植物生态学报 ›› 2006, Vol. 30 ›› Issue (5): 780-790.DOI: 10.17521/cjpe.2006.0100
张瑞清(), 孙振钧(
), 王冲, 葛源, 李云乐, 乔玉辉, 庞军柱, 张录达
收稿日期:
2005-06-27
接受日期:
2005-11-19
出版日期:
2006-06-27
发布日期:
2006-09-30
通讯作者:
孙振钧
作者简介:
E-mail: sun108@cau.edu.cn基金资助:
ZHANG Rui-Qing(), SUN Zhen-Jun(
), WANG Chong, GE Yuan, LI Yun-Le, QIAO Yu-Hui, PANG Jun-Zhu, ZHANG Lu-Da
Received:
2005-06-27
Accepted:
2005-11-19
Online:
2006-06-27
Published:
2006-09-30
Contact:
SUN Zhen-Jun
About author:
First author contact:E-mail of the first author: zrqnancy@sohu.com
摘要:
通过野外试验和室内模拟相结合,系统研究了西双版纳热带雨林生态系统混合凋落叶分解的生态过程。野外试验采用网袋法,即1 mm和100 μm网眼网袋,分别限制大型土壤动物和螨类的进入,从而分别观测小型土壤动物(螨类)、线虫的分解作用;室内试验则通过控制温、湿度条件,采用灭菌-接种法分别观测微生物和线虫对凋落叶的分解。研究结果表明,凋落叶的分解是一个先快后慢的过程,在这个过程中存在分解“滞留”阶段,分解速率变化发生波动,且波动的程度与食物链的复杂程度有关,食物链越复杂,波动程度越强烈。利用单指数衰减模型 xt/x0=exp(-kt)和双指数模型xt/x0=a×exp(-k1t)+b×exp(-k2t)对凋落叶分解过程进行模拟,后者将凋落叶前欺的快速分解和后期的慢速分解两个过程分别拟合,不但弥补了分解前期单指数衰减模型与观测值之间不能吻合的缺陷,而且消除了单指数模型对长期分解进程的过高预测,因此能更好地反映实际分解进程。利用双指数生物模型研究生物和非生物因子对凋落叶分解速率的贡献表明,土壤动物是影响分解进程的最重要因子,占影响因子总量的78.1%,非生物因素的作用为14.1%,微生物对分解速率的贡献只有7.8%。在热带森林生态系统中,土壤动物是最重要的分解者。
张瑞清, 孙振钧, 王冲, 葛源, 李云乐, 乔玉辉, 庞军柱, 张录达. 西双版纳热带雨林凋落叶分解的生态过程Ⅰ.凋落叶分解动态. 植物生态学报, 2006, 30(5): 780-790. DOI: 10.17521/cjpe.2006.0100
ZHANG Rui-Qing, SUN Zhen-Jun, WANG Chong, GE Yuan, LI Yun-Le, QIAO Yu-Hui, PANG Jun-Zhu, ZHANG Lu-Da. ECO-PROCESS OF LEAF LITTER DECOMPOSITION IN TROPICAL RAIN FOREST IN XISHUANGBANNA, CHINA. Ⅰ. DECOMPOSITION DYNAMIC OF MIXED LEAF LITTERS. Chinese Journal of Plant Ecology, 2006, 30(5): 780-790. DOI: 10.17521/cjpe.2006.0100
项目 Item | 2004 | 2005 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. | 10月 Oct. | 11月 Nov. | 12月 Dec. | 1月 Jan. | 2月 Feb. | 3月 Mar. | ||||||||||||||
气温Temperature (℃) | 21.5 | 23.6 | 24.7 | 25.5 | 25.2 | 25.4 | 24.2 | 22.3 | 19.8 | 15.0 | 16.8 | 19.3 | |||||||||||||
降雨量Precipitation(mm) | 263.0 | 779.0 | 223.9 | 79.9 | 169.0 | 204.6 | 160.1 | 56.8 | 45.8 | 0.0 | 1.5 | 0.0 |
表1 试验年度(2004年4月~2005年3月)研究地区月平均气温和降雨量
Table 1 Average monthly temperature and amount of monthly precipitation at sampling time (from April 2004 to March 2005) in study site of Xishuangbanna
项目 Item | 2004 | 2005 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. | 10月 Oct. | 11月 Nov. | 12月 Dec. | 1月 Jan. | 2月 Feb. | 3月 Mar. | ||||||||||||||
气温Temperature (℃) | 21.5 | 23.6 | 24.7 | 25.5 | 25.2 | 25.4 | 24.2 | 22.3 | 19.8 | 15.0 | 16.8 | 19.3 | |||||||||||||
降雨量Precipitation(mm) | 263.0 | 779.0 | 223.9 | 79.9 | 169.0 | 204.6 | 160.1 | 56.8 | 45.8 | 0.0 | 1.5 | 0.0 |
有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | C/N | pH | 容重 Density (×109 mg·m-3) |
---|---|---|---|---|
48.30±0.85 | 2.30±0.04 | 12.30±1.23 | 4.75±0.22 | 1.02±0.10 |
表2 研究样地土壤基本理化性质
Table 2 Physio-chemical properties of the top soil (0-2.5 cm) in experiment fields in Xishuangbanna
有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | C/N | pH | 容重 Density (×109 mg·m-3) |
---|---|---|---|---|
48.30±0.85 | 2.30±0.04 | 12.30±1.23 | 4.75±0.22 | 1.02±0.10 |
全碳 Total C(%) | 全氮 Total N(%) | 碳氮比 C/N-ratio | 灰分 Ash(%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) |
---|---|---|---|---|---|
49.10±0.22 | 1.11±0.01 | 44.30±0.16 | 7.41±0.02 | 41.29±0.06 | 28.26±0.04 |
表3 试验用材料(混合凋落叶)基本理化性质a
Table 3 Physio-chemical properties of materials (mixed leaf litters) used in study
全碳 Total C(%) | 全氮 Total N(%) | 碳氮比 C/N-ratio | 灰分 Ash(%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) |
---|---|---|---|---|---|
49.10±0.22 | 1.11±0.01 | 44.30±0.16 | 7.41±0.02 | 41.29±0.06 | 28.26±0.04 |
图1 野外试验不同处理凋落叶分解动态(残留率和分解速率) 平均值±标准差 Mean±SD (n=4) C: 大网眼网袋 Coarse mesh F: 小网眼网袋 Fine mesh
Fig.1 Dynamics of decomposition of leaf litters in field experiments (Ash-free dry mass (AFDM) remaining ratio and decay rate)
图2 室内模拟试验不同处理凋落叶分解动态(残留率和分解速率) 平均值±标准差 Mean±SD (n=3) M: 接种微生物 Incubated microbiota only MN: 接种微生物+线虫 Incubated microbiota and nematodes
Fig.2 Dynamics of decomposition of leaf litters in simulated study indoors (Ash-free dry mass (AFDM) remaining ratio and decay rate)
图3 单指数衰减模型模拟各影响因子在凋落叶分解过程中的单独作用和协同作用(图示分解进程)
Fig.3 Single exponential models for individual and collected effects of influencing factors on leaf litter decay rate (curves displayed decomposing process)
图4 野外试验和室内模拟试验不同处理凋落叶分解动态模拟 ▲:观测值 The observed ——:双指数模拟曲线 Binomial exponential curve ----:单指数模拟曲线 Single exponential curve C: 野外大网眼 Coarse mesh in field F: 野外小网眼 Fine mesh in field M: 室内接种微生物(未接种线虫) Without nematode in simulated MN: 室内接种微生物+线虫 With nematode in simulated
Fig.4 Simulation of leaf litter decomposition process for different treatment in field and simulated studies
图5 不同处理凋落叶分解双指数模拟曲线及其主、附指数曲线 C, F, MN, M: 同图4 See Fig.4
Fig.5 Binomial exponential curve and its main-exponent and sub-exponent for leaf litter decomposition process with different treatment in field and simulated studies
处理 Treatment | 因子 Factor | F值 F value | |||
---|---|---|---|---|---|
a | k1 | b | k2 | ||
C | 0.886 2 | 0.003 52 | 0.108 3 | 0.049 8 | <0.000 2 |
F | 0.685 5 | 0.001 75 | 0.304 4 | 0.017 4 | <0.000 1 |
MN | 0.794 7 | 0.001 27 | 0.205 0 | 0.063 0 | <0.000 1 |
M | 0.737 8 | 0.000 28 | 0.261 2 | 0.046 9 | <0.000 1 |
表4 凋落叶分解进程的双指数模拟方程
Table 4 Formula of binomial exponential model to simulate decomposition process
处理 Treatment | 因子 Factor | F值 F value | |||
---|---|---|---|---|---|
a | k1 | b | k2 | ||
C | 0.886 2 | 0.003 52 | 0.108 3 | 0.049 8 | <0.000 2 |
F | 0.685 5 | 0.001 75 | 0.304 4 | 0.017 4 | <0.000 1 |
MN | 0.794 7 | 0.001 27 | 0.205 0 | 0.063 0 | <0.000 1 |
M | 0.737 8 | 0.000 28 | 0.261 2 | 0.046 9 | <0.000 1 |
处理 Treatment | 指数模型 Model | 分解速率 Mass loss rate | 分解50%和95%所需要的时间 Time for 50% and 95% decomposition | ||
---|---|---|---|---|---|
d-1 | a-1 | a (t0.5) | a (t0.95) | ||
C | 1 | 0.003 96 | 1.45 | 0.48 | 2.08 |
2 | 0.003 52 | 1.28 | 0.52 | 2.26 | |
F | 1 | 0.003 15 | 1.15 | 0.60 | 2.61 |
2 | 0.001 75 | 0.64 | 0.96 | 4.15 | |
M | 1 | 0.002 33 | 0.85 | 0.81 | 3.53 |
2 | 0.000 28 | 0.10 | 6.11 | 26.5 | |
MN | 1 | 0.002 79 | 1.02 | 0.68 | 2.95 |
2 | 0.001 27 | 0.46 | 1.39 | 6.04 |
表5 单指数和双指数模型对凋落叶年分解速率及分解50%和95%所需时间的预测
Table 5 Prediction values of decay rate and time for 50% and 95% decomposition by single and binomial exponential models
处理 Treatment | 指数模型 Model | 分解速率 Mass loss rate | 分解50%和95%所需要的时间 Time for 50% and 95% decomposition | ||
---|---|---|---|---|---|
d-1 | a-1 | a (t0.5) | a (t0.95) | ||
C | 1 | 0.003 96 | 1.45 | 0.48 | 2.08 |
2 | 0.003 52 | 1.28 | 0.52 | 2.26 | |
F | 1 | 0.003 15 | 1.15 | 0.60 | 2.61 |
2 | 0.001 75 | 0.64 | 0.96 | 4.15 | |
M | 1 | 0.002 33 | 0.85 | 0.81 | 3.53 |
2 | 0.000 28 | 0.10 | 6.11 | 26.5 | |
MN | 1 | 0.002 79 | 1.02 | 0.68 | 2.95 |
2 | 0.001 27 | 0.46 | 1.39 | 6.04 |
分解材料 Litter type | 分解速率 Decay constants (a-1) | 环境和微生物的作用 Effect without fauna (ka+km)/ktotal | 土壤动物的作用 Faunal effect kf/ktotal | ||
---|---|---|---|---|---|
环境和微生物 Without fauna (ka+km) | 土壤动物 Faunal component (kf) | 总因子 Total factor (ktotal) | |||
混合凋落叶Mixed leaf litter* | 0.28 | 1.00 | 1.28 | 21.9 | 78.1 |
混合凋落叶Mixed leaf litter** | 0.98 | 0.47 | 1.45 | 67.6 | 32.4 |
山茱萸叶Macrocarpium officinalis foliage | 0.69 | 0.13 | 0.82 | 84.1 | 15.9 |
栗树叶Chestnut oak foliage | 0.48 | 0.02 | 0.50 | 96.0 | 4.0 |
混合凋落叶Mixed deciduous foliage | 0.40 | 0.30 | 0.70 | 57.1 | 42.9 |
白栎树叶Quercus albus foliage | 0.60 | 0.32 | 0.92 | 65.2 | 34.8 |
山毛榉树叶Fagus longipetiolata foliage | 0.41 | 0.09 | 0.50 | 82.0 | 18.0 |
板栗树叶Castanea mollissima foliage | 0.27 | 0.01 | 0.28 | 96.4 | 3.6 |
橡树叶Shinnery oak foliage | 0.22 | 0.21 | 0.43 | 51.2 | 48.8 |
森林冻原草Mixed tundra grasses | 0.22 | 0.10 | 0.32 | 68.8 | 31.3 |
莎草Cyperus sp. | 0.30 | 0.06 | 0.36 | 83.3 | 16.7 |
格兰马草Bouteloua gracilis | 0.14 | 0.31 | 0.45 | 31.1 | 68.9 |
牧草Mixed pasture grasses | 1.15 | 0.09 | 1.24 | 92.7 | 7.3 |
桉树叶Eucalyptus pauciflora foliage* | 0.45 | 0.28 | 0.73 | 61.6 | 38.4 |
桉树叶Eucalyptus pauciflora foliage** | 0.69 | 0.04 | 0.73 | 94.5 | 5.5 |
表6 不同因子对有机残体分解速率的影响
Table 6 Effects of different factors on decay rates of litter
分解材料 Litter type | 分解速率 Decay constants (a-1) | 环境和微生物的作用 Effect without fauna (ka+km)/ktotal | 土壤动物的作用 Faunal effect kf/ktotal | ||
---|---|---|---|---|---|
环境和微生物 Without fauna (ka+km) | 土壤动物 Faunal component (kf) | 总因子 Total factor (ktotal) | |||
混合凋落叶Mixed leaf litter* | 0.28 | 1.00 | 1.28 | 21.9 | 78.1 |
混合凋落叶Mixed leaf litter** | 0.98 | 0.47 | 1.45 | 67.6 | 32.4 |
山茱萸叶Macrocarpium officinalis foliage | 0.69 | 0.13 | 0.82 | 84.1 | 15.9 |
栗树叶Chestnut oak foliage | 0.48 | 0.02 | 0.50 | 96.0 | 4.0 |
混合凋落叶Mixed deciduous foliage | 0.40 | 0.30 | 0.70 | 57.1 | 42.9 |
白栎树叶Quercus albus foliage | 0.60 | 0.32 | 0.92 | 65.2 | 34.8 |
山毛榉树叶Fagus longipetiolata foliage | 0.41 | 0.09 | 0.50 | 82.0 | 18.0 |
板栗树叶Castanea mollissima foliage | 0.27 | 0.01 | 0.28 | 96.4 | 3.6 |
橡树叶Shinnery oak foliage | 0.22 | 0.21 | 0.43 | 51.2 | 48.8 |
森林冻原草Mixed tundra grasses | 0.22 | 0.10 | 0.32 | 68.8 | 31.3 |
莎草Cyperus sp. | 0.30 | 0.06 | 0.36 | 83.3 | 16.7 |
格兰马草Bouteloua gracilis | 0.14 | 0.31 | 0.45 | 31.1 | 68.9 |
牧草Mixed pasture grasses | 1.15 | 0.09 | 1.24 | 92.7 | 7.3 |
桉树叶Eucalyptus pauciflora foliage* | 0.45 | 0.28 | 0.73 | 61.6 | 38.4 |
桉树叶Eucalyptus pauciflora foliage** | 0.69 | 0.04 | 0.73 | 94.5 | 5.5 |
[1] | Anderson JM, Ineson P (1984). Interactions between microorganisms and soil invertebrates in nutrient flux pathways of forest ecosystems. In: Anderson JM, Rayner ADM, Walton DWH eds. Invertebrate-Microbial Interactions. Cambridge University Press, Cambridge, 59-88. |
[2] | Attignon SE, Weibel D, Lachat T, Sinsin B, Nagel P, Peveling R (2004). Leaf litter breakdown in natural and plantation forests of the Lama forest reserve in Benin. Applied Soil Ecology, 27,109-124. |
[3] | Berg B (1986). Nutrient release from litter and humus in coniferous forest soils—a mini review. Scandinavian Journal of Forest Research, 1,359-369. |
[4] | Berg B, Calvo de Anta R, Escudero A, Gärdenäs A, Johansson MB, Laskowski R, Madeira M, Mälkänen E, McClaugherty C, Meentmeyer V, Virzo de Santo A (1995). The chemical composition of newly shed needle litter of Scots pine and some other pine species in a climatic transect: long term decomposition in a Scots pine forest. Canadian Journal of Botany, 73,1423-1435. |
[5] | Chen P(陈鹏) (1984). Role of soil animals on mass cycling in Changbai Mountains. Acta Ecologica Sinica (生态学报), 4,172-179. (in Chinese with English abstract) |
[6] | Cobo JG, Barrios ED, Kass CL (2002). Thomas RJ. Decomposition and nutrient release by green manures in a tropical hillside agroecosystem. Plant and Soil, 240,331-342. |
[7] | Coleman DC, Blair JM, Elliott ET, Wall DH (1999). Soil Invertebrates. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins Peds. Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, Oxford, 349-377. |
[8] | Deng XB(邓晓保), Zou SQ(邹寿青), Fu XH(付先惠), Yao TQ(姚天全), Sheng CY(盛才余), Bai ZL(白智林) (2003). The impacts of landuse practices on the communities of soil fauna in the Xishuangbanna rainforest, Yunnan, China. Acta Ecologica Sinica (生态学报), 23,130-138. (in Chinese with English abstract) |
[9] | Dilly O, Irmler U (1998). Succession in the food web during the decomposition of leaf litter in a black alder ( Alnus glutinosa (Gaertn.) L.) forest . Pedobiologia, 42,109-123. |
[10] | Edwards PJ (1977). Studies of mineral cycling in a montane rainforest in New Guinea.Ⅱ.The production and disappearance of litter. Journal of Ecology, 65,971-992. |
[11] | Ferris H, Matute MM (2003). Structural and functional succession in the nematode fauna of a soil food web. Applied Soil Ecology, 23,93-110. |
[12] | Fioretto A, Musacchio A, Andolfi A, Virzo De Santo A (1998). Decomposition dynamics of litters of various pine species in a Corsican pine forest. Soil Biology and Biochemistry, 30,721-727. |
[13] | Hagvar S, Kjondal BR (1981). Succession, diversity and feeding habits of microarthropods in decomposing leaf litter. Ecologia, 38,93-99. |
[14] | Highland K (2001). Fungal and bacterial enzyme activities in Alnus nepalensis D. Don. European Journal of Soil Biology, 37,175-180. |
[15] | House GJ, Stinner RE (1987). Decomposition of plant residues in no-tillage agroecosystem: influence of litter bag mesh size and soil arthropods. Pedobiologia, 30,351-360. |
[16] | Howard PHA, Howard DM (1974). Microbial decomposition of tree and shrub leaf litter. Oikos, 25,341-352. |
[17] | Hunter MD, Adl S, Pringle CM, Coleman DC (2003). Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition. Pedobiologia, 47,101-115. |
[18] | Jesper L, Jakob M, Dagmar T, Ellen K (2002). Dynamics of invertase, xylanase and coupled quality indices of decomposing green and brown plant residues. Soil Biology and Biochemistry, 34,501-508. |
[19] | Ke X(柯欣), Zhao LJ(赵立军), Yin WY(尹文英) (1999). Succession in communities of soil animals during leaf litter decomposition in Cyclobalanopsis glauca forest . Zoological Research(动物学研究), 20,207-213. (in Chinese with English abstract) |
[20] | Liu WY(刘文耀), Jing GF(荆桂芬), He AJ(和爱军) (1990). Nutrient dynamics in the litter-fall and forest floor of evergreen broad-leaved forest and Yunnan pines forest in central Yunnan. Acta Botanica Sinica(植物学报), 32,637-646. (in Chinese with English abstract) |
[21] | Mo JM(莫江明), Brown S, Kong GH(孔国辉), Melanie L, Zhang YC(张佑昌) (1996). Litter decomposition and its nutrient dynamics of a pine forest in Dinghushan biosphere reserve. Acta Phytoecologica Sinica(植物生态学报), 20,534-542. (in Chinese with English abstract) |
[22] | Olson JS (1963). Energy storage and balance of producers and decomposers in ecological system. Journal of Ecology, 68,1190-1200. |
[23] | Ren YH(任泳红), Cao M(曹敏), Tang JW(唐建维), Tang Y(唐勇), Zhang JH(张建侯) (1999). A comparative study on litter fall dynamics in a seasonal rainforest and a rubber plantation in Xishuangbanna, SW China. Acta Phytoecologica Sinica (植物生态学报), 23,418-425. (in Chinese with English abstract) |
[24] |
Rowell DM, Prescott CE, Preston CM (2001). Decomposition and nitrogen mineralization from biosolids and other organic materials: relationship with initial chemistry. Journal of Environmental Quality, 30,1401-1410.
DOI URL PMID |
[25] | Seastedt TR (1984). The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology, 29,25-46. |
[26] | Setälä H, Haimi J, Huhta V (1988) A microcosm study on the respiration and weight loss in birch litter and raw humus as influenced by soil fauna. Biology and Fertility of Soils, 5,282-287. |
[27] | Sinsabaugh RL, Linkins AE (1987). Inhibition of the Thrichoderma viride cellulase complex by leaf litter extracts . Soil Biology and Biochemistry, 19,719-725. |
[28] | Takeda H (1988). A 5 year study of pine needle litter decomposition in relation to mass loss and faunal abundances. Pedobiologia, 32,221-226. |
[29] | Taylor BR, Parkinson D, Parsons WFJ (1989). Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70,97-104. |
[30] | Virzo de Santo A, Berg B, Rutigliano FA, Alfani A, Fioretto A (1993). Factors regulating early-stage decomposition of needle litter in five different coniferous forests. Soil Biology and Biochemistry, 25,1423-1433. |
[31] | Wang J(王瑾), Huang JH(黄建辉) (2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China. Acta Phytoecologica Sinica (植物生态学报), 25,375-380. (in Chinese with English abstract) |
[32] | Yang XD(杨效东), She YP(佘宇平) (1998). The character of composition and distribution on soil fauna under tropical forests of Xishuangbanna in rainy season. Journal of Northeast Forestry University (东北林业大学学报), 26,65-70. (in Chinese with English abstract) |
[33] | Yin XQ(殷秀琴), Zhang GR(张桂荣) (1993). Correlation between forest litter and soil macroanimals. Chinese Journal of Applied Ecology(应用生态学报), 4,167-173. (in Chinese with English abstract) |
[34] | Zhang XP(张雪萍), Zhang Y(张毅), Hou WL(侯威岭), Yin XQ(殷秀琴) (2000). Decomposition of coniferous litter and the function of soil animals in the Xiao Hinggan Mountains. Scientia Geographica Sinica (地理科学), 20,552-556. (in Chinese with English abstract) |
[35] | Zhang XP(张雪萍), Zhong WY(仲伟彦), Ma ZW(马志伟), Wang LM(王立明) (1996). The process of fallen leaves decomposition and the function of soil animals. Forestry Science and Technology (林业科技), 21(3),1-4. (in Chinese with English abstract) |
[36] | Zhuang TC(庄铁诚), Lin P(林鹏) (1992). Decay leaves microbial variations in process of natural decomposition of leaves litter for mangroves ( Kandelia candel) forest in Jiulongjiang River estuary, Fujian . Acta Phytoecologica et Geobotanica Sinica(植物生态学与地植物学学报), 16,17-25. (in Chinese with English abstract) |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[5] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[6] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[7] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[8] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[9] | 王复标, 叶子飘. 植物电子传递速率光响应模型的研究进展[J]. 植物生态学报, 2024, 48(3): 287-305. |
[10] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[11] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[12] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[13] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[14] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[15] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19