植物生态学报 ›› 2008, Vol. 32 ›› Issue (1): 212-219.DOI: 10.3773/j.issn.1005-264x.2008.01.025
姚芳芳1,2, 王效科1,*(), 陈展1, 冯兆忠1, 郑启伟1, 段晓男1, 欧阳志云1, 冯宗炜1
收稿日期:
2006-06-30
接受日期:
2007-01-20
出版日期:
2008-06-30
发布日期:
2008-01-30
通讯作者:
王效科
作者简介:
* E-mail: wangxk@rcees.ac.cn基金资助:
YAO Fang-Fang1,2, WANG Xiao-Ke1,*(), CHEN Zhan1, FENG Zhao-Zhong1, ZHENG Qi-Wei1, DUAN Xiao-Nan1, OUYANG Zhi-Yun1, FENG Zong-Wei1
Received:
2006-06-30
Accepted:
2007-01-20
Online:
2008-06-30
Published:
2008-01-30
Contact:
WANG Xiao-Ke
摘要:
评估臭氧(O3)污染对农田冬小麦生长和产量的影响是污染生态学和生理生态学研究的重要内容之一。该研究运用开顶式气室(OTC),对冬小麦‘嘉403’(Triticum aestivum cv. Jia 403)进行了O3动态暴露的田间原位试验。实验设置过滤空气组(CF) 、自然大气组(NF)和两个不同浓度的O3动态暴露组(DO100和DO150)。结果表明:1) O3浓度增加,一方面可以改变灌浆期冬小麦叶片气体交换参数的日变化规律;另一方面引起表观光量子产额、光饱和点和光补偿点等光响应参数的显著降低。这表明灌浆期叶片光合能力的下降是气孔因素和非气孔因素共同作用的结果。2) O3暴露可以改变小麦形态特征,如植株变矮、叶片衰老加速、叶面积变小,并最终导致产量大幅下降。
姚芳芳, 王效科, 陈展, 冯兆忠, 郑启伟, 段晓男, 欧阳志云, 冯宗炜. 农田冬小麦生长和产量对臭氧动态暴露的响应. 植物生态学报, 2008, 32(1): 212-219. DOI: 10.3773/j.issn.1005-264x.2008.01.025
YAO Fang-Fang, WANG Xiao-Ke, CHEN Zhan, FENG Zhao-Zhong, ZHENG Qi-Wei, DUAN Xiao-Nan, OUYANG Zhi-Yun, FENG Zong-Wei. RESPONSE OF PHOTOSYNTHESIS, GROWTH AND YIELD OF FIELD-GROWN WINTER WHEAT TO OZONE EXPOSURE. Chinese Journal of Plant Ecology, 2008, 32(1): 212-219. DOI: 10.3773/j.issn.1005-264x.2008.01.025
图2 两种O3动态暴露的配气方案 DO100:平均浓度为100 nl·L-1的臭氧动态暴露组 DO150:平均浓度为150 nl·L-1的臭氧动态暴露组
Fig.2 The treatments method of two ozone dynamic exposure groups Ozone dynamic exposure group with mean concentration of 100 nl·L-1 Ozone dynamic exposure group with mean concentration of 150 nl·L-1
图3 不同O3动态暴露处理对灌浆初期小麦叶片光合速率日变化的影响 DO100、DO150: 见图2 See Fig. 2 CF: 过滤空气组 Charcoal filter group NF: 自然大气组 Non-charcoal filter group
Fig.3 Effects of different ozone dynamic exposure treatments on the diurnal trends of photosynthetic rate of wheat leaves on the early grain filling stage
图4 不同O3动态暴露处理对小麦叶片Pn-PAR响应曲线的影响 Pn: Photosythetic rate PAR:Photosynthetically active radiation DO100、DO150: 见图2 See Fig. 2 CF、NF: 见图3 See Fig. 3
Fig.4 Effects of different ozone dynamic exposure treatments on the Pn-PAR response curve of wheat leaves
处理 Treatments | 最大光合速率Pnmax (μmol·m-2·s-1) | 光量子产额AQY (mol·mol-1) | 光饱和点LSP (μmol·m-2·s-1) | 光补偿点LCP (μmol·m-2·s-1) |
---|---|---|---|---|
CF | 23.1±2.51a | 0.063±0.001a | 1252±38a | 89.44±4.85a |
NF | 19.1±2.39ab | 0.058±0.005a | 1095±47b | 38.90±8.94cd |
DO100 | 13.8±1.34bc | 0.045±0.003b | 906±42c | 33.51±7.96d |
DO150 | 9.0±0.66c | 0.032±0.002c | 902±31c | 59.96±7.45bc |
表1 不同O3动态暴露处理对冬小麦叶片光响应参数的影响(平均值±标准误)
Table 1 Effects of different ozone dynamic exposure treatments on comparison of photosynthetic characteristics (Mean±SE)
处理 Treatments | 最大光合速率Pnmax (μmol·m-2·s-1) | 光量子产额AQY (mol·mol-1) | 光饱和点LSP (μmol·m-2·s-1) | 光补偿点LCP (μmol·m-2·s-1) |
---|---|---|---|---|
CF | 23.1±2.51a | 0.063±0.001a | 1252±38a | 89.44±4.85a |
NF | 19.1±2.39ab | 0.058±0.005a | 1095±47b | 38.90±8.94cd |
DO100 | 13.8±1.34bc | 0.045±0.003b | 906±42c | 33.51±7.96d |
DO150 | 9.0±0.66c | 0.032±0.002c | 902±31c | 59.96±7.45bc |
图5 不同O3动态暴露处理对灌浆初期小麦叶片气孔导度(Gs)日变化的影响 DO100、DO150: 见图2 See Fig. 2 CF、NF: 见图3 See Fig. 3
Fig.5 Effects of different ozone dynamic exposure treatments on the diurnal trends of stomatal conductance (Gs) of wheat leaves on the early grain filling stage
图6 不同O3动态暴露处理对灌浆初期小麦叶片胞间CO2浓度(Ci)和气孔限制值(Ls)的影响 DO100、DO150: 见图2 See Fig. 2 CF、NF: 见图3 See Fig. 3 不同字母表示在5%水平上差异显著 Different letters stand for significant difference at p<0.05 level
Fig.6 Effects of different ozone dynamic exposure treatments on intercellular CO2 concentration (Ci) and stomal limit value (Ls) of wheat leaves on the early grain filling stage
图7 不同O3动态暴露处理对灌浆初期小麦叶片蒸腾速率(Tr)和水分利用率(WUE)的影响 图注同图6 Notes see Fig. 6
Fig.7 Effects of different ozone dynamic exposure treatments on the transpiration rate (Tr) and water usage efficiency (WUE) of wheat leaves on the early grain filling stage
处理 Treatment | 拔节前期 Early jointing stage | 拔节后期 Later jointing stage | 孕穗期 Booting stage | 扬花期 Anthesis stage |
---|---|---|---|---|
CF | 34.1±0.46a | 51.6±0.36a | 65.5±0.34a | 80.9±0.35a |
NF | 33.7±0.64a | 51.5±0.54a | 64.8±0.66a | 80.1±0.74a |
DO100 | 33.7±0.62a | 48.2±0.42b | 60.0±0.74b | 78.2±0.82b |
DO150 | 33.6±0.42a | 48.6±0.56b | 60.4±0.87b | 76.7±0.44b |
表2 不同O3动态暴露处理对冬小麦生育期间株高的影响(cm)(平均值±标准误)
Table 2 Effects of different ozone dynamic exposure treatments on the plant height during wheat growth and development (cm) (Mean±SE)
处理 Treatment | 拔节前期 Early jointing stage | 拔节后期 Later jointing stage | 孕穗期 Booting stage | 扬花期 Anthesis stage |
---|---|---|---|---|
CF | 34.1±0.46a | 51.6±0.36a | 65.5±0.34a | 80.9±0.35a |
NF | 33.7±0.64a | 51.5±0.54a | 64.8±0.66a | 80.1±0.74a |
DO100 | 33.7±0.62a | 48.2±0.42b | 60.0±0.74b | 78.2±0.82b |
DO150 | 33.6±0.42a | 48.6±0.56b | 60.4±0.87b | 76.7±0.44b |
处理 Treatment | 扬花期 Anthesis stage | 灌浆期 Grain filling stage |
---|---|---|
CF | 94.0±7.7a | 48.7±4.9a |
NF | 88.4±4.4a | 38.2±4.1b |
DO100 | 64.7±6.4b | 11.9±2.3c |
DO150 | 50.9±5.4b | 5.04±2.7c |
表3 不同O3动态暴露处理对冬小麦生育期间叶面积的影响(cm2·单茎-1)(平均值±标准误)
Table 3 Effects of different ozone dynamic exposure treatments on the leaf areaduring wheat growth and development (cm2·stem-1) (Mean±SE)
处理 Treatment | 扬花期 Anthesis stage | 灌浆期 Grain filling stage |
---|---|---|
CF | 94.0±7.7a | 48.7±4.9a |
NF | 88.4±4.4a | 38.2±4.1b |
DO100 | 64.7±6.4b | 11.9±2.3c |
DO150 | 50.9±5.4b | 5.04±2.7c |
产量构成 Yield structure | 穗长 Ear length (cm) | 小穗数/穗 Spiklets/ear | 粒数/穗 Grain/ear | 结实率 Seed setting rate (%) | 千粒重 1 000 grain weight (g) | 单茎产量 Yield per stem (g) |
---|---|---|---|---|---|---|
CF | 11.08±0.36a | 17.9±0.74a | 46.9±3.93a | 94.7±4.44a | 37.4±1.37a | 1.52±0.07a |
NF | 11.02±0.53a | 17.7±0.95a | 46.2±4.25a | 94.6±2.92a | 32.0±0.78ab | 1.35±0.17ab |
DO100 | 9.95±0.47b | 16.4±1.06a | 33.5±3.29b | 86.3±6.47ab | 29.7±1.20b | 1.10±0.15b |
DO150 | 9.40±0.58b | 17.1±1.58a | 24.1±3.75c | 74.7±9.35b | 24.1±0.75c | 0.91±0.05b |
表4 不同O3动态暴露处理对冬小麦产量构成的影响(平均值±标准误)
Table 4 Effects of different ozone dynamic exposure treatments on the yield structure (Mean±SE)
产量构成 Yield structure | 穗长 Ear length (cm) | 小穗数/穗 Spiklets/ear | 粒数/穗 Grain/ear | 结实率 Seed setting rate (%) | 千粒重 1 000 grain weight (g) | 单茎产量 Yield per stem (g) |
---|---|---|---|---|---|---|
CF | 11.08±0.36a | 17.9±0.74a | 46.9±3.93a | 94.7±4.44a | 37.4±1.37a | 1.52±0.07a |
NF | 11.02±0.53a | 17.7±0.95a | 46.2±4.25a | 94.6±2.92a | 32.0±0.78ab | 1.35±0.17ab |
DO100 | 9.95±0.47b | 16.4±1.06a | 33.5±3.29b | 86.3±6.47ab | 29.7±1.20b | 1.10±0.15b |
DO150 | 9.40±0.58b | 17.1±1.58a | 24.1±3.75c | 74.7±9.35b | 24.1±0.75c | 0.91±0.05b |
[1] | Bai YM (白月明), Guo JP (郭建平), Liu L (刘玲), Wen M (温民) (2001). Influences of O3 on the leaf injury photosynthesis and yield of rice. Meteorological Monthly (气象), 27(6), 17-22. (in Chinese with English abstract) |
[2] | Berry J, Bjorkman O (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491-543. |
[3] | Calatayud A, Iglesias DJ, Talón M, Barreno E (2004). Response of spinach leaves (Spinacia oleracea L.) to ozone measured by gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation. Photosynthetica, 42, 23-29. |
[4] | Calatayud A, Iglesias DJ, Talón M, Barreno E (2003). Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation. Plant Physiology and Biochemistry, 41, 839-845. |
[5] | Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317-345. |
[6] | Feng ZW, Jin MH, Zhang FZ, Huang YZ (2003). Effects of groud-level ozone (O3) pollution on the yield of rice and winter wheat in the Yangtze River Delta. Journal of Environmental Science, 15, 360-362. |
[7] | Feng ZZ (冯兆忠), Wang XK (王效科), Zheng QW (郑启伟), Feng ZW (冯宗炜), Xie JQ (谢居清), Chen Z (陈展) (2006). Response of gas exchange of rape to ozone concentration and exposure regime. Acta Ecologica Sinica (生态学报), 26, 823-829. (in Chinese with English abstract) |
[8] | Finnan JM, Jones MB, Burke JI (1996). A time-concentration study on the effects of ozone on spring wheat (Triticum aestivcum L.).Ⅰ. Effects on yield. Agriculture, Ecosystems and Environment, 57, 159-167. |
[9] | Fuhrer J, Booker FL (2003). Ecological issues related to ozone: agricultural issues. Environment International, 29, 141-154. |
[10] | Guidi L, Tonini M, Soladatini GF (2000). Effects of high light and ozone fumigation on photosynthesis in Phaseolus vulgaris. Plant Physiology and Biochemistry, 38, 717-725. |
[11] | Guo JP (郭建平), Wang CY (王春乙), Wen M (温民), Bai YM (白月明), Huo ZG (霍治国) (2001). The experimental study on the impact of atmospheric O3 variation on rice. Acta Agrinomica Sinica (作物学报), 27, 822-826. (in Chinese with English abstract) |
[12] | Heagle AS, Body DE, Heck WW (1973). An open-top field chamber to assess the impact of air pollution on plant. Journal of Environmental Quality, 2, 365-376. |
[13] | Heagle AS, Miller JE, Pursley WA (1998). Influence of ozone stress on soybean response to carbon dioxide enrichment. Ⅲ. Yield and seed quality. Crop Science, 38, 128-134. |
[14] | Jiang GM (蒋高明) (2004). Plant Ecophysioloy (植物生理学). Higher Education Press, Beijing. (in Chinese) |
[15] | Jin MH (金明红) (2001). Experimental Study on the Impacts of O3 Concentration Change on Crops (大气O3浓度变化对农作物影响的试验研究). PhD dissertation, Research Ceater for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[16] | Kobayashi K, Okada M, Nouchi I (1995). Effects of ozone on dry matter partitioning and yield of Japanese cultivars of rice (Oryza sativa L.). Agriculture, Ecosystems and Environment, 53, 109-122. |
[17] | Mandl RH, Weisntein LH, McCune DC, Keveny M (1973). A cylindrical, open-top field chamber for the exposure of plants to air pollutants in the field. Journal of Environmental Quality, 2, 371-376. |
[18] | Meyer U, Køllner B, Willenbrink J, Krause GHM (2000). Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand grain weight in spring wheat. Agriculture, Ecosystems and Environment, 78, 49-55. |
[19] | Ojanpera K, Patsikka E, Ylaranta T (1998). Effects of low ozone exposure of spring wheat on net CO2 uptake, rubisco, leaf senescence and grain filling. New Phytologist, 138, 451-460. |
[20] | Reich PB, Amundson RG (1985). Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science, 230, 566-570. |
[21] | Reichenauer TG, Goodman BA, Kostecki P, Soja G (1998). Ozone sensitivity in Triticum durum and T. aestivum with respect to leaf injury, photosynthetic activity and free radical content. Physiologia Plantarum, 104, 681-686. |
[22] | Weber JA, Clark CS, Hogsett WE (1993). Analysis of the relationships among O3 uptake, conductance, and photosynthesis in needles Pinus ponderosa. Tree Physiology, 13, 157-172. |
[23] | Zheng QW (郑启伟) (2006). Effect of Elevated Ozone Level on Typical Crops in Yangtze Delta, China (大气O3浓度升高对长江三角洲地区典型农作物的影响研究). Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[4] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[5] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[6] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[7] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[8] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[9] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[10] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[11] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[12] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[13] | 冯兆忠, 袁相洋, 李品, 尚博, 平琴, 胡廷剑, 刘硕. 地表臭氧浓度升高对陆地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 526-542. |
[14] | 冯兆忠, 徐彦森, 尚博. FACE实验技术和方法回顾及其在全球变化研究中的应用[J]. 植物生态学报, 2020, 44(4): 340-349. |
[15] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19