植物生态学报 ›› 2025, Vol. 49 ›› Issue (1): 199-210.DOI: 10.17521/cjpe.2024.0168 cstr: 32100.14.cjpe.2024.0168
姚宝辉1,4, 王蓉1,3,4, 谈昭贤1,3,4, 张妍1,2,4, 王义弘1,2,4, 王苏芹1,2,4, 周华坤1,4, 曲家鹏1,4,*()(
)
收稿日期:
2024-05-21
接受日期:
2024-12-10
出版日期:
2025-01-20
发布日期:
2025-03-08
通讯作者:
* 曲家鹏: ORCID: 0000-0002-8584-336X (jpqu@nwipb.cas.cn)基金资助:
YAO Bao-Hui1,4, WANG Rong1,3,4, TAN Zhao-Xian1,3,4, ZHANG Yan1,2,4, WANG Yi-Hong1,2,4, WANG Su-Qin1,2,4, ZHOU Hua-Kun1,4, QU Jia-Peng1,4,*()(
)
Received:
2024-05-21
Accepted:
2024-12-10
Online:
2025-01-20
Published:
2025-03-08
Supported by:
摘要:
高原鼠兔(Ochotona curzoniae)是青藏高原优势草食小型哺乳动物, 通过采食、挖掘及排泄等行为活动影响草地生态系统功能。艾美耳球虫(Eimeria spp.)是高原鼠兔的主要肠道寄生物, 具有较高的种属特异性, 是一种潜在的高原鼠兔种群防控新模式。然而, 艾美耳球虫防控高原鼠兔后高寒草地植被的变化情况尚不清楚。该研究选取艾美耳球虫防控高原鼠兔后的草地和对照草地, 通过分析不同处理后高寒草地植被多样性、共现网络和指示种等来探究艾美耳球虫防控高原鼠兔后对草地植被群落结构的影响。结果表明: 在野外投放艾美耳球虫后, 高原鼠兔的有效洞口数显著下降, 控鼠效果良好。艾美耳球虫投放后草地总盖度、Shannon-Wiener指数、Simpson指数和β多样性指数等均显著增高; 混合效应模型的结果表明, 艾美耳球虫投放对草地植被Simpson指数和Pielou均匀度指数的影响更大。艾美耳球虫防控高原鼠兔后植被群落共现网络分析中的群落间关联性和平均连通度增高, 草地关键物种由杂类草变成了禾本科和莎草科物种。研究结果为青藏高原高寒草地生物多样性保护、高寒草地啮齿动物科学防控以及生态系统适应性管理提供新的见解。
姚宝辉, 王蓉, 谈昭贤, 张妍, 王义弘, 王苏芹, 周华坤, 曲家鹏. 艾美耳球虫投放对高原鼠兔及高寒草地植物群落特征的影响. 植物生态学报, 2025, 49(1): 199-210. DOI: 10.17521/cjpe.2024.0168
YAO Bao-Hui, WANG Rong, TAN Zhao-Xian, ZHANG Yan, WANG Yi-Hong, WANG Su-Qin, ZHOU Hua-Kun, QU Jia-Peng. Effects of Eimeria spp. control of plateau pika on the plant community characteristics of alpine grassland. Chinese Journal of Plant Ecology, 2025, 49(1): 199-210. DOI: 10.17521/cjpe.2024.0168
图1 青藏高原高寒草地不同处理下草地有效洞口数的变化(平均值±标准误)。CK, 对照草地; ES, 艾美耳球虫投放草地。**, p < 0.01; ***, p < 0.001; ns, p > 0.05。
Fig. 1 Changes in the number of effective burrow openings in alpine grasslands on the Qingzang Plateau under different treatments (mean ± SE). CK, control grassland; ES, grassland treated with Eimeria spp. **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
指标 Index | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
CK | ES | p | CK | ES | p | |
总盖度 Total coverage (%) | 71.03 ± 2.09 | 73.07 ± 2.03 | 0.488 | 74.97 ± 1.89 | 85.90 ± 2.26 | <0.001 |
立枯盖度 Vertical withering coverage (%) | 0.71 ± 0.06 | 0.65 ± 0.08 | 0.558 | 0.63 ± 0.10 | 0.60 ± 0.13 | 0.842 |
碎屑盖度 Fragment coverage (%) | 2.27 ± 0.21 | 2.50 ± 0.40 | 0.608 | 1.97 ± 0.23 | 1.90 ± 0.24 | 0.840 |
平均高度 Average height (cm) | 2.40 ± 0.13 | 2.72 ± 0.18 | 0.162 | 3.28 ± 0.21 | 2.96 ± 0.21 | 0.286 |
丰富度指数 Species richness index | 16.57 ± 0.50 | 15.43 ± 0.62 | 0.080 | 11.93 ± 0.31 | 11.60 ± 0.57 | 0.613 |
Shannon-Wiener指数 Shannon-Wiener index | 2.26 ± 0.04 | 2.10 ± 0.07 | 0.051 | 1.89 ± 0.04 | 2.08 ± 0.07 | 0.015 |
Simpson指数 Simpson index | 0.85 ± 0.01 | 0.82 ± 0.01 | 0.135 | 0.78 ± 0.01 | 0.83 ± 0.01 | 0.007 |
Pielou均匀度指数 Pielou evenness index | 0.81 ± 0.01 | 0.79 ± 0.02 | 0.360 | 0.77 ± 0.01 | 0.86 ± 0.02 | <0.001 |
β多样性指数 β diversity index | 0.65 ± 0.01 | 0.67 ± 0.03 | 0.674 | 0.68 ± 0.02 | 0.74 ± 0.02 | 0.049 |
表1 不同年份和处理下草地植被特征指标的变化(平均值±标准误)
Table 1 Changes in different years and treatments of the active burrow entrance and plant characteristic index (mean ± SE)
指标 Index | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
CK | ES | p | CK | ES | p | |
总盖度 Total coverage (%) | 71.03 ± 2.09 | 73.07 ± 2.03 | 0.488 | 74.97 ± 1.89 | 85.90 ± 2.26 | <0.001 |
立枯盖度 Vertical withering coverage (%) | 0.71 ± 0.06 | 0.65 ± 0.08 | 0.558 | 0.63 ± 0.10 | 0.60 ± 0.13 | 0.842 |
碎屑盖度 Fragment coverage (%) | 2.27 ± 0.21 | 2.50 ± 0.40 | 0.608 | 1.97 ± 0.23 | 1.90 ± 0.24 | 0.840 |
平均高度 Average height (cm) | 2.40 ± 0.13 | 2.72 ± 0.18 | 0.162 | 3.28 ± 0.21 | 2.96 ± 0.21 | 0.286 |
丰富度指数 Species richness index | 16.57 ± 0.50 | 15.43 ± 0.62 | 0.080 | 11.93 ± 0.31 | 11.60 ± 0.57 | 0.613 |
Shannon-Wiener指数 Shannon-Wiener index | 2.26 ± 0.04 | 2.10 ± 0.07 | 0.051 | 1.89 ± 0.04 | 2.08 ± 0.07 | 0.015 |
Simpson指数 Simpson index | 0.85 ± 0.01 | 0.82 ± 0.01 | 0.135 | 0.78 ± 0.01 | 0.83 ± 0.01 | 0.007 |
Pielou均匀度指数 Pielou evenness index | 0.81 ± 0.01 | 0.79 ± 0.02 | 0.360 | 0.77 ± 0.01 | 0.86 ± 0.02 | <0.001 |
β多样性指数 β diversity index | 0.65 ± 0.01 | 0.67 ± 0.03 | 0.674 | 0.68 ± 0.02 | 0.74 ± 0.02 | 0.049 |
图2 年份(Year)、艾美耳球虫投放(ES)及其相互作用(Inter)对植被多样性变化的贡献。A, 丰富度指数。B, Shannon-Wiener指数。C, Simpson指数。D, Pielou均匀度指数。E, β多样性指数。
Fig. 2 Contribution of years (Year), Eimeria spp. treatment (ES), and their interaction (Inter) to the changes in plant diversity. A, Species richness index. B, Shannon-Wiener index. C, Simpson index. D, Pielou evenness index. E, β diversity index.
图3 不同处理下植被群落共现网络分析。CK2022, 2022年对照草地; CK2023, 2023年对照草地; ES2022, 2022年艾美耳球虫投放草地; ES2023, 2023年艾美耳球虫投放草地。Aco. szechenyianum, 铁棒槌; Aja. tenuifolia, 细叶亚菊; Aju. lupulina, 白苞筋骨草; Ana. lactea, 乳白香青; And. umbellata, 点地梅; Ane. obtusiloba, 钝裂银莲花; Ant. nitens, 茅香; Arg. anserina, 鹅绒委陵菜; Art. dubia, 牛尾蒿; Art. sieversiana, 大籽蒿; Astr. membranaceus, 黄耆; Aste. yunnanensis, 云南紫菀; Bup. longiradiatum, 大叶柴胡; Car. Alatauensis subsp. minor, 矮生嵩草; Car. atrofusca, 黑褐穗薹草; Car. kokanica, 喜马拉雅嵩草; Cir. souliei, 葵花大蓟; Con. ajacis, 飞燕草; Cor. bungeana, 地丁草; Del. densiflorum, 密花翠雀花; Dra. nemorosa, 葶苈; Els. densa, 密花香薷; Ely. nutans, 垂穗披碱草; Eph. sinica, 草麻黄; Eup. fischeriana, 狼毒大戟; Fes. ovina, 羊茅; Gal. verum, 蓬子菜; Gen. algida, 高山龙胆; Gen. farreri, 线叶龙胆; Gen. squarrosa, 鳞叶龙胆; Gen. straminea, 麻花艽; Gue. diversifolia, 异叶米口袋; Gym. gymnandrum, 露蕊乌头; Her. hemsleyanum, 独活; Inc. sinensis, 角蒿; Iri. tectorum, 鸢尾; Kno. sibirica, 西伯利亚蓼; Koe. macrantha, 草; Lag. gaertn, 兔耳草; Lan. tibetica, 肉果草; Leo. leontopodioides, 火绒草; Leo. nanum, 矮火绒草; Lig. virgaurea, 黄帚橐吾; Lon. semenovii, 藏西忍冬; Lys. maritima, 海乳草; Mic. sikkimensis, 微孔草; Mor. chinensis, 摩苓草; Mor. kokonorica, 青海刺参; Oxy. ochrocephala, 黄花棘豆; Oxy. qinghaiensi, 青海棘豆; Par. trinervis, 三脉梅花草; Ped. kansuensis, 甘肃马先蒿; Per. desmocephala, 聚头帚菊; Phl. rotata, 独一味; Ple. camtschaticu, 棱子芹; Ple. hookeri, 叠裂子芹; Poa annua, 早熟禾; Pot. multifida, 多裂委陵菜; Pot. nivea, 雪白委陵菜; Prz. tangutica, 唐古特马尿泡; Ran. japonicus, 毛茛; Sau. pulchra, 美丽风毛菊; Sau. stella, 星状风毛菊; Sci. distigmaticus, 双柱头藨草; Ste. chamaejasme, 瑞香狼毒; Sti. aliena, 异针茅; Sti. capillata, 针茅; Swe. bimaculata, 獐牙菜; Tar. mongolicum, 蒲公英; Tha. alpinum, 高山唐松草; Tha. aquilegiifolium, 唐松草; Ver. polita, 婆婆纳。
Fig. 3 Plant community co-occurrence network under different treatments. CK2022, Control grassland in 2022; CK2023, control grassland in 2023; ES2022, grassland treated with Eimeria in 2022; ES2023, Grassland treated with Eimeria in 2023. Aco. szechenyianum, Aconitum szechenyianum; Aja. tenuifolia, Ajania tenuifolia; Aju. lupulina, Ajuga lupulina; Ana. lactea, Anaphalis lactea; And. umbellata, Androsace umbellata; Ane. obtusiloba, Anemone obtusiloba; Ant. nitens, Anthoxanthum nitens; Arg. anserina, Argentina anserina; Art. dubia, Artemisia dubia; Art. sieversiana, Artemisia sieversiana; Astr. membranaceus, Astragalus membranaceus; Aste. yunnanensis, Aster yunnanensis; Bup. longiradiatum, Bupleurum longiradiatum; Car. alatauensis, Carex alatauensis; Car. atrofusca, Carex atrofusca subsp. minor; Car. kokanica, Carex kokanica; Cir. souliei, Cirsium souliei; Con. ajacis, Consolida ajacis; Cor. bungeana, Corydalis bungeana; Del. densiflorum, Delphinium densiflorum; Dra. nemorosa, Draba nemorosa; Els. densa, Elsholtzia densa; Ely. nutans, Elymus nutans; Eph. sinica, Ephedra sinica; Eup. fischeriana, Euphorbia fischeriana; Fes. ovina, Festuca ovina; Gal. verum, Galium verum; Gen. algida, Gentiana algida; Gen. farreri, Gentiana farreri; Gen. squarrosa, Gentiana squarrosa; Gen. straminea, Gentiana straminea; Gue. diversifolia, Gueldenstaedtia diversifolia; Gym. gymnandrum, Gymnaconitum gymnandrum; Her. hemsleyanum, Heracleum hemsleyanum; Inc. sinensis, Incarvillea sinensis; Iri. tectorum, Iris tectorum; Kno. sibirica, Knorringia sibirica; Koe. macrantha, Koeleria macrantha; Lag. gaertn, Lagotis gaertn; Lan. tibetica, Lancea tibetica; Leo. leontopodioides, Leontopodium leontopodioides; Leo. nanum, Leontopodium nanum; Lig. virgaurea, Ligularia virgaurea; Lon. semenovii, Lonicera semenovii; Lys. maritima, Lysimachia maritima; Mic. sikkimensis, Microula sikkimensis; Mor. chinensis, Morina chinensis; Mor. kokonorica, Morina kokonorica; Oxy. ochrocephala, Oxytropis ochrocephala; Oxy. qinghaiensi, Oxytropis qinghaiensi; Par. trinervis, Parnassia trinervis; Ped. kansuensis, Pedicularis kansuensis; Per. desmocephala, Pertya desmocephala; Phl. rotata, Phlomoides rotata; Ple. camtschaticu, Pleurospermum camtschaticu; Ple. hookeri, Pleurospermum hookeri; Pot. multifida, Potentilla multifida; Pot. nivea, Potentilla nivea; Prz. tangutica, Przewalskia tangutica; Ran. japonicus, Ranunculus japonicus; Sau. pulchra, Saussurea pulchra; Sau. stella, Saussurea stella; Sci. distigmaticus, Scirpus distigmaticus; Ste. chamaejasme, Stellera chamaejasme; Sti. aliena, Stipa aliena; Sti. capillata, Stipa capillata; Swe. bimaculata, Swertia bimaculata; Tar. mongolicum, Taraxacum mongolicum; Tha. alpinum, Thalictrum alpinum; Tha. aquilegiifolium, Thalictrum aquilegiifolium; Ver. polita, Veronica polita.
节点 Node | 边 Edge | 平均连通度 Average connectivity | 平均聚类系数 Average clustering coefficient | |
---|---|---|---|---|
CK2022 | 38 | 243 | 12.789 | 0.790 |
CK2023 | 31 | 257 | 16.581 | 0.835 |
ES2022 | 34 | 237 | 13.941 | 0.642 |
ES2023 | 39 | 438 | 25.528 | 0.828 |
表2 不同处理下植被群落共现网络分析的相关参数
Table 2 Parameters related to the plant community co-occurrence network under different treatments
节点 Node | 边 Edge | 平均连通度 Average connectivity | 平均聚类系数 Average clustering coefficient | |
---|---|---|---|---|
CK2022 | 38 | 243 | 12.789 | 0.790 |
CK2023 | 31 | 257 | 16.581 | 0.835 |
ES2022 | 34 | 237 | 13.941 | 0.642 |
ES2023 | 39 | 438 | 25.528 | 0.828 |
图4 不同处理中的关键植物物种SPEC-OCCU图。x轴表示占有率, 即植物物种在不同处理的所有30个样方中的分布情况; y轴表示特异性, 即植物物种是否也存在于其他处理中。CK2022, 2022年对照草地; CK2023, 2023年对照草地; ES2022, 2022年艾美耳球虫投放草地; ES2023, 2023年艾美耳球虫投放草地。
Fig. 4 SPEC-OCCU plots show the key plant species in different treatments. The x-axis represents occupancy, i.e., how well the plant species are distributed across all 30 quadrats of different treatments; and the y-axis represents specificity, i.e., whether they are also found in other treatments. CK2022, control grassland in 2022; CK2023, control grassland in 2023; ES2022, grassland treated with Eimeria in 2022; ES2023, grassland treated with Eimeria in 2023.
[1] | Bian JH, Cao YF, Du Y, Yang L, Jing ZC (2011). Effects of parasitic Eimerians (Eimeria cryptobarretti and E. klondikensis) on mortality of plateau pika (Ochotona curzoniae). Acta Theriologica Sinica, 31, 299-305. |
[边疆晖, 曹伊凡, 杜寅, 杨乐, 景增春 (2011). 艾美耳混合球虫对高原鼠兔致死毒力的初步研究. 兽类学报, 31, 299-305.] | |
[2] | Cao YF, Du Y, Yang L, Bian JH (2011). Two new record species of Eimeria (Apoicomplexa, Eimeriidae) from plateau pika in China. Sichuan Journal of Zoology, 30, 402-403. |
[曹伊凡, 杜寅, 杨乐, 边疆晖 (2011). 高原鼠兔寄生艾美耳球虫(顶复器门, 艾美耳科)二中国新纪录种. 四川动物, 30, 402-403.] | |
[3] | Case MF, Halpern CB, Levin SA (2013). Contributions of gopher mound and casting disturbances to plant community structure in a Cascade Range meadow complex. Botany, 91, 555-561. |
[4] | Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ (2012). Molecular ecological network analyses. BMC Bioinformatics, 13, 113. DOI: 10.1186/1471-2105-13-113. |
[5] | Dong S, Sherman R (2015). Enhancing the resilience of coupled human and natural systems of alpine rangelands on the Qinghai-Tibetan Plateau. The Rangeland Journal, 37, i-iii. DOI: 10.1071/RJ14117. |
[6] | Dong S, Zhang J, Li Y, Liu S, Dong Q, Zhou H, Yeomans J, Li Y, Li S, Gao X (2020). Effect of grassland degradation on aggregate-associated soil organic carbon of alpine grassland ecosystems in the Qinghai-Tibetan Plateau. European Journal of Soil Science, 71, 69-79. |
[7] | Du Y, Cao YF, Jing ZC, He H, Bian JH (2012). Efficacies of coccidian parasites (Protozoa) in control of plateau pika (Ochotona curzoniae) and their effects on embryo development. Acta Theriologica Sinica, 32, 221-227. |
[杜寅, 曹伊凡, 景增春, 何慧, 边疆晖 (2012). 艾美尔球虫防治高原鼠兔实验及对其胚胎发育的影响. 兽类学报, 32, 221-227.] | |
[8] | Dufrêne M, Legendre P (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67, 345-366. |
[9] | Fan W (2007). Observation on the effects of combined application of compound Ivermectin and Tianziqiuchongfen in expelling coccidian of altitude pika. Laboratory Animal Science, 24(1), 50-51. |
[范薇 (2007). 复方伊维菌素和球虫粉联合应用于高原鼠兔球虫的驱治效果观察. 实验动物科学, 24(1), 50-51.] | |
[10] | Fang F, Hu YK, Zhang W, Gong YM, Liu YY, Yang XJ (2012). Numerical analysis of inter-specific relationships in Alpine steppe community in Bayanbulak. Acta Ecologica Sinica, 32, 1898-1907. |
[房飞, 胡玉昆, 张伟, 公延明, 柳妍妍, 杨秀娟 (2012). 高寒草原植物群落种间关系的数量分析. 生态学报, 32, 1898-1907.] | |
[11] | Galiano D, Kubiak BB, Overbeck GE, de Freitas TRO (2014). Effects of rodents on plant cover, soil hardness, and soil nutrient content: a case study on tuco-tucos (Ctenomys minutus). Acta Theriologica, 59, 583-587. |
[12] |
Gweon HS, Bowes MJ, Moorhouse HL, Oliver AE, Bailey MJ, Acreman MC, Read DS (2021). Contrasting community assembly processes structure lotic bacteria metacommunities along the river continuum. Environmental Microbiology, 23, 484-498.
DOI PMID |
[13] |
Hnida JA, Duszynski DW (1999). Cross-transmission studies with Eimeria arizonensis, E. arizonensis-like oocysts and Eimeria langebarteli: host specificity at the genus and species level within the Muridae. Journal of Parasitology, 85, 873-877.
PMID |
[14] | Hua LM, Chai SQ (2022). Rodent pest control on grasslands in China: current state, problems and prospects. Journal of Plant Protection, 49(1), 415-423. |
[花立民, 柴守权 (2022). 中国草原鼠害防治现状、问题及对策. 植物保护学报, 49(1), 415-423.] | |
[15] | Jia TT, Mao L, Guo ZG (2014). Effect of available burrow densities of plateau pika (Ochotona curzoniae) on plant niche of alpine meadow communities in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 34, 869-877. |
[贾婷婷, 毛亮, 郭正刚 (2014). 高原鼠兔有效洞穴密度对青藏高原高寒草甸群落植物生态位的影响. 生态学报, 34, 869-877.] | |
[16] | Jiang KW, Zhang QQ, Wang YF, Li H, Ding Y, Yang YQ, Tuerxunnayi R (2024). Characteristics of plant functional groups and the relationships with soil environmental factors in middle part of northern slope of Tianshan Mountains under different grazing intensities. Chinese Journal of Plant Ecology, 48, 701-718. |
[江康威, 张青青, 王亚菲, 李宏, 丁雨, 杨永强, 吐尔逊娜依·热依木 (2024). 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系. 植物生态学报, 48, 701-718.]
DOI |
|
[17] | Jin SH, Liu T, Pang XP, Yu C, Guo ZG (2017). Effects of plateau pika (Ochotona curzoniae) disturbances on plant species diversity and aboveground plant biomass in a Kobresia pygmaea meadow in the Qinghai Lake Region. Acta Prataculturae Sinica, 26(5), 29-39. |
[金少红, 刘彤, 庞晓攀, 于成, 郭正刚 (2017). 高原鼠兔干扰对青海湖流域高山嵩草草甸植物多样性及地上生物量的影响. 草业学报, 26(5), 29-39.]
DOI |
|
[18] |
Lai JS, Zou Y, Zhang S, Zhang XG, Mao LF (2022). Glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. Journal of Plant Ecology, 15, 1302-1307.
DOI |
[19] | Latapy M (2008). Main-memory triangle computations for very large (sparse (power-law)) graphs. Theoretical Computer Science, 407, 458-473. |
[20] | Li J, Sun WT, Pang XP, Xu XT, Yang H, Guo ZG (2024). Effect of plateau pika disturbance on the beta diversity of plant species and functional traits in alpine meadows. Acta Ecologica Sinica, 44, 2993-3003. |
[李捷, 孙文涛, 庞晓攀, 徐雪婷, 杨欢, 郭正刚 (2024). 高原鼠兔干扰对高寒草甸植物物种和功能性状beta多样性的影响. 生态学报, 44, 2993-3003.] | |
[21] | Li M, Wang S, Zhong L, Heděnec P, Tan Z, Wang R, Chen X, Zhang Y, Tang B, Zhou H, Qu J (2024). Eimeria infections of plateau pika altered the patterns of temporal alterations in gut bacterial communities. Frontiers in Microbiology, 14, 1301480. DOI: 10.3389/fmicb.2023.1301480. |
[22] | Li SQ, Li SP, Hu GY, Lei MT, Han SY, Liu CL, Wang LY (2022). Experimental study on the damage mechanism of type D botulinum toxin rodenticide to the plain-backed snowfinch. Chinese Journal of Wildlife, 43, 964-969. |
[李生庆, 李淑萍, 胡国元, 雷萌桐, 韩生义, 刘成录, 王林业 (2022). D型肉毒毒素灭鼠剂对棕背雪雀危害机理的试验研究. 野生动物学报, 43, 964-969.] | |
[23] | Li W, Liu YZ, Wang JL, Shi SL, Cao WX (2018). Six years of grazing exclusion is the optimum duration in the alpine meadow-steppe of the north-eastern Qinghai-Tibetan Plateau. Scientific Reports, 8, 17269. DOI: 10.1038/s41598-018-35273-y. |
[24] | Liang JR, Zhou L, Wei SW, Wang ZW, Sun RY (1984). Mathematical model of the population recovery of pikas and zokors after rodent control in alpine meadows. Acta Ecologica Sinica, 4, 88-98. |
[梁杰荣, 周立, 魏善武, 王祖望, 孙儒泳 (1984). 高寒草甸灭鼠后鼠兔和鼢鼠数量恢复的数学模型. 生态学报, 4, 88-98.] | |
[25] |
Lindtner P, Svitok M, Ujházy K, Kubovčík V (2020). Disturbances by the European ground squirrel enhance diversity and spatial heterogeneity of plant communities in temperate grassland. Biodiversity and Conservation, 29, 853-867.
DOI |
[26] | Liu W, Yan HY, Wang X, Wang CT (2014). Effects of plateau pikas on restoring succession of degraded grassland and plant community structure. Acta Theriologica Sinica, 34, 54-61. |
[刘伟, 严红宇, 王溪, 王长庭 (2014). 高原鼠兔对退化草地植物群落结构及恢复演替的影响. 兽类学报, 34, 54-61.] | |
[27] | Liu W, Zhang Y, Wang X, Zhao JZ, Xu QM, Zhou L (2008). Food selection by plateau pikas in different habitats during plant growing season. Acta Theriologica Sinica, 28, 358-366. |
[刘伟, 张毓, 王溪, 赵建中, 许庆民, 周立 (2008). 植物生长季节不同栖息地高原鼠兔的食物选择. 兽类学报, 28, 358-366.] | |
[28] | Liu Y, Fan W, Shi Z, Yang X, Harris W (2017). Relationships between plateau pika (Ochotona curzoniae) densities and biomass and biodiversity indices of alpine meadow steppe on the Qinghai-Tibet Plateau China. Ecological Engineering, 102, 509-518. |
[29] | Liu YZ, Zhao XQ, Liu WT, Feng B, Lv WD, Zhang ZX, Yang XX, Dong QM (2024). Plant biomass partitioning in alpine meadows under different herbivores as influenced by soil bulk density and available nutrients. Catena, 240, 108017. DOI: 10.1016/j.catena.2024.108017. |
[30] | Liu YZ, Sun CC, Liu WT, Yang XX, Feng B, Shi G, Zhang X, Li CD, Yang ZZ, Gao J, Zhang XF, Yu Y, Zhang CP, Dong QM (2022). Response of keystone species changes in alpine grassland plant communities to different herbivore assemblage grazing. Acta Ecologica Sinica, 42, 7529-7540. |
[刘玉祯, 孙彩彩, 刘文亭, 杨晓霞, 冯斌, 时光, 张雪, 李彩弟, 杨增增, 高婕, 张小芳, 俞旸, 张春平, 董全民 (2022). 高寒草地植物群落关键种对不同放牧家畜组合放牧的响应. 生态学报, 42, 7529-7540.] | |
[31] | Lu Q, Cheng C, Xiao LY, Li J, Li XY, Zhao X, Lu Z, Zhao JD, Yao M (2023). Food webs reveal coexistence mechanisms and community organization in carnivores. Current Biology, 33, 647-659. |
[32] | Mao KS, Wang Y, Liu JQ (2021). Evolutionary origin of species diversity on the Qinghai-Tibet Plateau. Journal of Systematics and Evolution, 59, 1142-1158. |
[33] | Mod HK, Rissanen T, Niittynen P, Soininen J, Luoto M (2023). The relationships of plant species occupancy to niches and traits vary with spatial scale. Journal of Biogeography, 50, 1013-1025. |
[34] | Niu JL (2022). Evaluation of the effect of “rodent control + artificial replanting” on the restoration of severely degraded grassland in different years. Gansu Animal Husbandry and Veterinary Medicine, 52(8), 68-71. |
[牛建龙 (2022). “灭鼠+人工补播”措施对重度退化草原修复不同年限的效果评价. 甘肃畜牧兽医, 52(8), 68-71.] | |
[35] | Pang XP, Guo ZG (2017). Plateau pika disturbances alter plant productivity and soil nutrients in alpine meadows of the Qinghai-Tibetan Plateau, China. The Rangeland Journal, 39, 133-144. |
[36] | Pang XP, Guo ZG (2018). Effects of plateau pika disturbance levels on the plant diversity and biomass of an alpine meadow. Grassland Science, 64, 159-166. |
[37] | Pang XP, Wang Q, Jia TT, Li QQ, Guo ZG (2015). Effect of burrow entrance densities of plateau pika (Ochotona curzoniae) on interspecific association in Kobresia pygmaea meadow. Acta Prataculturae Sinica, 24(5), 224-230. |
[庞晓攀, 王倩, 贾婷婷, 李倩倩, 郭正刚 (2015). 高原鼠兔有效洞口数密度对高山嵩草草甸植物种间联结性的影响. 草业学报, 24(5), 224-230.]
DOI |
|
[38] | Pei L, Wu Z, Qian YQ, Li XX, Zhang JX, Sun J, Wang YX (2024). Plant community stability, indicator species and their driving factors at a gradient of grazing intensity in an alpine meadow. Ecological Indicators, 162, 112012. DOI: 10.1016/j.ecolind.2024.11202. |
[39] | Qu JP, Liu M, Yang M, Zhang YM, Ji WH (2012). Reproduction of plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau. European Journal of Wildlife Research, 58, 269-277. |
[40] | Schirpke U, Kohler M, Leitinger G, Fontana V, Tasser E, Tappeiner U (2017). Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosystem Services, 26, 79-94. |
[41] | Shen ZX, Chen ZZ, Wang YH, Zhang JL, Zhou HK (2003). Clonal growth of stoloniferous herb Potentilla anserina on degraded and non-degraded alpine meadow soil. Chinese Journal of Applied Ecology, 14, 1332-1336. |
[沈振西, 陈佐忠, 王彦辉, 张镜锂, 周华坤 (2003). 高寒退化与未退化草甸土壤下匍匐茎鹅绒委陵菜的克隆生长特征的比较. 应用生态学报, 14, 1332-1336.] | |
[42] | Song WJ, Zhang HL, Luozangangmao, Kazhecairang, Aidexiecuo, Zhou X, Xiang ZQ, Yu W, Li WJ (2023). Effects of multi-year rodent eradication on population density of plateau pika and plant community structure. Acta Agrestia Sinica, 31, 2853-2859. |
[宋文杰, 张海兰, 洛藏昂毛, 卡着才让, 艾得协措, 周喜, 向志强, 喻望, 李文金 (2023). 多年鼠类防控对高原鼠兔种群数量及植物群落结构的影响. 草地学报, 31, 2853-2859.]
DOI |
|
[43] | Sousa W (1984). The role of disturbance in natural communities. Annual Review of Ecology and Systematics, 15, 353-391. |
[44] | Speakman JR, Chi Q, Ołdakowski Ł, Fu H, Fletcher QE, Hambly C, Togo J, Liu X, Piertney SB, Wang X, Zhang L, Redman P, Wang L, Tang G, Li Y, et al. (2021). Surviving winter on the Qinghai-Tibetan Plateau: pikas suppress energy demands and exploit yak feces to survive winter. Proceedings of the National Academy of Sciences of the United States of America, 118, e2100707118. DOI: 10.1073/pnas.2100707118. |
[45] |
Sun J, Fu BJ, Zhao WW, Liu SL, Liu GH, Zhou HK, Shao XQ, Chen YC, Zhang Y, Deng YF (2021). Optimizing grazing exclusion practices to achieve goal 15 of the sustainable development goals in the Tibetan Plateau. Science Bulletin, 66, 1493-1496.
DOI PMID |
[46] | Sun JJ, Jiao T, Li YJ, Wang F, Wang PB, Yu XJ (2019). A study on the optimal allocation of the alpine pasture grassland-livestock—A case of a herder in Maqin County, Qinghai Province. Acta Agrestia Sinica, 27, 728-735. |
[孙金金, 焦婷, 李亚娟, 王芳, 汪鹏斌, 鱼小军 (2019). 高寒区草地-家畜优化配置研究——以青海省玛沁县1牧户为例. 草地学报, 27, 728-735.]
DOI |
|
[47] | Wardle DA, Bonner KI, Barker GM (2000). Stability of ecosystem properties in response to above-ground functional group richness and composition. Oikos, 89, 11-23. |
[48] | Watts D, Strogatz S (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440-442. |
[49] | Wei W, Yao X, Zhang Y, Zhen Q, Qin M, Tang Z, Oosthuizen MK, Zhang W (2023). Vegetation restoration measures: increasing plant height suppresses population densities of plateau pikas. Land Degradation & Development, 34, 2201-2213. |
[50] | Wei WR, He JD, Zheng QY (2020). Plateau pikas (Ochotona curzoniae) at low densities have no destructive effect on winter pasture in alpine meadows. The Rangeland Journal, 42, 55-61. |
[51] | Wesche K, Nadrowski K, Retzer V (2007). Habitat engineering under dry conditions: The impact of pikas (Ochotona pallasi) on vegetation and site conditions in southern Mongolian steppes. Journal of Vegetation Science, 18, 665-674. |
[52] | Xu HP, Yu C, Shu CC, Jin SH, Pang XP, Guo ZG (2019). The effect of plateau pika disturbance on plant community diversity and stability in an alpine meadow. Acta Prataculturae Sinica, 28, 90-99. |
[徐海鹏, 于成, 舒朝成, 金少红, 庞晓攀, 郭正刚 (2019). 高原鼠兔干扰对高寒草甸植物群落多样性和稳定性的影响. 草业学报, 28, 90-99.]
DOI |
|
[53] | Xu SH, Shang ZH, Ma YS, Long RJ (2008). Analysis of interspecific association in degraded meadow communities in the headwater area of Yellow River on Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 28, 1222-1227. |
[徐松鹤, 尚占环, 马玉寿, 龙瑞军 (2008). 黄河源区退化高寒草地植物种间联结性分析. 西北植物学报, 28, 1222-1227.] | |
[54] | Yang YB, Du Y, Cao YF, Du SY, Bian JH (2015). Effects of coccidian parasites (api complexa: eimeriiade) on reproduction in plateau pika. Acta Theriologica Sinica, 35, 312-320. |
[杨彦宾, 杜寅, 曹伊凡, 堵守阳, 边疆晖 (2015). 艾美耳球虫对高原鼠兔繁殖的影响. 兽类学报, 35, 312-320.] | |
[55] | Ye GH, Chu B, Tang ZS, Alongi F, Bao D, Hua R, Hua LM, Niu YJ (2022). Disturbance of plateau zokor (Eospalax baileyi) mounds increase plant and soil macroinvertebrate richness by offering a diversified microenvironment. Ecological Engineering, 183, 106754. DOI: 10.1016/j.ecoleng.2022.106754. |
[56] | Yu C, Zhang J, Pang XP, Wang Q, Zhou YP, Guo ZG (2017). Soil disturbance and disturbance intensity: response of soil nutrient concentrations of alpine meadow to plateau pika bioturbation in the Qinghai-Tibetan Plateau, China. Geoderma, 307, 98-106. |
[57] | Zhang WN, Wang Q, Zhang J, Pang XP, Xu HP, Wang J, Guo ZG (2020). Clipping by plateau pikas and impacts to plant community. Rangeland Ecology & Management, 73, 368-374. |
[58] |
Zhang XY, Feng M, Liu QG, Yang GJ, Hu ZM (2024). Distribution patterns and driving factors of grassland plant diversity along a precipitation gradient on the Qinghai-Tibet Plateau. Chinese Journal of Ecology, 43, 1674-1680.
DOI |
[张小燕, 冯明, 刘倩光, 杨国姣, 胡中民 (2024). 青藏高原草地植物多样性沿降水梯度的分布格局及影响因素. 生态学杂志, 43, 1674-1680.] | |
[59] | Zhao F, Zhang TZ, Su JP, Ci HX, Li SQ, Li ZN, Lin GH (2016). Variation in vkorc1 gene of five rodent species endemic to the Qinghai-Tibet Plateau. Pratacultural Science, 33, 1206-1212. |
[赵芳, 张同作, 苏建平, 慈海鑫, 李生庆, 李志宁, 林恭华 (2016). 青藏高原5种害鼠vkorc1基因的测序分析. 草业科学, 33, 1206-1212.] | |
[60] | Zhong L, Zhu HJ, Yu YB, Qu JP (2021). Effects of coccidian parasites on the personality and physiological traits of plateau pika. Pratacultural Science, 38, 1605-1614. |
[钟亮, 朱红娟, 余义博, 曲家鹏 (2021). 艾美尔球虫对高原鼠兔个性与生理特征的影响. 草业科学, 38, 1605-1614.] | |
[61] | Zhou HK, Yang XY, Zhou CY, Shao XQ, Shi ZC, Li HL, Su HY, Qin RM, Chang T, Hu X, Yuan F, Li S, Zhang ZH, Ma L (2023). Alpine grassland degradation and its restoration in the Qinghai-Tibet Plateau. Grasses, 2, 31-46. |
[1] | 陈龙 郭柯 勾晓华 赵秀海 马泓若. 祁连圆柏林群落组成及特征[J]. 植物生态学报, 2025, 49(植被): 0-0. |
[2] | 王娟 张登山 肖元明 裴全帮 王博 樊博 周国英. 长期围封后高寒草原植物根系分泌物特征与环境因子关系[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[3] | 张辉, 赵赟鹏, 刘晓琛, 郭增鹏, 胡国瑞, 冯彦皓, 马妙君. 高寒草甸退化过程中土壤种子库的变化及其在植物群落更新中的潜在作用[J]. 植物生态学报, 2025, 49(1): 74-82. |
[4] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[5] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[6] | 肖兰, 董标, 张琳婷, 邓传远, 李霞, 姜德刚, 林勇明. 渤海无居民海岛主要植被类型群落特征[J]. 植物生态学报, 2024, 48(1): 127-134. |
[7] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[8] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[9] | 朱芩, 宁盼, 侯琳, 郝家田, 胡云云. 三江源地区刺柏属植物群落类型特征[J]. 植物生态学报, 2022, 46(1): 114-122. |
[10] | 张欢, 张云玲, 张彦才, 阎平. 新疆奇台荒漠类草地自然保护区主要植物群落及其特征[J]. 植物生态学报, 2021, 45(8): 918-924. |
[11] | 李捷, 陈莹莹, 乔福云, 郅堤港, 郭正刚. 高原鼠兔干扰对高寒草甸β多样性的影响[J]. 植物生态学报, 2021, 45(5): 476-486. |
[12] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[13] | 贺露炎, 侯满福, 唐伟, 刘雨婷, 赵俊. 滇东菌子山喀斯特森林的植被类型及其特征[J]. 植物生态学报, 2021, 45(12): 1380-1390. |
[14] | 于燕妹, 黄林娟, 薛跃规. 广西大石围天坑群不同植物群落的特征[J]. 植物生态学报, 2021, 45(1): 96-103. |
[15] | 郭柯, 方精云, 王国宏, 唐志尧, 谢宗强, 沈泽昊, 王仁卿, 强胜, 梁存柱, 达良俊, 于丹. 中国植被分类系统修订方案[J]. 植物生态学报, 2020, 44(2): 111-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19