植物生态学报 ›› 2006, Vol. 30 ›› Issue (5): 861-867.DOI: 10.17521/cjpe.2006.0109
李永秀1, 罗卫红1,2,*(), 倪纪恒1, 陈永山1, 徐国彬1, 金亮1, 戴剑锋1, 陈春宏2, 卜崇兴2
收稿日期:
2005-06-30
接受日期:
2005-09-13
出版日期:
2006-06-30
发布日期:
2006-09-30
通讯作者:
罗卫红
作者简介:
E-mail: lwh@njau.edu.cn基金资助:
LI Yong-Xiu1, LUO Wei-Hong1,2,*(), NI Ji-Heng1, CHEN Yong-Shan1, XU Guo-Bin1, JIN Liang1, DAI Jian-Feng1, CHEN Chun-Hong2, BU Chong-Xing2
Received:
2005-06-30
Accepted:
2005-09-13
Online:
2006-06-30
Published:
2006-09-30
Contact:
LUO Wei-Hong
About author:
E-mail: lwh@njau.edu.cn摘要:
依据温室黄瓜(Cucumis sativus)叶片生长与温度和辐射的关系,构建了适合我国种植技术的黄瓜叶面积模拟模型,并利用不同品种、播期的试验资料对模型进行了检验。结果表明,该模型比传统的积温法和比叶面积法更准确地模拟温室水果黄瓜的叶面积。该模型对黄瓜叶面积指数的模拟结果与1∶1直线之间的决定系数R2和回归估计标准误差RMSE分别为0.879 2和0.398 0,比用积温法和比叶面积法模拟叶面积指数的精度分别提高了37%和74%。
李永秀, 罗卫红, 倪纪恒, 陈永山, 徐国彬, 金亮, 戴剑锋, 陈春宏, 卜崇兴. 基于辐射和温度热效应的温室水果黄瓜叶面积模型. 植物生态学报, 2006, 30(5): 861-867. DOI: 10.17521/cjpe.2006.0109
LI Yong-Xiu, LUO Wei-Hong, NI Ji-Heng, CHEN Yong-Shan, XU Guo-Bin, JIN Liang, DAI Jian-Feng, CHEN Chun-Hong, BU Chong-Xing. SIMULATION OF GREENHOUSE CUCUMBER LEAF AREA BASED ON RADIATION AND THERMAL EFFECTIVENESS. Chinese Journal of Plant Ecology, 2006, 30(5): 861-867. DOI: 10.17521/cjpe.2006.0109
图1 展开叶数与第一真叶展开后的累积辐热积的关系 □:实测值Observed value —:拟合曲线Fitted curve
Fig.1 Relationship between number of leaves unfolding and accumulated product of thermal effectiveness and PAR (TEP) after unfolding of the first leaf
图5 已摘除老叶数与第一真叶展开后的累积辐热积的关系 图例同图1
Fig.5 Relationship between number of old leaves removed and accumulated product of thermal effectiveness and PAR (TEP) after unfolding of the first leaf Legends see Fig. 1
图6 叶面积指数的模拟值和实测值比较 ●:用累积辐热积预测的结果Predicted results using TEP Δ:用比叶面积法预测的结果Predicted results using SLA ×:用积温法预测的结果Predicted results using GDD —:1∶1直线The 1∶1 line
Fig.6 Comparison between simulated and observed leaf area index
[1] | Dayan E, van Keulen H, Jones JW, Zipori I, Shmuel D, Challa H (1993). Development, calibration and validation of a greenhouse tomato growth model. Ⅰ. Description of the model. Agricultural Systems, 43,145-161. |
[2] | de Visser CLM (1994). ALCEPAS, an onion growth model based on SUCROS87. Ⅰ. Development of the model. Journal of Horticultural Science, 69,501-518. |
[3] | Gai JY (盖钧镒) (2000). Statistical Methods for Experimental Data Analysis (试验统计方法). China Agriculture Press, Beijing,100-180. (in Chinese) |
[4] | Gao LH (高丽红), Guan QZ (关秋竹), Chen QY (陈青云) (2004). Research on adaptability of different fruit-cucumber varieties in solar greenhouse in springtime growth. Applied Engineering Technology in Rural Areas (农村实用工程技术), (1),39-41. (in Chinese) |
[5] | Ge MJ (葛明金) (2002). Fruit—cucumber of new variety. Agricultural Technique Service (农技服务), (1),17. (in Chinese) |
[6] | Gijzen H, Heuvelink E, Challa H, Marcelis LFM, Dayan E, Cohen S, Fuchs M (1998). HORTISIM: a model for greenhouse crops and greenhouse climate. Acta Horticulturae, 456,441-450. |
[7] | Goudriaan J, van Laar HH (1994). Modelling Potential Crop Growth Processes. Kluwer Academic Publishers, the Netherlands, 32. |
[8] | Heuvelink E (1996). Tomato Growth and Yield: Quantitative Analysis and Synthesis. PhD dissertation, Wageningen Agriculture University, the Netherlands,235-254. |
[9] | Heuvelink E, Marcelis LFM (1996). Influence of assimilate supply on leaf formation in sweet pepper and tomato. Journal of Horticultural Science, 71,405-414. |
[10] | Karlsson MG, Heins RD, Gerberick JO, Hackmann ME (1991). Temperature-driven leaf unfolding rate in Hibiscus rosasinensis. Scientia Horticulturae, 45,323-331. |
[11] | Li FS, Kang S, Zhang J (2004). Interactive effects of elevated CO 2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat . Agricultural Water Management, 67,221-233. |
[12] | Li J (李娟), Guo SR (郭世荣), Luo WH (罗卫红) (2003). Simulation model for photosynthesis and dry matter accumulation in greenhouse cucumber. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 19,241-244. (in Chinese with English abstract) |
[13] | Lieth JH, Carpenter P (1990). Modeling elongation and leaf unfolding of Easter lily during greenhouse forcing. Scientia Horticulturae, 44,149-162. |
[14] | Marcelis LFM, Gijzen H (1998). A model for prediction of yield and quality of cucumber fruits. Acta Horticulturae, 476,237-242. |
[15] | Marcelis LFM, Heuvelink E, Goudriaan J (1998). Modelling biomass production and yield of horticultural crops: a review. Scientia Horticulturae, 74,83-111. |
[16] | Shang QM (尚庆茂), Gao LH (高丽红), Wang HS (王怀松) (2003). Production Techniques for Cucumber Without Social Effects of Pollution (黄瓜无公害生产技术). China Agriculture Press, Beijing,21-24. (in Chinese) |
[17] | Tao ZP (陶正平) (2002). Corresponding Cultivation Techniques for Cucumber Industry (黄瓜产业配套栽培技术). China Agriculture Press, Beijing, 26-30. (in Chinese) |
[18] | van Keulen H, Penning de Vries FWT, Drees EM (1982). Simulation of plant growth and crop production. In: Penning de Vires & van Laar eds. Simulation Monographs. Wageningen Pudoc, the Netherlands, 87-97. |
[19] | Wu XG (吴兴国), Zhang ZH (张真和), Ling YX (凌云昕) (2000). Anniversary Corresponding Production Techniques for Cucumber (黄瓜周年生产配套技术). China Agriculture Press, Beijing, 14-19. (in Chinese) |
[20] | Xie ZJ (谢祝捷), Chen CH (陈春宏), Yu JZ (余纪柱), Li SC (李世诚), Luo WH (罗卫红) (2004). Study on the dry matter production and distribution simulation model of cucumber in automatic control glasshouse of Shanghai. Acta Agriculturae Shanghai (上海农业学报), 20(1),75-79. (in Chinese with English abstract) |
[21] | Yuan CM (袁昌梅), Luo WH (罗卫红), Zhang SF (张生飞), Dai JF (戴剑锋), Jin L (金亮) (2005). Simulation of the development of greenhouse muskmelon. Acta Horticulturae Sinica (园艺学报), 32,262-267. (in Chinese with English abstract) |
[22] | Zhang XZ (张宪政) (1992). Investigation Methods of Crop Physiology (作物生理研究法). China Agriculture Press, Beijing, 35-45. (in Chinese) |
[23] | Zhao SJ (赵双进), Zhang MC (张孟臣), Yang CY (杨春燕) (1999). Effect of fertilization stage on yield, characteristic of plant type and plant nutrition in summer soybean. Scientia Agricultrua Sinica (中国农业科学), 32 (Suppl.),112-116. (in Chinese with English abstract) |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 王复标, 叶子飘. 植物电子传递速率光响应模型的研究进展[J]. 植物生态学报, 2024, 48(3): 287-305. |
[7] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[8] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[9] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[10] | 钟姣, 姜超, 刘世荣, 龙文兴, 孙建新. 海南长臂猿食源植物的潜在物种丰富度分布格局[J]. 植物生态学报, 2023, 47(4): 491-505. |
[11] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[12] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[13] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[14] | 陈奕竹, 郎伟光, 陈效逑. 中国北方树木秋季物候的过程模拟及其区域分异归因[J]. 植物生态学报, 2022, 46(7): 753-765. |
[15] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19