植物生态学报 ›› 2017, Vol. 41 ›› Issue (8): 826-839.DOI: 10.17521/cjpe.2016.0382
出版日期:
2017-08-10
发布日期:
2017-09-29
通讯作者:
王海燕
作者简介:
康璟瑶(1991-),男,江苏南京人,硕士生,主要从事旅游地理与旅游规划研究,E-mail:
基金资助:
Ya-Lin XIE1, Hai-Yan WANG1,*(), Xiang-Dong LEI2
Online:
2017-08-10
Published:
2017-09-29
Contact:
Hai-Yan WANG
About author:
KANG Jing-yao(1991-), E-mail:
摘要:
气候变化对净初级生产力(NPP)会产生显著的影响, 但影响的方向和程度存在较大的不确定性。过程模型是揭示气候变化对森林生产力影响的重要工具。该文以吉林省四平、临江、白山等地10个林区30块长白落叶松(Larix olgensis)人工林固定样地为研究对象, 基于气候、土壤、林分生长等观测数据, 运用3-PG模型模拟了长白落叶松人工林NPP在一个轮伐期(40 年)内随林龄的动态变化, 以及在未来不同气候情景条件下NPP的变化情况。结果表明: 通过本地参数化后的3-PG模型模拟的长白落叶松林NPP为272.79-844.80 g·m-2·a-1, 与基于样地实测的NPP具有很好的一致性, 平均相对误差和相对均方根误差均小于12%。在未来CO2浓度、温度及降水同时增加的情景下, 长白落叶松林NPP明显增加。单独增加温度会减小长白落叶松林的NPP, 而降水及CO2浓度增加能够在一定程度上促进NPP的增加, 但降水增加的正效应明显弱于温度升高的负效应。参数敏感性分析表明: 生长最适温度、林分比叶面积达(年龄为0时比叶面积+成熟叶比叶面积)/2时的林龄、每次霜冻导致生产力流失天数是模型的关键参数。因此, 3-PG模型可以准确地模拟长白落叶松的NPP, 模拟结果可为应对气候变化的长白落叶松经营管理提供依据。
解雅麟, 王海燕, 雷相东. 基于过程模型的气候变化对长白落叶松人工林净初级生产力的影响. 植物生态学报, 2017, 41(8): 826-839. DOI: 10.17521/cjpe.2016.0382
Ya-Lin XIE, Hai-Yan WANG, Xiang-Dong LEI. Effects of climate change on net primary productivity in Larix olgensis plantations based on process modeling. Chinese Journal of Plant Ecology, 2017, 41(8): 826-839. DOI: 10.17521/cjpe.2016.0382
排放情景 Emission scenarios | CO2浓度 CO2 concentration (mg·L-1) | CO2浓度基准值 CO2 concentration reference value (mg·L-1) | 气温增加 Air temperature increment (℃) | 气温增加基准值 Air temperature increment reference value (℃) | 降水量增加 Precipitation increment (%) | 降水量增加基准值 Precipitation increment reference value (%) |
---|---|---|---|---|---|---|
RCP 2.6 | 440-480 | 460 | 0.3-1.7 | 1.0 | 0.3-5.1 | 2.7 |
RCP 6.0 | 510-570 | 540 | 1.4-3.1 | 2.3 | 1.4-9.3 | 5.4 |
RCP 8.5 | 560-630 | 595 | 2.6-4.8 | 3.7 | 2.6-14.4 | 8.5 |
表1 三种最新排放情景变化模式
Table 1 Pattern of changes under three latest climate emission scenarios
排放情景 Emission scenarios | CO2浓度 CO2 concentration (mg·L-1) | CO2浓度基准值 CO2 concentration reference value (mg·L-1) | 气温增加 Air temperature increment (℃) | 气温增加基准值 Air temperature increment reference value (℃) | 降水量增加 Precipitation increment (%) | 降水量增加基准值 Precipitation increment reference value (%) |
---|---|---|---|---|---|---|
RCP 2.6 | 440-480 | 460 | 0.3-1.7 | 1.0 | 0.3-5.1 | 2.7 |
RCP 6.0 | 510-570 | 540 | 1.4-3.1 | 2.3 | 1.4-9.3 | 5.4 |
RCP 8.5 | 560-630 | 595 | 2.6-4.8 | 3.7 | 2.6-14.4 | 8.5 |
气候变化情景 Climate change scenarios | 排放情景 Emission scenarios | CO2浓度 CO2 concentration | 气温 Air temperature | 降水量 Precipitation |
---|---|---|---|---|
C0T0P0 | 不变 No change | 不变 No change | 不变 No change | |
RCP 2.6 | 460 mg·L-1 | 不变 No change | 不变 No change | |
C1T0P0 | RCP 6.0 | 540 mg·L-1 | 不变 No change | 不变 No change |
RCP 8.5 | 595 mg·L-1 | 不变 No change | 不变 No change | |
RCP 2.6 | 不变 No change | +1.0 ℃ | 不变 No change | |
C0T1P0 | RCP 6.0 | 不变 No change | +2.3 ℃ | 不变 No change |
RCP 8.5 | 不变 No change | +3.7 ℃ | 不变 No change | |
RCP 2.6 | 不变 No change | 不变 No change | +2.7% | |
C0T0P1 | RCP 6.0 | 不变 No change | 不变 No change | +5.4% |
RCP 8.5 | 不变 No change | 不变 No change | +8.5% | |
RCP 2.6 | 不变 No change | +1.0 ℃ | +2.7% | |
C0T1P1 | RCP 6.0 | 不变 No change | +2.3 ℃ | +5.4% |
RCP 8.5 | 不变 No change | +3.7 ℃ | +8.5% | |
RCP 2.6 | 460 mg·L-1 | +1.0 ℃ | 不变 No change | |
C1T1P0 | RCP 6.0 | 540 mg·L-1 | +2.3 ℃ | 不变 No change |
RCP 8.5 | 595 mg·L-1 | +3.7 ℃ | 不变 No change | |
RCP 2.6 | 460 mg·L-1 | 不变 No change | +2.7% | |
C1T0P1 | RCP 6.0 | 540 mg·L-1 | 不变 No change | +5.4% |
RCP 8.5 | 595 mg·L-1 | 不变 No change | +8.5% | |
RCP 2.6 | 460 mg·L-1 | +1.0 ℃ | +2.7 % | |
C1T1P1 | RCP 6.0 | 540 mg·L-1 | +2.3 ℃ | +5.4 % |
RCP 8.5 | 595 mg·L-1 | +3.7 ℃ | +8.5 % |
表2 不同未来气候变化情景设置
Table 2 Different climate change scenarios
气候变化情景 Climate change scenarios | 排放情景 Emission scenarios | CO2浓度 CO2 concentration | 气温 Air temperature | 降水量 Precipitation |
---|---|---|---|---|
C0T0P0 | 不变 No change | 不变 No change | 不变 No change | |
RCP 2.6 | 460 mg·L-1 | 不变 No change | 不变 No change | |
C1T0P0 | RCP 6.0 | 540 mg·L-1 | 不变 No change | 不变 No change |
RCP 8.5 | 595 mg·L-1 | 不变 No change | 不变 No change | |
RCP 2.6 | 不变 No change | +1.0 ℃ | 不变 No change | |
C0T1P0 | RCP 6.0 | 不变 No change | +2.3 ℃ | 不变 No change |
RCP 8.5 | 不变 No change | +3.7 ℃ | 不变 No change | |
RCP 2.6 | 不变 No change | 不变 No change | +2.7% | |
C0T0P1 | RCP 6.0 | 不变 No change | 不变 No change | +5.4% |
RCP 8.5 | 不变 No change | 不变 No change | +8.5% | |
RCP 2.6 | 不变 No change | +1.0 ℃ | +2.7% | |
C0T1P1 | RCP 6.0 | 不变 No change | +2.3 ℃ | +5.4% |
RCP 8.5 | 不变 No change | +3.7 ℃ | +8.5% | |
RCP 2.6 | 460 mg·L-1 | +1.0 ℃ | 不变 No change | |
C1T1P0 | RCP 6.0 | 540 mg·L-1 | +2.3 ℃ | 不变 No change |
RCP 8.5 | 595 mg·L-1 | +3.7 ℃ | 不变 No change | |
RCP 2.6 | 460 mg·L-1 | 不变 No change | +2.7% | |
C1T0P1 | RCP 6.0 | 540 mg·L-1 | 不变 No change | +5.4% |
RCP 8.5 | 595 mg·L-1 | 不变 No change | +8.5% | |
RCP 2.6 | 460 mg·L-1 | +1.0 ℃ | +2.7 % | |
C1T1P1 | RCP 6.0 | 540 mg·L-1 | +2.3 ℃ | +5.4 % |
RCP 8.5 | 595 mg·L-1 | +3.7 ℃ | +8.5 % |
图2 3-PG模型原理(改自Sands和Landsberg (2002))。
Fig. 2 Principles of 3-PG model (based on Sands & Landsberg, 2002). GPP, gross primary productivity; LAI, leaf area index; NPP, net primary productivity; PAR, photosynthetically active radiation; PAR°, photosynthetically active radiation of canopy absorption; PAR°°, photosynthetically active radiation of photosynthesis; SLA, specific leaf area; VPD, vapor pressure deficiency.
参数 Parameter | 值 Value | 分类 Category | 来源 Source |
---|---|---|---|
生物量的分配关系和比例 Allometric relationships and partitioning | |||
胸径2 cm树叶与干分配比 Foliage: stem partitioning ratio when DBH = 2 cm | 1.00 | A | 本文拟合 Fitted in this study |
胸径20 cm树叶与干分配比 Foliage: stem partitioning ratio when DBH = 20 cm | 0.5 | A | 本文拟合 Fitted in this study |
干生物量与胸径关系中常数值 Constant in the stem biomass and DBH relationship | 0.007 3 | A | 本文拟合 Fitted in this study |
干生物量与胸径关系中幂值 Power in the stem biomass and DBH relationship | 3.409 | A | 本文拟合 Fitted in this study |
净初级生产量分配给根的最大值 Maximum fraction of net primary productivity to roots | 0.95 | A | 本文拟合 Fitted in this study |
净初级生产量分配给根最小值 Minimum fraction of net primary productivity to roots | 0.5 | A | 本文拟合 Fitted in this study |
气温修正因子 Air temperature modifier | |||
生长最低气温 Minimum air temperature for growth (℃) | -25 | L | Xu et al., 2012 |
生长最适气温 Optimum air temperature for growth (℃) | 17 | L | Sun et al., 2009 |
生长最高气温 Maximum air temperature for growth (℃) | 27 | L | Xu et al., 2012 |
霜冻修正因子 Frost modifier | |||
每次霜冻导致生产力流失天数 Production lost days per frost day (d) | 1 | C | 默认参数 Default parameters |
冠层结构和过程 Canopy structure and process | |||
比叶面积 Specific leaf area (SLA) | |||
年龄为0时比叶面积 Specific leaf area at age 0 (m2·kg-1) | 12.93 | L | Song & Sun, 2012 |
成熟叶比叶面积 Specific leaf area for mature leaves (m2·kg-1) | 5 | L | Song & Sun, 2012 |
年龄为(SLA0 + SLA1)/2比叶面积 Age at which specific leaf area = (SLA0 + SLA1)/2 | 8 | L | Song & Sun, 2012 |
光截获 Light interception | |||
消光系数 Extinction coefficient | 0.5 | L | Amichev et al., 2011 |
郁闭度年龄 Age at canopy cover (a) | 5 | L | Gonzalez-Benecke et al., 2014 |
从林冠降水蒸发的最大比例 Maximum proportion of rainfall evaporated from canopy | 0.15 | C | 默认参数 Default parameters |
最大降水截留时叶面积指数 Leaf area index for maximum rainfall interception | 5 | C | 默认参数 Default parameters |
光合生产和呼吸 Photosynthesis production and respiration | |||
冠层量子效率 Canopy quantum efficiency (mol·mol-1) | 0.035 | L | Ma et al., 2008 |
净初级生产力/总初级生产力 Ratio of net primary productivity to gross primary productivity | 0.47 | L | Liu et al., 2015 |
树枝在干中的比例 Fraction of stem biomass as branch and bark | 0.15 | L | |
林分初生时树枝占干生物量的比例 Fraction of branch and bark at age = 0 | 0.15 | L | Coops & Waring, 2011 |
林分成熟时树枝占干生物量的比例 Fraction of branch and bark for mature stands | Coops & Waring, 2011 | ||
树枝占平均值时的林龄 Age at which fraction = (Branch and bark fraction at age = 0+Branch and bark fraction for mature stands)/2 | 1.5 | L | Coops & Waring, 2011 |
立地初始化条件 Stand initialization | |||
初始种植年 Years of initial plantation | 1973-1983 | M | 本研究测定 Measurements in this study |
初始密度 Initial stocking (trees·hm-2) | 3300 | M | 本研究测定 Measurements in this study |
海拔 Altitude (m) | 230-751 | M | 本研究测定 Measurements in this study |
纬度 Latitude (°) | 41.61-43.88 | M | 本研究测定 Measurements in this study |
肥力等级 Fertility rating | 0.7 ± 0.1 | M | 本研究测定 Measurements in this study |
土壤质地类型 Soil texture | Clay loam | M | 本研究测定 Measurements in this study |
表3 长白落叶松人工林3-PG模型参数和初始数据
Table 3 3-PG model parameters and the initial values for Larix olgensis plantations
参数 Parameter | 值 Value | 分类 Category | 来源 Source |
---|---|---|---|
生物量的分配关系和比例 Allometric relationships and partitioning | |||
胸径2 cm树叶与干分配比 Foliage: stem partitioning ratio when DBH = 2 cm | 1.00 | A | 本文拟合 Fitted in this study |
胸径20 cm树叶与干分配比 Foliage: stem partitioning ratio when DBH = 20 cm | 0.5 | A | 本文拟合 Fitted in this study |
干生物量与胸径关系中常数值 Constant in the stem biomass and DBH relationship | 0.007 3 | A | 本文拟合 Fitted in this study |
干生物量与胸径关系中幂值 Power in the stem biomass and DBH relationship | 3.409 | A | 本文拟合 Fitted in this study |
净初级生产量分配给根的最大值 Maximum fraction of net primary productivity to roots | 0.95 | A | 本文拟合 Fitted in this study |
净初级生产量分配给根最小值 Minimum fraction of net primary productivity to roots | 0.5 | A | 本文拟合 Fitted in this study |
气温修正因子 Air temperature modifier | |||
生长最低气温 Minimum air temperature for growth (℃) | -25 | L | Xu et al., 2012 |
生长最适气温 Optimum air temperature for growth (℃) | 17 | L | Sun et al., 2009 |
生长最高气温 Maximum air temperature for growth (℃) | 27 | L | Xu et al., 2012 |
霜冻修正因子 Frost modifier | |||
每次霜冻导致生产力流失天数 Production lost days per frost day (d) | 1 | C | 默认参数 Default parameters |
冠层结构和过程 Canopy structure and process | |||
比叶面积 Specific leaf area (SLA) | |||
年龄为0时比叶面积 Specific leaf area at age 0 (m2·kg-1) | 12.93 | L | Song & Sun, 2012 |
成熟叶比叶面积 Specific leaf area for mature leaves (m2·kg-1) | 5 | L | Song & Sun, 2012 |
年龄为(SLA0 + SLA1)/2比叶面积 Age at which specific leaf area = (SLA0 + SLA1)/2 | 8 | L | Song & Sun, 2012 |
光截获 Light interception | |||
消光系数 Extinction coefficient | 0.5 | L | Amichev et al., 2011 |
郁闭度年龄 Age at canopy cover (a) | 5 | L | Gonzalez-Benecke et al., 2014 |
从林冠降水蒸发的最大比例 Maximum proportion of rainfall evaporated from canopy | 0.15 | C | 默认参数 Default parameters |
最大降水截留时叶面积指数 Leaf area index for maximum rainfall interception | 5 | C | 默认参数 Default parameters |
光合生产和呼吸 Photosynthesis production and respiration | |||
冠层量子效率 Canopy quantum efficiency (mol·mol-1) | 0.035 | L | Ma et al., 2008 |
净初级生产力/总初级生产力 Ratio of net primary productivity to gross primary productivity | 0.47 | L | Liu et al., 2015 |
树枝在干中的比例 Fraction of stem biomass as branch and bark | 0.15 | L | |
林分初生时树枝占干生物量的比例 Fraction of branch and bark at age = 0 | 0.15 | L | Coops & Waring, 2011 |
林分成熟时树枝占干生物量的比例 Fraction of branch and bark for mature stands | Coops & Waring, 2011 | ||
树枝占平均值时的林龄 Age at which fraction = (Branch and bark fraction at age = 0+Branch and bark fraction for mature stands)/2 | 1.5 | L | Coops & Waring, 2011 |
立地初始化条件 Stand initialization | |||
初始种植年 Years of initial plantation | 1973-1983 | M | 本研究测定 Measurements in this study |
初始密度 Initial stocking (trees·hm-2) | 3300 | M | 本研究测定 Measurements in this study |
海拔 Altitude (m) | 230-751 | M | 本研究测定 Measurements in this study |
纬度 Latitude (°) | 41.61-43.88 | M | 本研究测定 Measurements in this study |
肥力等级 Fertility rating | 0.7 ± 0.1 | M | 本研究测定 Measurements in this study |
土壤质地类型 Soil texture | Clay loam | M | 本研究测定 Measurements in this study |
图3 基于3-PG模型模拟30块长白落叶松林样地净初级生产力(NPP)与实测NPP的比较。图中三角代表样点的净初级生产力值, 黑线代表线性回归线, 灰线代表1:1正线性回归线。
Fig. 3 Comparisons between simulated net primary productivity (NPP) by 3-PG model and the measured data for the 30 sample plots in Larix olgensis plantations. Triangles mean net primary productivity (NPP) values. The black line means linear regression line, and gray line means 1:1 positive linear regression line.
指标 Indicator | 校参数据 Calibration data | 验证数据 Validation data |
---|---|---|
R2 | 0.870 5 | 0.848 9 |
p | <0.05 (n = 60) | <0.05 (n = 30) |
平均误差 ME (g·m-2·a-1) | -9.568 | -6.422 |
平均相对误差 MRE (%) | -1.655 | -1.163 |
均方误 RMSE (g·m-2·a-1) | 67.794 | 60.399 |
相对均方误差 RRMSE (%) | 11.533 | 10.809 |
表4 校参数据与验证数据的误差比较
Table 4 The comparison of errors between calibration data and validation data
指标 Indicator | 校参数据 Calibration data | 验证数据 Validation data |
---|---|---|
R2 | 0.870 5 | 0.848 9 |
p | <0.05 (n = 60) | <0.05 (n = 30) |
平均误差 ME (g·m-2·a-1) | -9.568 | -6.422 |
平均相对误差 MRE (%) | -1.655 | -1.163 |
均方误 RMSE (g·m-2·a-1) | 67.794 | 60.399 |
相对均方误差 RRMSE (%) | 11.533 | 10.809 |
图4 基于3-PG模型模拟30块长白落叶松林样地一个轮伐期净初级生产力(NPP)变化趋势。
Fig. 4 Changes in net primary productivity (NPP) simulated by 3-PG model for the 30 sample plots over a rotation period in Larix olgensis plantations.
图5 研究区1999-2013年间月平均气温(曲线)、月降水量(柱状图)及相应净初级生产力(NPP)的变化(平均值±标准偏差)。
Fig. 5 Changes in monthly mean temperature (curves), precipitation (bar charts) and net primary productivity (NPP) in the study area during 1999-2013 (mean ± SD).
图6 参数林分生长最适温度(Topt)、林分比叶面积达一定比例时林龄(tSLA)、霜冻导致生产力损失天数(kF)取值变化对长白落叶松人工林模拟净初级生产力(NPP)的影响。
Fig. 6 The influences of optimum temperature for growth (Topt), age at which specific leaf area= (SLA0 + SLA1)/2) (tSLA) and days of production loss due to frost (kF) on simulated net primary productivity (NPP) in Larix olgensis plantations.
图7 在RCP 2.6、RCP 6.0和RCP 8.5排放情景下长白落叶松人工林模拟净初级生产力(NPP)的相对变化(平均值±标准偏差)。C, CO2; P, 降水; T, 气温。1, 改变; 0, 不变。
Fig. 7 Relative changes in simulated net primary productivity (NPP) for Larix olgensis plantations under RCP 2.6, RCP 6.0 and RCP 8.5 scenarios (mean ± SD). C, CO2; P, precipitation; T, air temperature. 1, change; 0, no change.
样地号 Plot No. | 海拔 Elevation (m) | 土壤深度 Soil depth (cm) | 坡向 Aspect (°) | 坡位 Position | 坡度 Slope (°) | 林龄 Stand age (a) | 林分密度 Stand density (stems?hm-2) |
---|---|---|---|---|---|---|---|
四平-1 Siping-1 | 260 | 30 | 6 | 2 | 4 | 31 | 950 |
四平-2 Siping-2 | 319 | 30 | 9 | 6 | 1 | 25 | 1 783 |
四平-3 Siping-3 | 280 | 35 | 8 | 2 | 10 | 30 | 1 383 |
临江-1 Linjiang-1 | 876 | 30 | 9 | 6 | 3 | 13 | 1 950 |
临江-2 Linjiang-2 | 676 | 40 | 2 | 2 | 8 | 16 | 1 000 |
临江-3 Linjiang-3 | 880 | 26 | 4 | 3 | 5 | 27 | 983 |
白山-1 Baishan-1 | 600 | 15 | 2 | 4 | 10 | 8 | 183 |
白山-2 Baishan-2 | 510 | 25 | 8 | 3 | 5 | 8 | 133 |
白山-3 Baishan-3 | 680 | 25 | 1 | 2 | 16 | 16 | 533 |
龙井-1 Longjin-1 | 660 | 25 | 3 | 2 | 32 | 28 | 633 |
龙井-2 Longjin-2 | 630 | 45 | 2 | 2 | 6 | 12 | 633 |
龙井-3 Longjin-3 | 630 | 29 | 7 | 3 | 15 | 11 | 333 |
辽源-1 Liaoyuan-1 | 300 | 37 | 4 | 5 | 5 | 24 | 633 |
辽源-2 Liaoyuan-2 | 380 | 35 | 1 | 2 | 8 | 34 | 1 983 |
辽源-3 Liaoyuan-3 | 380 | 20 | 3 | 3 | 10 | 25 | 1 500 |
和龙-1 Helong-1 | 510 | 45 | 2 | 2 | 14 | 17 | 1 050 |
和龙-2 Helong-2 | 500 | 32 | 2 | 4 | 11 | 16 | 3 516 |
和龙-3 Helong-3 | 751 | 40 | 8 | 4 | 10 | 11 | 1 000 |
舒兰-1 Shulan-1 | 230 | 51 | 8 | 4 | 10 | 17 | 1 800 |
舒兰-2 Shulan-2 | 280 | 51 | 8 | 4 | 6 | 25 | 1 617 |
舒兰-3 Shulan-3 | 310 | 51 | 6 | 4 | 15 | 17 | 2 150 |
通化-1 Tonghua-1 | 580 | 42 | 2 | 4 | 20 | 16 | 900 |
通化-2 Tonghua-2 | 710 | 50 | 2 | 2 | 17 | 17 | 2 267 |
通化-3 Tonghua-3 | 512 | 50 | 4 | 3 | 20 | 15 | 900 |
汪清-1 Wangqing-1 | 390 | 40 | 5 | 3 | 3 | 17 | 2 250 |
汪清-2 Wangqing-2 | 510 | 51 | 8 | 4 | 5 | 20 | 950 |
汪清-3 Wangqing-3 | 390 | 40 | 5 | 3 | 3 | 18 | 2 241 |
长春-1 Changchun-1 | 338 | 30 | 5 | 1 | 5 | 26 | 1 367 |
长春-2 Changchun-2 | 290 | 32 | 8 | 4 | 20 | 19 | 1 567 |
长春-3 Changchun-3 | 240 | 35 | 9 | 1 | 0 | 26 | 1 050 |
附录I 长白落叶松人工林样地概况
Appendix I Basic information of the Larix olgensis plantation stands
样地号 Plot No. | 海拔 Elevation (m) | 土壤深度 Soil depth (cm) | 坡向 Aspect (°) | 坡位 Position | 坡度 Slope (°) | 林龄 Stand age (a) | 林分密度 Stand density (stems?hm-2) |
---|---|---|---|---|---|---|---|
四平-1 Siping-1 | 260 | 30 | 6 | 2 | 4 | 31 | 950 |
四平-2 Siping-2 | 319 | 30 | 9 | 6 | 1 | 25 | 1 783 |
四平-3 Siping-3 | 280 | 35 | 8 | 2 | 10 | 30 | 1 383 |
临江-1 Linjiang-1 | 876 | 30 | 9 | 6 | 3 | 13 | 1 950 |
临江-2 Linjiang-2 | 676 | 40 | 2 | 2 | 8 | 16 | 1 000 |
临江-3 Linjiang-3 | 880 | 26 | 4 | 3 | 5 | 27 | 983 |
白山-1 Baishan-1 | 600 | 15 | 2 | 4 | 10 | 8 | 183 |
白山-2 Baishan-2 | 510 | 25 | 8 | 3 | 5 | 8 | 133 |
白山-3 Baishan-3 | 680 | 25 | 1 | 2 | 16 | 16 | 533 |
龙井-1 Longjin-1 | 660 | 25 | 3 | 2 | 32 | 28 | 633 |
龙井-2 Longjin-2 | 630 | 45 | 2 | 2 | 6 | 12 | 633 |
龙井-3 Longjin-3 | 630 | 29 | 7 | 3 | 15 | 11 | 333 |
辽源-1 Liaoyuan-1 | 300 | 37 | 4 | 5 | 5 | 24 | 633 |
辽源-2 Liaoyuan-2 | 380 | 35 | 1 | 2 | 8 | 34 | 1 983 |
辽源-3 Liaoyuan-3 | 380 | 20 | 3 | 3 | 10 | 25 | 1 500 |
和龙-1 Helong-1 | 510 | 45 | 2 | 2 | 14 | 17 | 1 050 |
和龙-2 Helong-2 | 500 | 32 | 2 | 4 | 11 | 16 | 3 516 |
和龙-3 Helong-3 | 751 | 40 | 8 | 4 | 10 | 11 | 1 000 |
舒兰-1 Shulan-1 | 230 | 51 | 8 | 4 | 10 | 17 | 1 800 |
舒兰-2 Shulan-2 | 280 | 51 | 8 | 4 | 6 | 25 | 1 617 |
舒兰-3 Shulan-3 | 310 | 51 | 6 | 4 | 15 | 17 | 2 150 |
通化-1 Tonghua-1 | 580 | 42 | 2 | 4 | 20 | 16 | 900 |
通化-2 Tonghua-2 | 710 | 50 | 2 | 2 | 17 | 17 | 2 267 |
通化-3 Tonghua-3 | 512 | 50 | 4 | 3 | 20 | 15 | 900 |
汪清-1 Wangqing-1 | 390 | 40 | 5 | 3 | 3 | 17 | 2 250 |
汪清-2 Wangqing-2 | 510 | 51 | 8 | 4 | 5 | 20 | 950 |
汪清-3 Wangqing-3 | 390 | 40 | 5 | 3 | 3 | 18 | 2 241 |
长春-1 Changchun-1 | 338 | 30 | 5 | 1 | 5 | 26 | 1 367 |
长春-2 Changchun-2 | 290 | 32 | 8 | 4 | 20 | 19 | 1 567 |
长春-3 Changchun-3 | 240 | 35 | 9 | 1 | 0 | 26 | 1 050 |
[1] |
Amichev BY, Hangs RD, van Rees KCJ (2011). A novel approach to simulate growth of multi-stem willow in bioenergy production systems with a simple process-based model (3-PG).Biomass and Bioenergy, 35, 473-488.
DOI URL |
[2] |
Chen CG, Li XD, Zhang Z (1986). The research on the relationship between growth and ecological factors of Larix olgensis.Forest Science and Technology, 5(9), 6-8.(in Chinese)[陈传国, 李晓东, 张孜 (1986). 长白落叶松人工林的生长与生态因子相关关系的研究, 林业科技通讯,5(9), 6-8.]
DOI URL |
[3] |
Chen Z, Zhang J, Xiong Z, Pan G, Müller C (2016). Enhanced gross nitrogen transformation rates and nitrogen supply in paddy field under elevated atmospheric carbon dioxide and temperature.Soil Biology & Biochemistry, 94, 80-87.
DOI URL |
[4] |
Coops NC, Ferster CJ, Waring RH, Nightingale J (2009). Comparison of three models for predicting gross primary production across and within forested ecoregions in the contiguous United States.Remote Sensing of Environment, 113, 680-690.
DOI URL |
[5] |
Coops NC, Waring RH (2011). A process-based approach to estimate lodgepole pine (Pinus contorta Dougl.) distribution in the Pacific Northwest under climate change.Climatic Change, 105, 313-328.
DOI URL |
[6] | Dong D, Ni J (2011). Modeling changes of net primary productivity of karst vegetation in southwestern China using the CASA model.Acta Ecologica Sinica, 31, 1855-1866.(in Chinese with English abstract)[董丹, 倪健 (2011). 利用CASA模型模拟西南喀斯特植被净第一性生产力, 生态学报,31, 1855-1866.] |
[7] |
Dong SY, Gao XJ (2014). Long-term climate change: Interpretation of IPCC fifth assessment report.Progressus Inquisitiones de Mutatione Climatis, 10(1), 56-59.(in Chinese with English abstract)[董思言, 高学杰 (2014). 长期气候变化——IPCC第五次评估报告解读, 气候变化研究进展,10(1), 56-59.]
DOI |
[8] |
Feikema PM, Morris JD, Beverly CR, Collopy JJ, Baker TG, Lane PNJ (2010). Validation of plantation transpiration in south-eastern Australia estimated using the 3-PG forest growth model.Forest Ecology and Management, 260, 663-678.
DOI URL |
[9] |
Feng XF, Sun QL, Lin B (2014). NPP process models applied in regional and global scales and responses of NPP to the global change.Ecology and Environmental Sciences, 23, 496-503.(in Chinese with English abstract)[冯险峰, 孙庆龄, 林斌 (2014). 区域及全球尺度的NPP过程模型和NPP对全球变化的响应, 生态环境学报,23, 496-503.]
DOI URL |
[10] |
Gonzalez-Benecke CA, Jokela EJ, Cropper WP, Bracho R, Leduc DJ (2014). Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure.Forest Ecology and Management, 327, 55-75.
DOI URL |
[11] |
González-García M, Almeida AC, Hevia A, Majada J, Beadle C (2016). Application of a process-based model for predicting the productivity of Eucalyptus nitens bioenergy plantations in Spain. GCB Bioenergy, 8, 194-210.
DOI URL |
[12] |
H?rk?nen S, Pulkkinen M, Duursma R, M Kel A (2010). Estimating annual GPP, NPP and stem growth in Finland using summary models.Forest Ecology and Management, 259, 524-533.
DOI URL |
[13] |
Hao Y, Chen H, Wei Y, Li Y (2016). The influence of climate change on CO2 (carbon dioxide) emissions: An empirical estimation based on Chinese provincial panel data.Journal of Cleaner Production, 131, 667-677.
DOI URL |
[14] |
He LH, Wang HY, Lei XD (2016). Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model.Chinese Journal of Applied Ecology, 27, 412-420.(in Chinese with English abstract)[何丽鸿, 王海燕, 雷相东 (2016). 基于BIOME- BGC模型的长白落叶松林净初级生产力模拟参数敏感性, 应用生态学报,27, 412-420.]
DOI URL |
[15] | Hua LZ, Jiang XD, He XB (2007). Application of 3-PG model in Eucalyptus urophylla plantations of southern China.Journal of Beijing Forestry University, 29(2), 100-104.(in Chinese with English abstract)[花利忠, 江希钿, 贺秀斌 (2007). 3-PG模型在华南尾叶桉人工林的应用研究, 北京林业大学学报,29(2), 100-104.] |
[16] | Jia JY, Guo JP (2011). Characteristics of climate change in northeast China for last 46 years.Journal of Arid Land Resources and Environmentt, 25(10), 109-115.(in Chinese with English abstract)[贾建英, 郭建平 (2011). 东北地区近46年气候变化特征分析, 干旱区资源与环境,25(10), 109-115.] |
[17] |
Landsberg JJ, Waring RH (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning.Forest Ecology and Management, 95, 209-228.
DOI URL |
[18] | Liu K, Cao L, Wang GB, Shen X, Cao FL (2015). Estimating biomass components and LAI of Chinese fir plantation based on 3-PG model.Journal of Northwest A&F University, 43(9), 57-64.(in Chinese with English abstract)[刘坤, 曹林, 汪贵斌, 申鑫, 曹福亮 (2015). 基于3-PG模型的杉木人工林各器官生物量和LAI估算, 西北农林科技大学学报(自然科学版),43(9), 57-64.] |
[19] |
Ma HW, Xu CQ, Li HC (2008). Photosynthesis characteristics of Larix olgensis under different site conditions.Journal of Northeast Forestry University, 36(8), 4-7.(in Chinese with English abstract)[马华文, 许翠清, 李海朝 (2008). 立地条件对长白落叶松光合特性的影响, 东北林业大学学报,36(8), 4-7.]
DOI URL |
[20] |
Medlyn BE, Duursma RA, Zeppel MJB (2011). Forest productivity under climate change: A checklist for evaluating model studies.Wiley Interdisciplinary Reviews: Climate Change, 2, 332-355.
DOI URL |
[21] |
Paul KI, Booth TH, Jovanovic T, Sands PJ, Morris JD (2007). Calibration of the forest growth model 3-PG to Eucalyptus plantations growing in low rainfall regions of Australia.Forest Ecology and Management, 243, 237-247.
DOI URL |
[22] |
Peng C, Zhou X, Zhao S, Wang X, Zhu B, Piao S, Fang J (2009). Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction.Global and Planetary Change, 66, 179-194.
DOI URL |
[23] |
Peng J, Dan L (2015). Impacts of CO2 concentration and climate change on the terrestrial carbon flux using six global climate—Carbon coupled models.Ecological Modelling, 304, 69-83.
DOI URL |
[24] |
Potithep S, Yasuoka Y (2011). Application of the 3-PG model for gross primary productivity estimation in deciduous broadleaf forests: A study area in Japan.Forests, 2, 590-609.
DOI URL |
[25] |
Sands PJ, Landsberg JJ (2002). Parameterisation of 3-PG for plantation grown Eucalyptus globulus.Forest Ecology and Management, 163, 273-292.
DOI URL |
[26] |
Shvidenko AZ, Schepashchenko DG, Vaganov EA, Nilsson S (2008). Net primary production of forest ecosystems of Russia: A new estimate.Doklady Earth Sciences, 421, 1009-1012.
DOI URL |
[27] |
Song L, Sun ZH (2012). Measurement of leaf area index of Larix olgensis plantations in hilly area of Sanjiang Plain.Journal of Northeast Forestry University, 40(9), 6-9.(in Chinese with English abstract)[宋林, 孙志虎 (2012). 长白落叶松人工林叶面积指数测定, 东北林业大学学报,40(9), 6-9.]
DOI URL |
[28] |
Su W, Xu XX, Lü XZ, Fan MR, Zhang Y (2012). Study on the impact of climate change on net primary productivity of Larix principis-rupprechtii forest in Beijing mountain area. Guangdong Agricultural Sciences, 39(7), 69-72.(in Chinese with English abstract) [苏薇, 余新晓, 吕锡芝, 范敏锐, 张艺 (2012). 气候变化对北京山区华北落叶松林NPP影响研究, 广东农业科学,39(7), 69-72.]
DOI URL |
[29] |
Subedi S, Fox T, Wynne R (2015). Determination of fertility rating (FR) in the 3-PG model for loblolly pine plantations in the Southeastern United States based on site index.Forests, 6, 3002-3027.
DOI URL |
[30] | Sun CM, Sun ZG, Liu T, Wang LJ, Chen YY, Guo DD, Tian T, Li JL (2015). Comprehensive estimation model of grassland NPP based on MODIS in China.Acta Ecologica Sinica, 35, 1079-1085.(in Chinese with English abstract)[孙成明, 孙政国, 刘涛, 王力坚, 陈瑛瑛, 郭斗斗, 田婷, 李建龙 (2015). 基于MODIS的中国草地NPP综合估算模型, 生态学报,35, 1079-1085.] |
[31] | Sun ZH, Bi YJ, Mou CC, Cai TJ (2012). Using an ecosystem simulation model FORECAST to evaluate the effects of forest management strategies on long-term productivity of Korean larch plantations.Journal of Beijing Forestry University, 34(6), 1-6.(in Chinese with English abstract)[孙志虎, 毕永娟, 牟长城, 蔡体久 (2012). 基于FORECAST模型的长白落叶松人工林经营措施对长期生产力的影响, 北京林业大学学报,34(6), 1-6.] |
[32] | Sun ZH, Jin GZ, Mu CC (2009). Long-Term Productivity Maintenance of Monoculture Olga Hay Larch Timber Forest in Northeastern China. Science Press, Beijing. 113.(in Chinese)[孙志虎, 金光泽, 牟长城 (2009). 长白落叶松人工林长期生产力维持的研究. 科学出版社, 北京. 113.] |
[33] |
Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao M, Costa MH, Kirschbaum AA, Ham JM, Saleska SR, Ahl DE (2006). Evaluation of MODIS NPP and GPP products across multiple biomes.Remote Sensing of Environment, 102, 282-292.
DOI URL |
[34] |
Wang L, Gong W, Ma Y, Zhang M (2013). Modeling regional vegetation NPP variations and their relationships with climatic parameters in Wuhan, China.Earth Interactions, 17(4), 1-20.
DOI URL |
[35] |
Wang WF, Duan YX, Zhang LX, Wang B, Li XJ (2016). Effects of different rotations on carbon sequestration in Chinese fir plantations.Chinese Journal of Plant Ecology, 40, 669-678.(in Chinese with English abstract)[王伟峰, 段玉玺, 张立欣, 王博, 李晓晶 (2016). 不同轮伐期对杉木人工林碳固存的影响, 植物生态学报,40, 669-678.]
DOI URL |
[36] | Wang XY, Sun YJ, Ma W (2011). Biomass and carbon storage distribution of different density in Larix olgensis plantation.Journal of Fujian College of Forestry, 31(3), 221-226.(in Chinese with English abstract)[王秀云, 孙玉军, 马炜 (2011). 不同密度长白落叶松林生物量与碳储量分布特征, 福建林学院学报,31(3), 221-226.] |
[37] |
Wang YH, Zhou GS, Jiang YL, Yang ZY (2001). Estimating biomass and NPP of Larix forests using forest inventory data (FID).Acta Phytoecologica Sinica, 25, 420-425.(in Chinese with English abstract)[王玉辉, 周广胜, 蒋延玲, 杨正宇 (2001). 基于森林资源清查资料的落叶松林生物量和净生长量估算模式, 植物生态学报,25, 420-425.]
DOI URL |
[38] | Wu YL, Wang XP, Li QY, Sun Y (2014). Response of broad-leaved Korean pine forest productivity of Mt. Changbai to climate change: An analysis based on BIOME- BGC modeling.Acta Scientiarum Naturalium Universitatis Pekinensis, 50, 577-586.(in Chinese with English abstract)[吴玉莲, 王襄平, 李巧燕, 孙阎 (2014). 长白山阔叶红松林净初级生产力对气候变化的响应: 基于BIOME-BGC模型的分析, 北京大学学报(自然科学版),50, 577-586.] |
[39] |
Wu ZF, Jing YH, Liu JP, Shang LN, Zhao DS (2003). Response of vegetation distribution to global climate change in Northeast China.Scientia Geographica Sinica, 23, 564-570.(in Chinese with English abstract)[吴正方, 靳英华, 刘吉平, 商丽娜, 赵东升 (2003). 东北地区植被分布全球气候变化区域响应, 地理科学,23, 564-570.]
DOI URL |
[40] | Xu CL, Xun XM, Zhang SG (2012). Comparison in photosynthetic characteristics of Larix kaempferi, L. olgensis and their hybrids.Journal of Beijing Forestry University, 34(4), 62-66.(in Chinese with English abstract)[许晨璐, 孙晓梅, 张守攻 (2012). 日本落叶松与长白落叶松及其杂种光合特性比较, 北京林业大学学报,34(4), 62-66.] |
[41] |
Yin K, Tian YC, Yuan C, Zhang FF, Yuan QZ, Hua LZ (2015). NPP spatial and temporal pattern of vegetation in Beijing and its factor explanation based on CASA model.Remote Sensing for Land and Resources, 27(1), 133-139.(in Chinese with English abstract)[尹锴, 田亦陈, 袁超, 张飞飞, 苑全治, 花利忠 (2015). 基于CASA模型的北京植被NPP时空格局及其因子解释, 国土资源遥感,27(1), 133-139.]
DOI URL |
[42] |
Zeng HQ, Liu QJ, Feng ZW, Wang XK, Ma ZQ (2008). GPP and NPP study of Pinus elliottii forest in red soil hilly region based on BIOME-BGC model.Acta Ecologica Sinica, 28, 5314-5321.(in Chinese with English abstract)[曾慧卿, 刘琪璟, 冯宗炜, 王效科, 马泽清 (2008). 基于BIOME-BGC模型的红壤丘陵区湿地松(Pinus elliottii)人工林GPP和NPP, 生态学报,28, 5314-5321.]
DOI URL |
[43] |
Zhao M, Xiang W, Peng C, Tian D (2009). Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model.Forest Ecology and Management, 257, 1520-1531.
DOI URL |
[44] |
Zhou G, Wang Y, Jiang Y, Yang Z (2002). Estimating biomass and net primary production from forest inventory data: A case study of China’s Larix forests.Forest Ecology and Management, 169, 149-157.
DOI URL |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[7] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[8] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[9] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[10] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[11] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[12] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[13] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[14] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[15] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19