植物生态学报 ›› 2017, Vol. 41 ›› Issue (1): 14-21.DOI: 10.17521/cjpe.2016.0201
所属专题: 中国灌丛生态系统碳储量的研究; 凋落物; 碳储量
郭焱培1, 杨弦1, 安尼瓦尔·买买提2, 刘鸿雁1, 马文红3, 于顺利4, 唐志尧1,*()
收稿日期:
2016-06-14
接受日期:
2016-11-10
出版日期:
2017-01-10
发布日期:
2017-01-23
通讯作者:
唐志尧
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Yan-Pei GUO1, Xian YANG1, Anwar MOHHAMOT2, Hong-Yan LIU1, Wen-Hong MA3, Shun-Li YU4, Zhi-Yao TANG1,*()
Received:
2016-06-14
Accepted:
2016-11-10
Online:
2017-01-10
Published:
2017-01-23
Contact:
Zhi-Yao TANG
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
研究生态系统碳(C)、氮(N)、磷(P)密度分布和储量对于理解生态系统碳循环和养分循环的机制和规律有重要意义。现有的相关研究多集中在森林和草地生态系统。在中国北方, 灌丛生境水分和土壤条件差异很大, 这为研究生态系统C、N、P密度与储量的分布格局提供了良好条件。该研究调查了433个中国北方温带灌丛样地的生物量、凋落物以及土壤等组分的有机C及N、P含量, 据此计算出中国北方灌丛生态系统有机C及N、P密度和储量。结果表明: 中国北方灌丛平均生态系统有机C及N、P密度分别为69.8 Mg·hm-2、7.3 Mg·hm-2、4.2 Mg·hm-2。其中, 生物量C、N、P密度分别为5.1 Mg·hm-2、11.5×10-2 Mg·hm-2、8.6×10-3 Mg·hm-2, 生物量C、N、P密度与降水和土壤养分关系显著; 凋落物C、N、P密度分别为1.4 Mg·hm-2、3.8×10-2 Mg·hm-2、2.5×10-3 Mg·hm-2, 凋落物C、N、P密度与温度和降水关系显著; 1 m深土壤的平均有机C及N、P密度分别为64.0 Mg·hm-2、7.1 Mg·hm-2、4.2 Mg·hm-2, 土壤有机C及N密度与温度和降水关系显著。中国北方灌丛生态系统的总有机C及N、P储量分别为1.7 Pg、164.9 Tg、124.8 Tg。其中生物量C、N、P储量分别为128.4 Tg、3.1 Tg、0.2 Tg; 凋落物C、N、P储量分别为8.4 Tg、0.45 Tg、0.027 Tg; 土壤是最大的C、N、P库, 1 m深土壤有机C及N、P储量分别为1.6 Pg、161.3 Tg、124.6 Tg。
郭焱培, 杨弦, 安尼瓦尔·买买提, 刘鸿雁, 马文红, 于顺利, 唐志尧. 中国北方温带灌丛生态系统碳、氮、磷储量. 植物生态学报, 2017, 41(1): 14-21. DOI: 10.17521/cjpe.2016.0201
Yan-Pei GUO, Xian YANG, Anwar MOHHAMOT, Hong-Yan LIU, Wen-Hong MA, Shun-Li YU, Zhi-Yao TANG. Storage of carbon, nitrogen and phosphorus in temperate shrubland ecosystems across Northern China. Chinese Journal of Plant Ecology, 2017, 41(1): 14-21. DOI: 10.17521/cjpe.2016.0201
落叶阔叶灌丛 Deciduous broadleaf shrublands | 稀疏灌丛 Sparse shrublands | 总计 Total | |
---|---|---|---|
样地数 Number of sites | 329 | 104 | 433 |
碳密度 C density (Mg·hm-2) | 86.1 ± 3.7 | 22.1 ± 2.0 | 69.8 ± 3.0 |
生物量 Biomass (Mg·hm-2) | 6.1 ± 0.3 | 1.9 ± 0.3 | 5.1 ± 0.2 |
凋落物 Litter (Mg·hm-2) | 1.5 ± 0.2 | 0.7 ± 0.1 | 1.4 ± 0.1 |
土壤有机碳 Soil organic C (Mg·hm-2) | 78.5 ± 3.6 | 19.5 ± 1.9 | 64.0 ± 3.0 |
氮密度 N density (Mg·hm-2) | 8.1 ± 0.3 | 2.6 ± 0.3 | 7.3 ± 0.3 |
生物量 Biomass (10-2 Mg·hm-2) | 12.9 ± 0.6 | 6.4 ± 0.7 | 11.5 ± 0.5 |
凋落物 Litter (10-2 Mg·hm-2) | 4.0 ± 0.4 | 1.8 ± 0.2 | 3.8 ± 0.3 |
土壤 Soil (Mg·hm-2) | 7.9 ± 0.4 | 2.5 ± 0.3 | 7.1 ± 0.3 |
磷密度 P density (Mg·hm-2) | 4.3 ± 0.2 | 3.7 ± 0.3 | 4.2 ± 0.2 |
生物量 Biomass (10-3 Mg·hm-2) | 9.9 ± 0.5 | 3.6 ± 0.3 | 8.6 ± 0.4 |
凋落物 Litter (10-3 Mg·hm-2) | 2.7 ± 0.2 | 0.9 ± 0.2 | 2.5 ± 0.2 |
土壤 Soil (Mg·hm-2) | 4.3 ± 0.2 | 3.7 ± 0.3 | 4.2 ± 0.2 |
表1 中国北方主要灌丛的碳、氮、磷密度(平均值±标准误差)
Table 1 Carbon (C), nitrogen (N) and phosphorus (P) densities of major shrublands in Northern China (mean ± SE)
落叶阔叶灌丛 Deciduous broadleaf shrublands | 稀疏灌丛 Sparse shrublands | 总计 Total | |
---|---|---|---|
样地数 Number of sites | 329 | 104 | 433 |
碳密度 C density (Mg·hm-2) | 86.1 ± 3.7 | 22.1 ± 2.0 | 69.8 ± 3.0 |
生物量 Biomass (Mg·hm-2) | 6.1 ± 0.3 | 1.9 ± 0.3 | 5.1 ± 0.2 |
凋落物 Litter (Mg·hm-2) | 1.5 ± 0.2 | 0.7 ± 0.1 | 1.4 ± 0.1 |
土壤有机碳 Soil organic C (Mg·hm-2) | 78.5 ± 3.6 | 19.5 ± 1.9 | 64.0 ± 3.0 |
氮密度 N density (Mg·hm-2) | 8.1 ± 0.3 | 2.6 ± 0.3 | 7.3 ± 0.3 |
生物量 Biomass (10-2 Mg·hm-2) | 12.9 ± 0.6 | 6.4 ± 0.7 | 11.5 ± 0.5 |
凋落物 Litter (10-2 Mg·hm-2) | 4.0 ± 0.4 | 1.8 ± 0.2 | 3.8 ± 0.3 |
土壤 Soil (Mg·hm-2) | 7.9 ± 0.4 | 2.5 ± 0.3 | 7.1 ± 0.3 |
磷密度 P density (Mg·hm-2) | 4.3 ± 0.2 | 3.7 ± 0.3 | 4.2 ± 0.2 |
生物量 Biomass (10-3 Mg·hm-2) | 9.9 ± 0.5 | 3.6 ± 0.3 | 8.6 ± 0.4 |
凋落物 Litter (10-3 Mg·hm-2) | 2.7 ± 0.2 | 0.9 ± 0.2 | 2.5 ± 0.2 |
土壤 Soil (Mg·hm-2) | 4.3 ± 0.2 | 3.7 ± 0.3 | 4.2 ± 0.2 |
图1 中国北方灌丛生物量碳(A-D)、氮(E-H)、磷(I-L)密度与环境的关系(点线: p > 0.01; 短划线: 0.001 < p < 0.01; 实线: p < 0.001)。
Fig. 1 Biomass carbon (C) (A-D), nitrogen (N) (E-H) and phosphorus (P) (I-L) densities for shrublands of Northern China in relation to environmental factors (dotted line: p > 0.01; dashed line: 0.001 < p < 0.01; solid line: p < 0.001). AP, annual precipitation; MAT, mean annual temperature; STN, soil total nitrogen concentration; STP, soil total phosphorus concentration.
图2 中国北方灌丛凋落物碳(A-D)、氮(E-H)、磷(I-L)密度与环境的关系。不同线型和缩写的意义见图1。
Fig. 2 Litter carbon (C) (A-D), nitrogen (N) (E-H) and phosphorus (P) (I-L) densities for shrublands of Northern China in relation to environmental factors. Please see Fig. 1 for the meaning of different line types and abbreviations.
图3 中国北方灌丛土壤有机碳(A, B)、氮(C, D)、磷(E, F)密度与气候的关系。不同线型和缩写的意义见图1。
Fig. 3 Soil organic carbon (C) (A, B), nitrogen (N) (C, D) and phosphorus (P) (E, F) densities for shrubland of Northern China in relation to climatic factors. Please see Fig. 1 for the meaning of different line types and abbreviations.
灌丛植被型 Shrubland types | 落叶阔叶灌丛 Deciduous broadleaf shrublands | 稀疏灌丛 Sparse shrublands | 总计 Total |
---|---|---|---|
面积 Area (104 hm2) | 1 828.6 | 1 050.4 | 2 879.0 |
碳储量 C storage (Tg) | 1 537.6 | 183.5 | 1 721.1 |
生物量 Biomass | 118.6 | 9.8 | 128.4 |
凋落物 Litter | 8.2 | 0.2 | 8.4 |
土壤有机碳 Soil organic C | 1 410.8 | 173.5 | 1 584.3 |
氮储量 N storage (Tg) | 137.1 | 27.8 | 164.9 |
生物量 Biomass | 2.8 | 0.3 | 3.1 |
凋落物 Litter | 4.5 | 0.0 | 4.5 |
土壤 Soil | 133.8 | 27.5 | 161.3 |
磷储量 P storage (Tg) | 80.7 | 44.1 | 124.8 |
生物量 Biomass | 0.2 | 0.0 | 0.2 |
凋落物 Litter | 2.7 | 0.0 | 2.7 |
土壤 Soil | 80.5 | 44.1 | 124.6 |
表2 中国北方主要灌丛的碳、氮、磷储量
Table 2 Carbon (C), nitrogen (N) and phosphorus (P) storage of major shrublands in Northern China
灌丛植被型 Shrubland types | 落叶阔叶灌丛 Deciduous broadleaf shrublands | 稀疏灌丛 Sparse shrublands | 总计 Total |
---|---|---|---|
面积 Area (104 hm2) | 1 828.6 | 1 050.4 | 2 879.0 |
碳储量 C storage (Tg) | 1 537.6 | 183.5 | 1 721.1 |
生物量 Biomass | 118.6 | 9.8 | 128.4 |
凋落物 Litter | 8.2 | 0.2 | 8.4 |
土壤有机碳 Soil organic C | 1 410.8 | 173.5 | 1 584.3 |
氮储量 N storage (Tg) | 137.1 | 27.8 | 164.9 |
生物量 Biomass | 2.8 | 0.3 | 3.1 |
凋落物 Litter | 4.5 | 0.0 | 4.5 |
土壤 Soil | 133.8 | 27.5 | 161.3 |
磷储量 P storage (Tg) | 80.7 | 44.1 | 124.8 |
生物量 Biomass | 0.2 | 0.0 | 0.2 |
凋落物 Litter | 2.7 | 0.0 | 2.7 |
土壤 Soil | 80.5 | 44.1 | 124.6 |
[1] | Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau.Ecology, 89, 2140-2153. |
[2] | Brooks ML (2003). Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert.Journal of Applied Ecology, 40, 344-353. |
[3] | Chapin III FS (1980). The mineral nutrition of wild plants.Annual Review of Ecology and Systematics, 11, 233-260. |
[4] | Chapin III FS, Vitousek PM, van Cleve K (1986). The nature of nutrient limitation in plant communities.The American Naturalist, 127, 48-58. |
[5] | Cleveland CC, Liptzin D (2007). C, N, P stoichiometry in soil, is there a ‘Redfield ratio’ for the microbial biomass?Biogeochemistry, 85, 235-252. |
[6] | Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems.Science, 263, 185-190. |
[7] | Ellert BH, Gregorich EG (1996). Storage of carbon, nitrogen and phosphorus in cultivated and adjacent forested soils of Ontario.Soil Science, 161, 587-603. |
[8] | Fan J, Zhong H, Harris W, Yu G, Wang S, Hu Z, Yue Y (2008). Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass.Climatic Change, 86, 375-396. |
[9] | Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292, 2320-2322. |
[10] | Fang JY, Guo ZD, Piao SL, Chen AP (2007). Terrestrial vegetation carbon sinks in China, 1981-2000.Science China Earth Sciences, 37, 804-812. (in Chinese)[方精云, 郭兆迪, 朴世龙, 陈安平 (2007). 1981~2000年中国陆地植被碳汇的估算. 中国科学: 地球科学, 37, 804-812.] |
[11] | Fang JY, Yang YH, Ma WH, Mohammat A, Shen HH (2010). Ecosystem carbon stocks and their changes in China’s grasslands.Science China Life Sciences, 40, 566-576. (in Chinese)[方精云, 杨元合, 马文红, 安尼瓦尔·买买提, 沈海花 (2010). 中国草地生态系统碳库及其变化. 中国科学: 生命科学, 40, 566-576.] |
[12] | Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas.International Journal of Climatology, 25, 1965-1978. |
[13] | Hobbie SE (1996). Temperature and plant species control over litter decomposition in Alaskan Tundra.Ecological Monographs, 66, 503-522. |
[14] | Hu HF, Wang ZH, Liu GH, Fu BJ (2006). Vegetation carbon storage of major shrublands in China.Journal of Plant Ecology (Chinese Version), 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.] |
[15] | Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications, 10, 423-436. |
[16] | John MK (1970). Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid.Soil Science, 109, 214-220. |
[17] | Ni J (2001). Carbon storage in terrestrial ecosystems of China, estimates at different spatial resolutions and their respon- ses to climate change.Climatic Change, 49, 339-358. |
[18] | Ni J (2002). Carbon storage in grasslands of China.Journal of Arid Environments, 50, 205-218. |
[19] | Piao SL, Fang JY, He JS, Xiao Y (2004). Spatial distribution of grassland biomass in China.Acta Phytoecologica Sinica, 28, 491-498. (in Chinese with English abstract)[朴世龙, 方精云, 贺金生, 肖玉 (2004). 中国草地植被生物量及其空间分布格局. 植物生态学报, 28, 491-498.] |
[20] | Post WM, Pastor J, Zinke PJ, Stangenberger AG (1985). Global patterns of soil nitrogen storage.Nature, 317, 613-616. |
[21] | Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994). Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils.Global Biogeochemical Cycles, 8, 279-293. |
[22] | Tian H, Wang S, Liu J, Pan S, Chen H, Zhang C, Shi X (2006). Patterns of soil nitrogen storage in China. Global Biogeo- chemical Cycles, 20, GB1001. doi: 10.1029/2005GB002464. |
[23] | Wynn JG, Bird MI, Vellen L, Grand-Clement E, Carter J, Berry SL (2006). Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Global Biogeochemical Cycles, 20, GB1007. doi: 10.1029/2005GB002576. |
[24] | Yang X, Tang ZY, Ji CJ, Liu HY, Ma WH, Mohhamot A, Shi ZY, Sun W, Wang T, Wu X, Yu SL, Yue M, Zheng CY (2014). Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across Northern China.Scientific Reports, 4, 5488. doi: 10.1038/srep05448. |
[25] | Yang YH, Ma WH, Mohhamot A, Fang JY (2007). Storage, patterns and controls of soil nitrogen in China.Pedosphere, 17, 776-785. |
[26] | Zhang L, Wu BF, Li XS, Xing Q (2014). Classification system of China land cover for carbon budget.Acta Ecologica Sinica, 34, 7158-7166. (in Chinese with English abstract)[张磊, 吴炳方, 李晓松, 邢强 (2014). 基于碳收支的中国土地覆被分类系统. 生态学报, 34, 7158-7166.] |
[27] | Zhao M, Zhou GS (2004). Carbon storage of forest vegetation and its relationship with climatic factors.Scientia Geographica Sinica, 24, 50-54. (in Chinese with English abstract)[赵敏, 周广胜 (2004). 中国森林生态系统的植物碳贮量及其影响因子分析. 地理科学, 24, 50-54.] |
[28] | Zhou XH, Talley M, Luo YQ (2009). Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains, USA.Ecosystems, 12, 1369-1380. |
[29] | Zhou YR, Yu ZL, Zhao SD (2000). Carbon storage and budget of major Chinese forest types.Acta Phytoecologica Sinica, 24, 518-522. (in Chinese with English abstract)[周玉荣, 于振良, 赵士洞 (2000). 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 24, 518-522.] |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[5] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[6] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[7] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[8] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[9] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[10] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[11] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[12] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[13] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[14] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[15] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19