植物生态学报 ›› 2024, Vol. 48 ›› Issue (10): 1351-1360.DOI: 10.17521/cjpe.2023.0116 cstr: 32100.14.cjpe.2023.0116
王丽丽1,2, 宋晓彤2, 谷际岐2, 邵小明2,3,*()(
)
收稿日期:
2023-05-04
接受日期:
2023-12-21
出版日期:
2024-10-20
发布日期:
2024-01-22
通讯作者:
邵小明
基金资助:
WANG Li-Li1,2, SONG Xiao-Tong2, GU Ji-Qi2, SHAO Xiao-Ming2,3,*()(
)
Received:
2023-05-04
Accepted:
2023-12-21
Online:
2024-10-20
Published:
2024-01-22
Contact:
SHAO Xiao-Ming
Supported by:
摘要: 西藏是全球气候变化最为敏感的区域之一, 苔藓植物则是对环境变化敏感的指示植物。该研究以在西藏广布的尖叶对齿藓(Didymodon constrictus)为对象, 探讨其形态性状与气候、土壤、植被等环境因子的关系, 分析苔藓植物对环境变化的响应策略, 为揭示苔藓植物对环境变化的响应机制以及制定西藏苔藓植物保护对策提供参考。整理2007-2015年西藏采集的尖叶对齿藓标本, 每份标本取6株, 观测其植株、叶片和叶细胞相关形态指标, 并通过Pearson和冗余分析分析其与环境的关系。结果显示: 随着海拔升高, 尖叶对齿藓出现植株矮小、叶片卵圆状、细胞壁增厚的现象。气温升高且降水丰富时, 尖叶对齿藓植株高大, 叶片细长, 中肋粗壮, 细胞壁变薄。太阳辐射增大时其叶片倾角减小。研究表明对尖叶对齿藓影响较大的环境因子包括年平均气温、年降水量和太阳辐射强度等。株高、叶面积和叶片倾角大小对环境变化的响应较为敏感, 而细胞水平上则优先选取叶细胞面积和细胞壁厚度作为衡量指标。综上, 苔藓植物各个形态性状之间联系密切, 并通过联合改变来协同响应环境变化。
王丽丽, 宋晓彤, 谷际岐, 邵小明. 西藏尖叶对齿藓形态特征与环境变化的关系及响应策略. 植物生态学报, 2024, 48(10): 1351-1360. DOI: 10.17521/cjpe.2023.0116
WANG Li-Li, SONG Xiao-Tong, GU Ji-Qi, SHAO Xiao-Ming. Relationship between morphological characteristics of Didymodon constrictus and environmental changes in Xizang and its response strategies. Chinese Journal of Plant Ecology, 2024, 48(10): 1351-1360. DOI: 10.17521/cjpe.2023.0116
图2 西藏尖叶对齿藓形态特征测量示意图。A, 叶片。B, 叶中部细胞。C, 叶基部细胞。①, 叶片长度; ②, 叶片宽度; ③, 中肋长度; ④, 中肋宽度; ⑤, 叶中部细胞腔长度; ⑥, 叶中部细胞腔宽度; ⑦, 叶基部细胞腔长度; ⑧, 叶基部细胞腔宽度。
Fig. 2 Schematic diagram of morphological characteristics measurement of Didymodon constrictus in Xizang. A, Leaf. B, Leaf middle cell. C, Leaf base cell. ①, length of leaf; ②, width of leaf; ③, length of rib; ④, width of rib; ⑤, length of leaf middle cell cavity; ⑥, width of leaf middle cell cavity; ⑦, length of leaf bas cell cavity; ⑧, width of leaf bas cell cavity.
形态属性 Morphological trait | 样本量 Sample size | 极小值 Minimum | 极大值 Maximum | 平均值 Mean | 标准误 Standard error | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 可塑性指数 Plasticity index |
---|---|---|---|---|---|---|---|---|
s_leaf | 77 | 0.172 | 0.622 | 0.372 | 0.011 | 0.097 | 26.15 | 0.723 |
height | 77 | 0.170 | 0.540 | 0.300 | 0.009 | 0.076 | 25.39 | 0.685 |
l_leaf | 77 | 0.862 | 1.765 | 1.339 | 0.023 | 0.203 | 15.12 | 0.512 |
l_rib | 77 | 0.908 | 1.858 | 1.436 | 0.024 | 0.214 | 14.91 | 0.511 |
d_rib | 77 | 0.040 | 0.079 | 0.057 | 0.001 | 0.009 | 15.00 | 0.494 |
d_leaf | 77 | 0.423 | 0.748 | 0.562 | 0.008 | 0.073 | 12.93 | 0.434 |
a_leaf | 77 | 31.780 | 55.380 | 42.139 | 0.601 | 5.273 | 12.51 | 0.426 |
l/d_leaf | 77 | 1.719 | 2.919 | 2.387 | 0.029 | 0.253 | 10.61 | 0.411 |
表1 西藏尖叶对齿藓植株和叶片形态特征汇总
Table 1 Morphological characteristics at plant and leaf levels of Didymodon constrictus in Xizang
形态属性 Morphological trait | 样本量 Sample size | 极小值 Minimum | 极大值 Maximum | 平均值 Mean | 标准误 Standard error | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 可塑性指数 Plasticity index |
---|---|---|---|---|---|---|---|---|
s_leaf | 77 | 0.172 | 0.622 | 0.372 | 0.011 | 0.097 | 26.15 | 0.723 |
height | 77 | 0.170 | 0.540 | 0.300 | 0.009 | 0.076 | 25.39 | 0.685 |
l_leaf | 77 | 0.862 | 1.765 | 1.339 | 0.023 | 0.203 | 15.12 | 0.512 |
l_rib | 77 | 0.908 | 1.858 | 1.436 | 0.024 | 0.214 | 14.91 | 0.511 |
d_rib | 77 | 0.040 | 0.079 | 0.057 | 0.001 | 0.009 | 15.00 | 0.494 |
d_leaf | 77 | 0.423 | 0.748 | 0.562 | 0.008 | 0.073 | 12.93 | 0.434 |
a_leaf | 77 | 31.780 | 55.380 | 42.139 | 0.601 | 5.273 | 12.51 | 0.426 |
l/d_leaf | 77 | 1.719 | 2.919 | 2.387 | 0.029 | 0.253 | 10.61 | 0.411 |
形态属性 Morphological trait | 样本量 Sample size | 极小值 Minimum | 极大值 Maximum | 平均值 Mean | 标准误 Standard error | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 可塑性指数 Plasticity index |
---|---|---|---|---|---|---|---|---|
s_mid | 77 | 56.282 | 190.631 | 92.794 | 2.818 | 24.730 | 26.65 | 0.705 |
s_bas | 77 | 87.021 | 289.856 | 131.243 | 4.423 | 38.816 | 29.58 | 0.700 |
cwt_bas | 77 | 0.281 | 0.697 | 0.502 | 0.009 | 0.079 | 15.67 | 0.597 |
cwt_mid | 77 | 0.277 | 0.656 | 0.451 | 0.009 | 0.076 | 16.79 | 0.578 |
l/d_bas | 77 | 1.210 | 2.467 | 1.630 | 0.027 | 0.235 | 14.39 | 0.510 |
d_bas | 77 | 7.069 | 14.056 | 8.938 | 0.143 | 1.259 | 14.09 | 0.497 |
l_bas | 77 | 10.858 | 21.526 | 14.488 | 0.282 | 2.471 | 17.06 | 0.496 |
d_mid | 77 | 6.576 | 12.754 | 8.471 | 0.122 | 1.074 | 12.68 | 0.484 |
l_mid | 77 | 8.555 | 15.811 | 10.809 | 0.169 | 1.486 | 13.74 | 0.459 |
l/d_mid | 77 | 1.055 | 1.579 | 1.279 | 0.013 | 0.114 | 8.88 | 0.332 |
表2 西藏尖叶对齿藓叶细胞特征
Table 2 Morphological traits of leaf cells of Didymodon constrictus in Xizang
形态属性 Morphological trait | 样本量 Sample size | 极小值 Minimum | 极大值 Maximum | 平均值 Mean | 标准误 Standard error | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 可塑性指数 Plasticity index |
---|---|---|---|---|---|---|---|---|
s_mid | 77 | 56.282 | 190.631 | 92.794 | 2.818 | 24.730 | 26.65 | 0.705 |
s_bas | 77 | 87.021 | 289.856 | 131.243 | 4.423 | 38.816 | 29.58 | 0.700 |
cwt_bas | 77 | 0.281 | 0.697 | 0.502 | 0.009 | 0.079 | 15.67 | 0.597 |
cwt_mid | 77 | 0.277 | 0.656 | 0.451 | 0.009 | 0.076 | 16.79 | 0.578 |
l/d_bas | 77 | 1.210 | 2.467 | 1.630 | 0.027 | 0.235 | 14.39 | 0.510 |
d_bas | 77 | 7.069 | 14.056 | 8.938 | 0.143 | 1.259 | 14.09 | 0.497 |
l_bas | 77 | 10.858 | 21.526 | 14.488 | 0.282 | 2.471 | 17.06 | 0.496 |
d_mid | 77 | 6.576 | 12.754 | 8.471 | 0.122 | 1.074 | 12.68 | 0.484 |
l_mid | 77 | 8.555 | 15.811 | 10.809 | 0.169 | 1.486 | 13.74 | 0.459 |
l/d_mid | 77 | 1.055 | 1.579 | 1.279 | 0.013 | 0.114 | 8.88 | 0.332 |
图3 西藏尖叶对齿藓形态特征与环境因子Pearson相关性分析。Altitude, 海拔; AI, 干旱指数; K, 湿润度; Light, 太阳辐射; NDVI, 归一化植被指数; PET, 潜在蒸发量; Pysum, 年降水量; Substrate, 土壤基质; Tymean, 年平均气温; 形态指标同表1。蓝色虚线框内的指标参与分析。
Fig. 3 Pearson correlation analysis of leaf-level indicators of Didymodon constrictus and environmental factors in Xizang. AI, aridity index; K, humidity; Light, solar radiation; NDVI, normalized difference vegetation index; PET, potential evapotranspiration; Pysum, annual precipitation; Substrate, soil matrix; Tymean, annual mean air temperature; morphological indicators are the same as Table 1. The indicators within the blue dashed box participate in the analysis.
图4 西藏尖叶对齿藓细胞层面指标与环境因子Pearson相关性分析。Altitude, 海拔; AI, 干旱指数; K, 湿润度; Light, 太阳辐射; NDVI, 归一化植被指数; PET, 潜在蒸发量; Pysum, 年降水量; Substrate, 土壤基质; Tymean, 年平均气温; 形态指标同表2。蓝色虚线框内的指标参与分析。
Fig. 4 Pearson correlation analysis of cell-level indicators of Didymodon constrictus and environmental factors in Xizang. AI, aridity index; K, humidity; Light, solar radiation; NDVI, normalized difference vegetation index; PET, potential evapotranspiration; Pysum, annual precipitation; Substrate, soil matrix; Tymean, annual mean air temperature; morphological indicators are the same as Table 2. The indicators within the blue dashed box participate in the analysis.
图5 不同生长环境下尖叶对齿藓形态特征冗余分析(RDA)。Altitude, 海拔; AI, 干旱指数; Light, 太阳辐射; NDVI, 归一化植被指数; PET, 潜在蒸发量; Pysum, 年降水量; Substrate, 土壤基质; Tymean, 年平均气温; 形态指标同表1和表2。
Fig. 5 Redundancy analysis (RDA) of morphological characteristics of Didymodon constrictus under different environmental conditions. AI, aridity index; Light, solar radiation; NDVI, normalized difference vegetation index; PET, potential evapotranspiration; Pysum, annual precipitation; Substrate, soil matrix; Tymean, annual mean air temperature; morphological indicators are the same as Table 1 and Table 2.
[1] | Chen S, Ferry Slik JW, Mao L, Zhang J, Sa R, Zhou K, Gao J (2015). Spatial patterns and environmental correlates of bryophyte richness: sampling effort matters. Biodiversity and Conservation, 24, 593-607. |
[2] |
Delucia EH, Sipe TW, Herrick J, Maherali H (1998). Sapling biomass allocation and growth in the understory of a deciduous hardwood forest. American Journal of Botany, 85, 955-963.
PMID |
[3] | Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin DC, Sutton-Grier AE, Williams L, Wright J (2017). Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews, 92, 1156-1173. |
[4] | Huang SL, Wang ZJ, Zhao JC, Li Z, Jin HX, Cao Z (2009). Study on the vertical distribution of pleudocarpous mosses from Hebei Province. Journal of Hebei Normal University (Natural Science Edition), 33, 666-670. |
[ 黄士良, 王振杰, 赵建成, 李志, 金红霞, 曹珍 (2009). 河北省侧蒴藓类植物垂直分布研究. 河北师范大学学报(自然科学版), 33, 666-670.] | |
[5] | Jiménez-Alfaro B, Marcenó C, Bueno A, Gavilán R, Obeso JR (2014). Biogeographic deconstruction of alpine plant communities along altitudinal and topographic gradients. Journal of Vegetation Science, 25, 160-171. |
[6] | Karger DN, Kluge J, Abrahamczyk S, Salazar L, Homeier J, Lehnert M, Amoroso VB, Kessler M (2012). Bryophyte cover on trees as proxy for air humidity in the tropics. Ecological Indicators, 20, 277-281. |
[7] | Kattge J, Diaz S, Lavoreli S, Prentice IC, Leadly P, Bönisch G, Garnier E, Westoby M, Reich P, Wright I, Cornelissen J, Violle C, Harrison S, Bodegom P, Reichstein M, et al. (2011). TRY—A global database on plant traits. Global Change Biology, 17, 2905-2935. |
[8] | Li DS, Shi ZM, Feng QH, Liu F (2013). Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the north-south transect of eastern China. Chinese Journal of Plant Ecology, 37, 793-802. |
[ 李东胜, 史作民, 冯秋红, 刘峰 (2013). 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应. 植物生态学报, 37, 793-802.]
DOI |
|
[9] | Liu L, Jiang YB, Song XT, Tang JW, Kou J, Fan YJ, Shao XM (2021). Temperature, not precipitation, drives the morphological traits of Didymodon rigidulus in Tibet. Ecological Indicators, 133, 108401. DOI: 10.1016/j.ecolind.2021.108401. |
[10] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[11] | Luo XZ, Xiong YX, Cao W, Zhong SM, Tan HY, Xia X, Zhou SQ (2016). Vertical distribution of bryophytes in Yueliang Mountain Nature Reserve. Guihaia, 36, 1008-1013. |
[ 罗先真, 熊源新, 曹威, 钟世梅, 谈洪英, 夏欣, 周书芹 (2016). 月亮山自然保护区苔藓植物垂直分布初步研究. 广西植物, 36, 1008-1013.] | |
[12] | McLean EH, Prober SM, Stock WD, Steane DA, Potts BM, Vaillancourt RE, Byrne M (2014). Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Plant, Cell & Environment, 37, 1440-1451. |
[13] | Medina NG, Albertos B, Lara F, Mazimpaka V, Garilleti R, Draper D, Hortal J (2014). Species richness of epiphytic bryophytes: drivers across scales on the edge of the Mediterranean. Ecography, 37, 80-93. |
[14] | Nasrulhaq-Boyce A, Haji Mohamed MA, Lim AL, Barakbah SS, Yong K, Nor DM (2011). Comparative morphological and photosynthetic studies on three Malaysian species of Pogonatum from habitats of varying light irradiances. Journal of Bryology, 33, 35-41. |
[15] |
Pélabon C, Hilde CH, Einum S, Gamelon M (2020). On the use of the coefficient of variation to quantify and compare trait variation. Evolution Letters, 4, 180-188.
DOI PMID |
[16] | Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2016). New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany, 64, 715-716. |
[17] | Pressel S, Png KMY, Duckett JG (2010). A cryo-scanning electron microscope study of the water relations of the remarkable cell wall in the moss Rhacocarpus purpurascens (Rhacocarpaceae, Bryophyta). Nova Hedwigia, 91, 289-299. |
[18] | Souza ML, Duarte AA, Lovato MB, Fagundes M, Valladares F, Lemos-Filho JP (2018). Climatic factors shaping intraspecific leaf trait variation of a neotropical tree along a rainfall gradient. PLoS ONE, 13, e0208512. DOI: 10.1371/journal.pone.0208512. |
[19] | Traiser C, Klotz S, Uhl D, Mosbrugger V (2005). Environmental signals from leaves—A physiognomic analysis of European vegetation. New Phytologist, 166, 465-484. |
[20] | Valladares F, Sanchez-Gomez D, Zavala MA (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94, 1103-1116. |
[21] | Wang H, Lu X, Chen QY (2017). Leaf morphological structure of twelve moss species from the No.1 glacier of the Tianshan Mountains. Plant Science Journal, 35(1), 21-29. |
[ 王虹, 路雄, 陈秋艳 (2017). 新疆天山一号冰川地区12种藓类植物叶形态结构研究. 植物科学学报, 35(1), 21-29.] | |
[22] | Wang LL, Zhao L, Song XT, Wang QG, Kou J, Jiang YB, Shao XM (2019). Morphological traits of Bryum argenteum and its response to environmental variation in arid and semi-arid areas of Tibet. Ecological Engineering, 136, 101-107. |
[23] | Wang XQ, Yang PF, Zhang XF, Xu YN, Kuang TY, Shen SH, He YK (2009). Proteomic analysis of the cold stress response in the moss, Physcomitrella patens. Proteomics, 9, 4529-4538. |
[24] | Wang Z, Bader MY (2018). Associations between shoot-level water relations and photosynthetic responses to water and light in 12 moss species. AoB PLANTS, 10, ply034. DOI: 10.1093/aobpla/ply034. |
[25] | Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227. |
[26] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003-1015.
DOI PMID |
[27] |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI PMID |
[28] | Xiao HJ, Li JQ, Wang JQ, Du QJ (2020). Effects of sub-low temperature and drought stress on water transport and morphological anatomy of tomato plant. Chinese Journal of Applied Ecology, 31, 2630-2636. |
[ 肖怀娟, 李娟起, 王吉庆, 杜清洁 (2020). 亚低温与干旱胁迫对番茄植株水分传输和形态解剖结构的影响. 应用生态学报, 31, 2630-2636.]
DOI |
|
[29] | Xie XW, Guo SL, Huang H (2003). A study of the relationships between terrestrial bryophytes and their environmental factors in Jinhua City, Zhejiang. Journal of Wuhan Botanical Research, 21(2), 129-136. |
[ 谢小伟, 郭水良, 黄华 (2003). 浙江金华市区地面苔藓植物分布与环境因子关系研究. 武汉植物学研究, 21(2), 129-136.] | |
[30] | Xue L, Cao H (2010). Changes of leaf traits of plants under stress resistance. Ecology and Environmental Sciences, 19, 2004-2009. |
[ 薛立, 曹鹤 (2010). 逆境下植物叶性状变化的研究进展. 生态环境学报, 19, 2004-2009.]
DOI |
|
[31] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[ 杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[32] | Yasunari T, Niles D, Taniguchi M, Chen D (2013). Asia: proving ground for global sustainability. Current Opinion in Environmental Sustainability, 5, 288-292. |
[33] | Yu WT, Jiang ZS, Li XY, Ding HX (2007). Effects of land use type on soil organic carbon storage in aquic brown soil. Chinese Journal of Applied Ecology, 18, 2760-2764. |
[ 宇万太, 姜子绍, 李新宇, 丁怀香 (2007). 不同土地利用方式对潮棕壤有机碳含量的影响. 应用生态学报, 18, 2760-2764.] | |
[34] | Zhang HN, Su PX, Li SJ, Zhou ZJ, Xie TT, Zhao QF (2013). Indicative effect of the anatomical structure of plant photosynthetic organ on WUE in desert region. Acta Ecologica Sinica, 33, 4909-4918. |
[ 张海娜, 苏培玺, 李善家, 周紫鹃, 解婷婷, 赵庆芳 (2013). 荒漠区植物光合器官解剖结构对水分利用效率的指示作用. 生态学报, 33, 4909-4918.] | |
[35] | Zhang XN, Wang BP, Sun XY, Qiao J, Cui LJ (2011). Ability of anti-dehydration and aridity to anatomical structure of leaves of Larrea tridentata. Ecology and Environmental Sciences, 20, 1634-1637. |
[ 张香凝, 王保平, 孙向阳, 乔杰, 崔令军 (2011). Larrea tridentata叶片解剖结构与保水特性的研究. 生态环境学报, 20, 1634-1637.] | |
[36] | Zhang XZ, He YT, Shen ZX, Wang JS, Yu CQ, Zhang YJ, Shi PL, Fu G, Zhu JT (2015). Frontier of the ecological construction support the sustainable development in Tibet Autonomous Region. Bulletin of Chinese Academy of Sciences, 30, 306-312. |
[ 张宪洲, 何永涛, 沈振西, 王景升, 余成群, 张扬建, 石培礼, 付刚, 朱军涛 (2015). 西藏地区可持续发展面临的主要生态环境问题及对策. 中国科学院院刊, 30, 306-312.] |
[1] | 付照琦, 胡旭, 田沁瑞, 葛艳灵, 周红娟, 吴小云, 陈立欣. 晋西黄土区2种典型森林树种夜间液流特征及对环境因子的响应[J]. 植物生态学报, 2024, 48(9): 1128-1142. |
[2] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[3] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[4] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[5] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[6] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[7] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[8] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[9] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[10] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[11] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[12] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[13] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[14] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[15] | 罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应[J]. 植物生态学报, 2021, 45(5): 552-561. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19