• •    

全球植被总初级生产力产品在青藏高原高寒草甸的适用性评价

李昱坤, 郑周涛, 丛楠, 赵广, 朱艺旋, 张扬建, 孙霄临, 严俊   

  1. 中国科学院地理科学与资源研究所, 生态系统网络观测与模拟重点实验室,拉萨高原生态试验站, 100101
    中国科学院大学资源与环境学院, 100049
    河北大学生命科学学院, 071002
    那曲市农牧业(草业)科技研究推广中心, 852000
  • 收稿日期:2025-09-05 修回日期:2025-09-26

Assessment of the Applicability of Global Gross Primary Productivity Products in Alpine Meadows of the Tibetan Plateau

LI Yu-Kun   

  1. , 100101,
    , 100049,
    , 071002,
    , 852000,
  • Received:2025-09-05 Revised:2025-09-26

摘要: 植被总初级生产力(Gross Primary Productivity, GPP)是陆地生态系统碳循环的关键组成部分,其精确模拟对于理解大气中二氧化碳的变化非常重要。目前,基于不同数据和模型开发的全球GPP产品众多,但这些GPP产品在青藏高原的表现尚缺乏系统评估。本研究收集了青藏高原17个涡度相关通量塔的GPP数据,利用拟合度(R2)、相对均方根误差(RRMSE)和相对偏差(RBIAS)3个指标,对8套不同来源的全球GPP产品(GPPGOSIF、GPPNIRv、GPPMOD17、GPPVPM、GPPGLASS、GPPTL-LUE、GPPPML和GPPBESS)在青藏高原东部和中部高寒草甸的精度进行了综合评估。研究结果表明,GPPVPM(R2=0.60, RRMSE=75.39%, RBIAS=8.73%)和GPPGOSIF(R2=0.58, RRMSE=81.53%, RBIAS=24.94%)总体上具有相对较高的精度,更加适用于青藏高原高寒草甸。此外,GPP产品的精度在时空上存在显著差异,主要表现为:季节上,夏季和秋季的精度优于春季;生态系统类型上,典型高寒草甸生态系统的精度优于其他草甸生态系统;冻土类型上,多年冻土区的精度高于季节冻土区;气候区方面,半湿润区的精度高于半干旱区;干旱情况方面,无旱月份的精度高于干旱月份。本研究揭示了全球GPP产品在青藏高原高寒草甸的不确定性,为该地区GPP数据的选用以及GPP模拟的改进提供了重要依据。

关键词: 青藏高原, 总初级生产力, 统计模型, 光能利用率模型, 过程模型, 精度

Abstract: Gross Primary Productivity (GPP) is a key component of the carbon cycle in terrestrial ecosystems, and its accurate simulation is crucial for understanding the variations of carbon dioxide in the atmosphere. Currently, there are numerous global GPP products developed based on different data sources and models, but systematic assessments of their performance in the Tibetan Plateau are lacking. Methods In this study, we collected GPP data from 17 eddy covariance flux towers on the Tibetan Plateau and comprehensively evaluated the accuracy of 8 global GPP products (GPPGOSIF, GPPNIRv, GPPMOD17, GPPVPM, GPPGLASS, GPPTL-LUE, GPPPML, and GPPBESS) in alpine meadows of the eastern and central Tibetan Plateau using three indicators: coefficient of determination (R2), relative root mean square error (RRMSE), and relative bias (RBIAS).The results showed that GPPVPM (R2=0.60, RRMSE=75.39%, RBIAS=8.73%) and GPPGOSIF (R2=0.58, RRMSE=81.53%, RBIAS=24.94%) generally exhibited relatively high accuracy and were more suitable for the alpine meadows of the Tibetan Plateau. Moreover, the accuracy of GPP products varied significantly in space and time, manifested as follows: seasonally, the accuracy was higher in summer and autumn than in spring; in terms of ecosystem types, typical alpine meadow showed better accuracy than other meadow ecosystems; regarding permafrost types, the accuracy was higher in permafrost zone than in seasonal frost zone; in climate zones, semi-humid region demonstrated higher accuracy than semi-arid region; in terms of drought conditions, the accuracy is greater in non-drought months compared to drought months. This study reveals the uncertainties of global GPP products in the alpine meadows of the Tibetan Plateau and provides important insights for selecting GPP data and improving GPP simulations in this region.

Key words: Tibetan Plateau, Gross Primary Productivity, Statistical Models, Light Use Efficiency Models, Process Models, Accuracy