 杨智杰, 陈光水, 谢锦升, 钟小剑, 郭剑芬 ( 2013). 中亚热带常绿阔叶林不同演替阶段土壤活性有机碳含量及季节动态. 生态学报, 33, 5751-5759.]
DOI URL |
|
11 |
Fang C, Moncrieff JB ( 2001). The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry, 33, 155-165.
DOI URL |
12 | Ferlan M, Alberti G, Eler K, Batič F, Peressotti A, Miglietta F, Zaldei A, Simončič P, Vodnik D ( 2011). Comparing carbon fluxes between different stages of secondary succession of a karst grassland. Agriculture, Ecosystems & Environment, 140, 199-207. |
13 |
Fierer N, Craine JM, McLauchlan K, Schimel JP ( 2005). Litter quality and the temperature sensitivity of decomposition. Ecology, 86, 320-326.
DOI URL |
14 |
Glanville HC, Hill PW, Maccarone LD, Golyshin PN, Murphy DV, Jones DL ( 2012). Temperature and water controls on vegetation emergence, microbial dynamics, and soil carbon and nitrogen fluxes in a high Arctic tundra ecosystem. Functional Ecology, 26, 1366-1380.
DOI URL |
15 |
Goulden ML, McMillan AMS, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP ( 2010). Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology, 17, 855-871.
DOI URL |
16 |
Goulden ML, Winston GC, McMillan AMS, Litvak ME, Read EL, Rocha AV, Rob Elliot J ( 2006). An eddy covariance mesonet to measure the effect of forest age on land- atmosphere exchange. Global Change Biology, 12, 2146-2162.
DOI URL |
17 | Graf A, Weihermuller L, Huisman JA, Herbst M, Vereecken H ( 2011). Comment on “Global convergence in the temperature sensitivity of respiration at ecosystem level”. Science, 331, 1265. |
18 | Han G, Xing Q, Luo Y, Rafique R, Yu J, Mikle N ( 2014). Vegetation types alter soil respiration and its temperature sensitivity at the field scale in an estuary wetland. PLoS ONE, 9, e91182. |
19 | Han TF, Zhou GY, Li YL, Liu JX, Zhang DQ ( 2011). Partitioning soil respiration in lower subtropical forests at different successional stages in southern China. Chinese Journal of Plant Ecology, 35, 946-954. (in Chinese with English abstract) |
4) [韩天丰, 周国逸, 李跃林, 刘菊秀, 张德强 ( 2011). 中国南亚热带森林不同演替阶段土壤呼吸的分离量化. 植物生态学报, 35, 946-954.] | |
20 | IPCC (2001). Climate Change 2001: the Scientific Basis. Cambridge University Press, Cambridge, UK. |
21 |
Kolari P, Pumpanen J, Rannik Ü, Ilvesniemi H, Hari P, Berninger F ( 2004). Carbon balance of different aged Scots pine forests in Southern Finland. Global Change Biology, 10, 1106-1119.
DOI URL |
22 | Kosugi Y, Mitani T, Itoh M, Noguchi S, Tani M, Matsuo N, Takanashi S, Ohkubo S, Rahim Nik A ( 2007). Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agricultural and Forest Meteorology, 147, 35-47. |
23 | Kramer PJ ( 1981). Carbon dioxide concentration, photosyn- thesis, and dry matter production. BioScience, 31, 29-33. |
24 | Litvak M, Miller S, Wofsy SC, Goulden M ( 2003). Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest. Journal of Geophysical Research,108, doi: 10.1029/2001JD000854. |
25 | Loudermilk EL, Scheller RM, Weisberg PJ, Yang J, Dilts TE, Karam SL, Skinner C ( 2013). Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions. Global Chang Biology, 19, 3502-3515. |
26 | Luan J, Liu S, Zhu X, Wang J ( 2011). Soil carbon stocks and fluxes in a warm-temperate oak chronosequence in China. Plant and Soil, 347, 243-253. |
27 | Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne SI, Vargas R, Ammann C, Arain MA, Cescatti A, Janssens IA, Migliavacca M, Montagnani L, Richardson AD ( 2010). Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329, 838-840. |
28 | Mitra B, Mackay DS, Pendall E, Ewers BE, Cleary MB ( 2014). Does vegetation structure regulate the spatial structure of soil respiration within a sagebrush steppe ecosystem? Journal of Arid Environments, 103, 1-10. |
29 | Mkhabela M, Amiro B, Barr A, Black T, Hawthorne I, Kidston J, McCaughey J, Orchansky A, Nesic Z, Sass A ( 2009). Comparison of carbon dynamics and water use efficiency following fire and harvesting in Canadian boreal forests. Agricultural and Forest Meteorology, 149, 783-794. |
30 | O’Neill KP, Richter DD, Kasischke ES ( 2006). Succession- driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry, 80, 1-20. |
31 | Odum EP ( 1969). The strategy of ecosystem development. Science, 164, 262-270. |
32 | Olson JS, Watts JA, Allison LJ ( 1983). Carbon in Live Vegetation of Major World Ecosystems. U.S. Department of Energy, Washington, D.C. |
33 | Payeur-Poirier J-L, Coursolle C, Margolis HA, Giasson M-A ( 2012). CO2 fluxes of a boreal black spruce chronosequence in eastern North America. Agricultural and Forest Meteorology, 153, 94-105. |
34 | Post WM, Emanuel WR, Zinke PJ, Stangenberger AG ( 1982). Soil carbon pools and world life zones. Nature, 298, 156-159. |
35 | Raich JW, Potter CS ( 1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36. |
36 | Seedre M, Taylor AR, Brassard BW, Chen HYH, Jõgiste K ( 2014). Recovery of ecosystem carbon stocks in young boreal forests: a comparison of harvesting and wildfire disturbance. Ecosystems, 17, 851-863. |
37 | Sheng H, Li X, Yang ZJ, Xie JS, Chen GS, Yang YS ( 2010). Impact of land use/cover change on soil CO2 efflux in mid-subtropical mountainous area of Southern China. Scientia Geographica Sinica, 30, 446-451. (in Chinese with English abstract) |
5) [盛浩, 李旭, 杨智杰, 谢锦升, 陈光水, 杨玉盛 ( 2010). 中亚热带山区土地利用变化对土壤CO2排放的影响. 地理科学, 30, 446-451.] | |
38 | Sheng H, Yang Y, Yang Z, Chen G, Xie J, Guo J, Zou S ( 2010). The dynamic response of soil respiration to land-use changes in subtropical China. Global Change Biology, 16, 1107-1121. |
39 | Sun OJ, Campbell J, Law BE, Wolf V ( 2004). Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. Global Change Biology, 10, 1470-1481. |
40 | Tang J, Bolstad PV, Martin JG ( 2009). Soil carbon fluxes and stocks in a Great Lakes forest chronosequence. Global Change Biology, 15, 145-155. |
41 | Wang GJ, Tian DL, Yan WD, Fan Z, Li SZ ( 2009). Soil system respiration and its controlling factors in cunninghamia lanceolata and pinus massoniana communities of subtropical China. Chinese Journal of Plant Ecology, 33, 53-62. (in Chinese with English abstract) |
6) [王光军, 田大伦, 闫文德, 凡朱, 李树战 ( 2009). 亚热带杉木和马尾松群落土壤系统呼吸及其影响因子. 植物生态学报, 33, 53-62.] | |
42 | Waring RH, Schlesinger WH (1985). Forest Ecosystems. Concepts and Management. Academic Press, New York. 181-210. |
43 | Woodwell GM, Whittaker R, Reiners W, Likens GE, Delwiche C, Botkin D ( 1978). The biota and the world carbon budget. Science, 199, 141-146. |
44 | Wu JJ, Yang ZJ, Liu XF, Xiong DC, Lin WS, Chen CQ, Wang XH ( 2014). Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations. Chinese Journal of Plant Ecology, 38, 45-53. (in Chinese with English abstract) |
[吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红 ( 2014). 米槠和杉木人工林土壤呼吸及其组分分析. 植物生态学报, 38, 45-53.] | |
45 | Yan J, Wang Y, Zhou G, Zhang D ( 2006). Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biology, 12, 810-821. |
46 | Yan J, Zhang D, Zhou G, Liu J ( 2009). Soil respiration associated with forest succession in subtropical forests in Dinghushan Biosphere Reserve. Soil Biology & Bioch- emistry, 41, 991-999. |
47 | Yang YS, Chen GS, Guo JF, Xie JS, Wang XG ( 2007). Soil respiration and carbon balance in a subtropical native forest and two managed plantations. Plant Ecology, 193, 71-84. |
48 | Yu S, He ZL, Zhang RG, Chen GC, Huang CY, Zhu BL ( 2003). Soil basal respiration and enzyme activities in the root-layer soil of tea bushes in a red soil. Chinese Journal of Applied Ecology, 14, 179-183. (in Chinese with English abstract) |
[俞慎, 何振立, 张荣光, 陈国潮, 黄昌勇, 朱炳良 ( 2003). 红壤茶树根层土壤基础呼吸作用和酶活性. 应用生态学报, 14, 179-183.] | |
49 | Yu XT ( 2001). The ecological ethics ponderration on the forest with Myriad Trees. Journal of Fujian Forestry Science and Technical, 28, 5-7. (in Chinese with English abstract) |
俞新妥 ( 2001). “万木林”的生态伦理学思考——纪念建瓯万木林600年. 福建林业科技, 28, 5-7.] | |
50 | Zha T, Barr AG, Black T, McCaughey JH, Bhatti J, Hawthorne I, Krishnan P, Kidston J, Saigusa N, Shashkov A ( 2009). Carbon sequestration in boreal jack pine stands following harvesting. Global Change Biology, 15, 1475-1487. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[4] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[5] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[6] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[7] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[8] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[9] | 胡姝娅,刁华杰,王惠玲,薄元超,申颜,孙伟,董宽虎,黄建辉,王常慧. 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应[J]. 植物生态学报, 2020, 44(1): 70-79. |
[10] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[11] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[12] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 湖南东部植被恢复对土壤有机碳矿化的影响[J]. 植物生态学报, 2018, 42(12): 1211-1224. |
[13] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[14] | 杨青霄, 田大栓, 曾辉, 牛书丽. 降水格局改变背景下土壤呼吸变化的主要影响因素及其调控过程[J]. 植物生态学报, 2017, 41(12): 1239-1250. |
[15] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19