植物生态学报 ›› 2020, Vol. 44 ›› Issue (11): 1127-1137.DOI: 10.17521/cjpe.2019.0289
舒树淼1,2, 朱万泽1,*(), 冉飞1, 孙守琴1, 张元媛1,2
收稿日期:
2019-10-30
接受日期:
2020-06-10
出版日期:
2020-11-20
发布日期:
2021-01-05
通讯作者:
朱万泽
作者简介:
*wzzhu@imde.ac.cn基金资助:
SHU Shu-Miao1,2, ZHU Wan-Ze1,*(), RAN Fei1, SUN Shou-Qin1, ZHANG Yuan-Yuan1,2
Received:
2019-10-30
Accepted:
2020-06-10
Online:
2020-11-20
Published:
2021-01-05
Contact:
ZHU Wan-Ze
Supported by:
摘要:
碳利用效率(CUE)是植被生态系统的一个重要功能参数, 反映了植被生态系统的固碳能力, 适用于分析不同时间段内器官、个体和群落等不同层次的碳收支趋势, 因而有助于对陆地生态系统碳功能的确定与预测, 引起了广泛关注。该研究采用生物计量法, 测定和计算了川西贡嘎山东坡峨眉冷杉(Abies fabri)成熟林树木不同器官的呼吸与净生产力动态, 分析了乔木层及其各器官CUE动态及主要影响因子, 并估算了乔木层不同径级树木CUE。主要结果: (1)乔木层各器官月呼吸速率与温度呈正相关关系, 以细根月呼吸速率为最大; 不同径级树木年呼吸量无显著差异, 以小径级树木树干的年呼吸量为最小。(2)乔木层细根和树干月净初级生产力(NPP)均随温度增加而增加, 以细根月NPP为最大。小径级树木年NPP最大, 其针叶年NPP也显著高于中径级和大径级树木。(3)林分乔木层及其各器官CUE大多集中在0.30-0.60之间, 其中细根、树干CUE具有相似的月变化动态, 均随温度的升高而上升。不同径级树木CUE及树干和针叶CUE均随树木个体的增大而明显下降。(4)气温和土壤温度与乔木层树干和细根CUE呈正相关关系, 而降水量与针叶CUE呈负相关关系。细根CUE与树干CUE呈正相关关系,与针叶CUE呈负相关关系。峨眉冷杉成熟林乔木层CUE主要取决于树干和细根CUE。该研究证实了川西亚高山暗针叶成熟林仍具有较强的碳汇功能, 在区域碳储存和森林生态系统碳循环中发挥着极其重要的作用。
舒树淼, 朱万泽, 冉飞, 孙守琴, 张元媛. 贡嘎山峨眉冷杉成熟林碳利用效率季节动态及其影响因子. 植物生态学报, 2020, 44(11): 1127-1137. DOI: 10.17521/cjpe.2019.0289
SHU Shu-Miao, ZHU Wan-Ze, RAN Fei, SUN Shou-Qin, ZHANG Yuan-Yuan. Season dynamics of carbon use efficiency and its influencing factors in the old-growth Abies fabri forest in Gongga Mountain, western Sichuan, China. Chinese Journal of Plant Ecology, 2020, 44(11): 1127-1137. DOI: 10.17521/cjpe.2019.0289
图1 贡嘎山峨眉冷杉成熟林碳利用效率(CUE)季节动态研究思路。NPP, 净初级生产力。
Fig. 1 Research route of seasonal dynamics of carbon use efficiency (CUE) in an old-growth Abies fabri forest on Gongga Mountain. NPP, net primary productivity.
图2 贡嘎山峨眉冷杉成熟林乔木层及其不同径级树木呼吸碳消耗。不同小写字母表示不同径级下相同器官呼吸量在p < 0.05水平下差异显著。
Fig. 2 Respiration of the tree layer and trees with different diameter classes in an old-growth Abies fabri forest on Gongga Mountain. Different lowercase letters indicate significant difference at p < 0.05 level for the respiration amount of same organ under different diameter classes.
图3 贡嘎山峨眉冷杉成熟林乔木层及其不同径级树木净初级生产力。不同小写字母表示不同径级下相同器官净初级生产力在p < 0.05水平下差异显著。
Fig. 3 Net primary productivity of the tree layer and trees with different diameter classes in an old-growth Abies fabri forest on Gongga Mountain. Different lowercase letters indicate significant difference at p < 0.05 level for the net primary productivity of same organ under different diameter classes.
图4 贡嘎山峨眉冷杉成熟林乔木层及其不同径级树木碳利用效率(CUE)。不同小写字母表示不同径级下相同器官CUE在p < 0.05水平下差异显著。
Fig. 4 Carbon use efficiency (CUE) of the tree layer and trees with different diameter classes in an old-growth Abies fabri forest on Gongga Mountain. Different lowercase letters indicate significant difference at p < 0.05 level for the CUE of same organ under different diameter classes.
图5 峨眉冷杉成熟林乔木层及其器官碳利用效率(CUE)的影响因子。箭头正负数值为标准化回归系数, 表示正、负效应; 矩形上方的数字为R2, 其反映了某一变量被其他变量解释的方差解释量; 小圆圈表示残差; 双向箭头表示相关性, 其上方的数字表示相关性大小; 图中虚线表示预设路径。
Fig. 5 Influencing factors of carbon use efficiency (CUE) in tree layer and organs of an old-growth Abies fabri forest. Values associated with solid arrows are standardized path coefficients, indicating positive or negative effects. Values associated with the rectangles are R2, indicating the proportion of variation explained by relationships with other variables. Small circles represent residuals. Values associated with two way arrow indicate the correlation. The dotted line indicates the preset path.
影响因素 Impact factor | 标准化总影响系数 Standardized total influence coefficients | 标准化直接影响系数 Standardized direct influence coefficients | 标准化间接影响系数 Standardized indirect influence coefficients | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | 树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | 树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | |
土壤温度 Soil temperature | - | 0.59 | -0.41 | 0.37 | - | 0.59 | - | - | - | - | -0.41 | 0.37 |
气温 Air temperature | 0.93 | - | -0.06 | 0.45 | 0.93 | - | - | - | - | - | -0.06 | 0.45 |
降水 Precipitation | 0.09 | - | -0.40 | 0.04 | 0.09 | - | -0.39 | - | - | - | -0.01 | 0.04 |
树干CUE Stem CUE | - | - | -0.07 | 0.48 | - | - | -0.07 | 0.48 | - | - | - | - |
细根CUE Fine root CUE | - | - | -0.69 | 0.63 | - | - | -0.69 | 0.63 | - | - | - | - |
表1 峨眉冷杉成熟林乔木层碳利用效率(CUE)结构方程模型标准化影响系数
Table 1 Standardized influence coefficients of the structural equation model (SEM) for the arbor layer carbon use efficiency (CUE) of Abies fabri old-growth forest
影响因素 Impact factor | 标准化总影响系数 Standardized total influence coefficients | 标准化直接影响系数 Standardized direct influence coefficients | 标准化间接影响系数 Standardized indirect influence coefficients | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | 树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | 树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | |
土壤温度 Soil temperature | - | 0.59 | -0.41 | 0.37 | - | 0.59 | - | - | - | - | -0.41 | 0.37 |
气温 Air temperature | 0.93 | - | -0.06 | 0.45 | 0.93 | - | - | - | - | - | -0.06 | 0.45 |
降水 Precipitation | 0.09 | - | -0.40 | 0.04 | 0.09 | - | -0.39 | - | - | - | -0.01 | 0.04 |
树干CUE Stem CUE | - | - | -0.07 | 0.48 | - | - | -0.07 | 0.48 | - | - | - | - |
细根CUE Fine root CUE | - | - | -0.69 | 0.63 | - | - | -0.69 | 0.63 | - | - | - | - |
[1] | An X, Chen YM, Tang YK (2017). Factors affecting the spatial variation of carbon use efficiency and carbon fluxes in east Asian forest and grassland. Research of Soil and Water Conservation, 24(5), 79-87. |
[ 安相, 陈云明, 唐亚坤 (2017). 东亚森林、草地碳利用效率及碳通量空间变化的影响因素分析. 水土保持研究, 24(5), 79-87.] | |
[2] | Ashraf M, Ahmad A, McNeilly T (2001). Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica, 39, 389-394. |
[3] | Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, dos Santos J, Araújo AC, Kruijt B, Nobre AD, Trumbore SE (2004). Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecological Applications, 14, 72-88. |
[4] |
Chantuma P, Lacointe A, Kasemsap P, Thanisawanyangkura S, Gohet E, Clément A, Guilliot A, Améglio T, Thaler P (2009). Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping. Tree Physiology, 29, 1021-1031.
DOI URL PMID |
[5] | Chen GS, Yang YS, Guo JF, Xie JS, Yang ZJ (2011). Relationships between carbon allocation and partitioning of soil respiration across world mature forests. Plant Ecology, 212, 195-206. |
[6] |
Chen GS, Hobbie SE, Reich PB, Yang YS, Robinson D (2019). Allometry of fine roots in forest ecosystems. Ecology Letters, 22, 322-331.
URL PMID |
[7] | de Lucia EH, Drake JE, Thomas RB, Gonzalez-Meler M (2007). Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Global Change Biology, 13, 1157-1167. |
[8] |
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
URL PMID |
[9] | Du Z, Gan SS, Hu J (2014). Characteristics and protection strategy of forest resources in the alpine region of southwest China. Forest Resources Management, (z1), 27-31. |
[ 杜志, 甘世书, 胡觉 (2014). 西南高山林区森林资源特点及保护利用对策探讨. 林业资源管理, (z1), 27-31.] | |
[10] | Malhi Y, Aragão L, Metcalfe D, PAIVA R, Quesada C, Almeida S, Anderson L, Brando P, Chambers J, Costa A, Hutyra L, Souza P, Patiño S, Pyle E, Robertson A, Teixeira L (2009). Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology, 15, 1255-1274. |
[11] | Mencuccini M, Martínez-Vilalta J, Vanderklein D, Hamid H, A, Korakaki E, Lee S, Michiels B (2005). Size-mediated ageing reduces vigour in trees. Ecology Letters, 11, 1183-1190. |
[12] | Gao SP, Li JX, Xu MC, Chen X, Dai J (2007). Leaf N and P stoichiometry of common species in successional stages of the evergreen broad-leaved forest in Tiantong National Forest Park, Zhejiang Province, China. Acta Ecologica Sinica, 27, 947-952. |
[ 高三平, 李俊祥, 徐明策, 陈熙, 戴洁 (2007). 天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征. 生态学报, 27, 947-952.] | |
[13] |
Gifford RM (2003). Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Functional Plant Biology, 30, 171-186.
URL PMID |
[14] | Hu ZY, Wang GX, Sun XY, Wang J, Chen XP, Song CL, Song XY, Lin S (2019). Variations in belowground carbon use strategies under different climatic conditions. Agricultural and Forest Meteorology, 268, 32-39. |
[15] | Jarčuška B, Barna M (2011). Plasticity in above-ground biomass allocation in Fagus sylvatica L. saplings in response to light availability. Annals of Forest Research, 54, 151-160. |
[16] | Kalyn AL, van Rees KCJ (2006). Contribution of fine roots to ecosystem biomass and net primary production in black spruce, aspen, and jack pine forests in Saskatchewan. Agricultural and Forest Meteorology, 140, 236-243. |
[17] | Liu T, Sun SQ, Qiu Y (2017). Dynamics and differences in the decomposition of litters from three dominating plants in subalpine ecosystems in Western Sichuan China. Mountain Research, 35, 663-668. |
[ 刘涛, 孙守琴, 邱阳 (2017). 川西亚高山生态系统三种典型植物凋落物分解动态特征. 山地学报, 35, 663-668.] | |
[18] | Liu ZG, Qiu FY (1986). The main vegetation types and their distribution in the Gongga Mountainous region. Acta Phytoecologica et Geobotanica Sinica, (1), 28-36. |
[ 刘照光, 邱发英 (1986). 贡嘎山地区主要植被类型和分布. 植物生态学与地植物学丛刊, (1), 28-36.] | |
[19] |
Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008). Old-growth forests as global carbon sinks. Nature, 455, 213-215.
DOI URL PMID |
[20] |
Mäkelä A, Valentine HT (2001). The ratio of NPP to GPP: evidence of change over the course of stand development. Tree Physiology, 21, 1015-1030.
URL PMID |
[21] | Malhi Y (2012). The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology, 100, 65-75. |
[22] | Malhi Y, Doughty C, Galbraith D (2011). The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B, 366, 3225-3245. |
[23] | Metcalfe DB, Meir P, Aragão LEOC, Lobo-do-Vale R, Galbraith D, Fisher RA, Chaves MM, Maroco JP, da Costa ACL, de Almeida SS, Braga AP, Gonçalves PHL, de Athaydes J, da Costa M, Portela TTB, de Oliveira AAR, Malhi Y, Williams M (2010). Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon. New Phytologist, 187, 608-621. |
[24] | Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009). Global patterns in plant height. Journal of Ecology, 97, 923-932. |
[25] | Mollier A, Pellerin S (1999). Maize root system growth and development as influenced by phosphorous deficiency. Journal of Experimental Botany, 50, 487-497. |
[26] | Peng L, Peng JH, Sun SQ, Wu YH, He G (2015). Characteristics of mountain ecosystem soil respiration along an elevation gradient on Gongga Mountain. Journal of Mountain Science, 33, 696-702. |
[ 彭亮, 彭尽晖, 孙守琴, 吴艳宏, 何刚 (2015). 贡嘎山生态系统土壤呼吸带谱特征. 山地学报, 33, 696-702.] | |
[27] | Raich JW, Nadelhoffer KJ (1989). Belowground carbon allocation in forest ecosystems: global trends. Ecology, 70, 1346-1354. |
[28] | Shu SM, Zhu WZ, Wang WZ, Jia M, Zhang YY, Sheng ZL (2019). Effects of tree size heterogeneity on carbon sink in old forests. Forest Ecology and Management, 432, 637-648. |
[29] |
Waring RH, Landsberg JJ, Williams M (1998). Net primary production of forests: a constant fraction of gross primary production? Tree Physiology, 18, 129-134.
URL PMID |
[30] | Williams CA, Collatz GJ, Masek J, Huang C, Goward SN (2014). Impacts of disturbance history on forest carbon stocks and fluxes: merging satellite disturbance mapping with forest inventory data in a carbon cycle model framework. Remote Sensing of Environment, 151, 57-71. |
[31] | Wu ML (2010). Structural Equation Model: Operation and Application of AMOS. Chongqing University Press, Chongqing. |
[ 吴明隆 (2010). 结构方程模型: AMOS的操作与应用. 重庆大学出版社, 重庆.] | |
[32] | Xiang WH, Tian DL, Yan WD (2003). Review of researches on forest biomass and productivity. Central South Forest Inventory and Planning, 22(3), 57-64. |
[ 项文化, 田大伦, 闫文德 (2003). 森林生物量与生产力研究综述. 中南林业调查规划, 22(3), 57-64.] | |
[33] | Yang LD, Wang GX, Yang Y, Cao Y, Li W, Guo JY (2010). Dynamics of litter fall in Abies fabric mature forest at Gongga Mountain. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 32, 1163-1167. |
[ 羊留冬, 王根绪, 杨燕, 曹洋, 李伟, 郭剑英 (2010). 贡嘎山峨眉冷杉成熟林凋落物量动态研究. 江西农业大学学报, 32, 1163-1167.] | |
[34] | Zhang FY, Quan Q, Ma FF, Tian DS, Zhou QP, Niu SL (2019). Differential responses of ecosystem carbon flux components to experimental precipitation gradient in an alpine meadow. Functional Ecology, 33, 889-900. |
[35] | Zhao G (2015). The Breathing Dynamics of the Emei Fir Trunks of Gongga Mountain and Its Influence Factors. Master degree dissertation, University of the Chinese Academy of Sciences, Beijing. |
[ 赵广 (2015). 贡嘎山峨眉冷杉树干呼吸时空动态及其影响因子. 硕士学位论文, 中国科学院大学, 北京.] | |
[36] |
Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J (2006). Old-growth forests can accumulate carbon in soils. Science, 314, 1417. DOI: 10.1126/science.1130168.
URL PMID |
[37] | Zhou P, Zhu WZ, Luo J, Chen YC, Yang Y, Xie J (2013). Aboveground biomass and carbon storage of typical forest types in Gongga Mountain. Acta Botanica Boreali- Occidentalia Sinica, 33, 162-168. |
[ 周鹏, 朱万泽, 罗辑, 陈有超, 杨阳, 谢静 (2013). 贡嘎山典型植被地上生物量与碳储量研究. 西北植物学报, 33, 162-168.] | |
[38] | Zhou T, Shi PJ, Jia GS, Li XJ, Luo YQ (2010). Spatial patterns of ecosystem carbon residence time in Chinese forests. Science China Earth Sciences, 53, 1229-1240. |
[39] | Zhu WZ (2013). Advances in the carbon use efficiency of forest. Chinese Journal of Plant Ecology, 37, 1043-1058. |
[ 朱万泽 (2013). 森林碳利用效率研究进展. 植物生态学报, 37, 1043-1058.] | |
[40] | Zhu WZ (2020). Advances in the carbon sequestration of mature forest. Scientia Silvae Sinicae, 56(3), 117-126. |
[ 朱万泽 (2020). 成熟森林固碳研究进展. 林业科学, 56(3), 117-126.] |
[1] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[2] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[3] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[4] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[5] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[6] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[7] | 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. 长期氮添加对典型草原植物多样性与初级生产力的影响及途径[J]. 植物生态学报, 2020, 44(1): 22-32. |
[8] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[9] | 吴红宝, 高清竹, 干珠扎布, 李钰, 闫玉龙, 胡国铮, 王学霞, 严俊, 何世丞. 放牧和模拟增温对藏北高寒草地植物群落特征及生产力的影响[J]. 植物生态学报, 2019, 43(10): 853-862. |
[10] | 李旭华, 孙建新. Biome-BGC模型模拟阔叶红松林碳水通量的参数敏感性检验和不确定性分析[J]. 植物生态学报, 2018, 42(12): 1131-1144. |
[11] | 王亚林, 龚容, 吴凤敏, 范文武. 2001-2013年中国灌木生态系统净初级生产力的时空变化特征及其对气候变化的响应[J]. 植物生态学报, 2017, 41(9): 925-937. |
[12] | 解雅麟, 王海燕, 雷相东. 基于过程模型的气候变化对长白落叶松人工林净初级生产力的影响[J]. 植物生态学报, 2017, 41(8): 826-839. |
[13] | 李登秋, 张春华, 居为民, 刘丽娟. 江西省森林净初级生产力动态变化特征及其驱动因子分析[J]. 植物生态学报, 2016, 40(7): 643-657. |
[14] | 周正虎, 王传宽. 微生物对分解底物碳氮磷化学计量的响应和调节机制[J]. 植物生态学报, 2016, 40(6): 620-630. |
[15] | 潘石玉, 孔彬彬, 姚天华, 卫欣华, 李英年, 朱志红. 刈割和施肥对高寒草甸功能多样性与地上净初级生产力关系的影响[J]. 植物生态学报, 2015, 39(9): 867-877. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1623
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1266
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La