植物生态学报 ›› 2009, Vol. 33 ›› Issue (2): 347-354.DOI: 10.3773/j.issn.1005-264x.2009.02.012
收稿日期:
2008-04-03
接受日期:
2008-11-24
出版日期:
2009-04-03
发布日期:
2009-03-31
作者简介:
E-mail: lygs2008@163.com
基金资助:
GAO Song(), SU Pei-Xi, YAN Qiao-Di, DING Song-Shuang, ZHANG Ling-Mei
Received:
2008-04-03
Accepted:
2008-11-24
Online:
2009-04-03
Published:
2009-03-31
摘要:
为了比较C4荒漠植物猪毛菜(Salsola collina)和木本猪毛菜(S. arbuscula)的抗旱结构和适应环境的光合作用特征, 在二者混生的群落中, 选择代表性植株, 采集叶片进行叶片解剖结构分析, 在自然条件下测定了二者叶片的气体交换参数。研究结果表明:猪毛菜叶片具表皮毛, 具有更发达的薄壁贮水组织;木本猪毛菜叶片具有更厚的角质层, 表皮下有1层下皮细胞, 其栅栏组织细胞较长, 排列更紧密。猪毛菜的净光合速率明显高于木本猪毛菜, 日平均值分别为21.5和15.7 μmol CO2·m-2·s-1。猪毛菜的蒸腾速率也明显高于木本猪毛菜, 日平均值分别为14.9和10.2 mmol·m-2·s-1。猪毛菜和木本猪毛菜的水分利用效率的日平均值分别为1.39和1.53 μmol CO2·mmol-1H2O, 特别是在14:00时分别为1.61和2.30 μmol CO2·mmol-1H2O, 木本猪毛菜高出猪毛菜约42%。猪毛菜的光补偿点低于木本猪毛菜, 而光饱和点和光量子效率较高, 具有更低的CO2补偿点。这表明:二者的旱生结构不同, 木本猪毛菜具有更显著的荒漠植物特征;在适于二者混生的环境下, 猪毛菜比木本猪毛菜的光合能力更强, 而木本猪毛菜的水分利用效率更高。
高松, 苏培玺, 严巧娣, 丁松爽, 张岭梅. C4荒漠植物猪毛菜与木本猪毛菜的叶片解剖结构及光合生理特征. 植物生态学报, 2009, 33(2): 347-354. DOI: 10.3773/j.issn.1005-264x.2009.02.012
GAO Song, SU Pei-Xi, YAN Qiao-Di, DING Song-Shuang, ZHANG Ling-Mei. LEAF ANATOMICAL STRUCTURE AND PHOTOSYNTHETIC PHYSIOLOGICAL CHARACTERISTICS OF C4 DESERT SPECIES SALSOLA COLLINA ANDS. ARBUSCULA. Chinese Journal of Plant Ecology, 2009, 33(2): 347-354. DOI: 10.3773/j.issn.1005-264x.2009.02.012
图1~4 猪毛菜和木本猪毛菜叶片横切面 1: 猪毛菜叶的横切面 Transverse section of S. collina leaves 2: 猪毛菜叶横切面的局部放大图 Partial enlargement of transverse section of S. collina leaves 3: 木本猪毛菜叶的横切面 Transverse section of S. arbuscula leaves, bar = 0.1 mm 4: 木本猪毛菜叶横切面的局部放大图 Partial enlargement of transverse section of S. arbuscula leaves BS: 维管束鞘细胞 Bundle sheath cells CI: 含晶细胞 Crystal idioblast EH: 表皮毛 Epidermal hairs P: 栅栏组织 Palisade tissue VB: 维管束 Vascular bundle WS: 贮水组织 Water storage tissue
Figs. 1–4 Transverse sections of leaves of Salsola collina and S. arbuscula under light microscope
图7 两种荒漠植物的净光合速率对光合有效辐射和CO2浓度升高的响应
Fig. 7 Responses of net photosynthetic rate of two desert species to different photosynthetically available radiations (PAR) and CO2 concentrations
植物种 Species | 光补偿点 Light compensation point (μmol·m-2·s-1) | 光饱和点 Light saturation point (μmol·m-2·s-1) | 表观量子效率 Apparent quantum yield (mol·mol-1) | 暗呼吸速率 Dark respiration (μmol CO2·m-2·s-1) | CO2补偿点 CO2 compensation point (μmol·mol-1) |
---|---|---|---|---|---|
猪毛菜 Salsola collina | 152*** | – | 0.085*** | 14.3*** | 7** |
木本猪毛菜 S. arbuscula | 220*** | 1 820*** | 0.045*** | 10.2*** | 9** |
表1 猪毛菜和木本猪毛菜的光合生理参数
Table 1 Photosynthetic and physiological parameters in the leaves of Salsola collina and S. arbuscula
植物种 Species | 光补偿点 Light compensation point (μmol·m-2·s-1) | 光饱和点 Light saturation point (μmol·m-2·s-1) | 表观量子效率 Apparent quantum yield (mol·mol-1) | 暗呼吸速率 Dark respiration (μmol CO2·m-2·s-1) | CO2补偿点 CO2 compensation point (μmol·mol-1) |
---|---|---|---|---|---|
猪毛菜 Salsola collina | 152*** | – | 0.085*** | 14.3*** | 7** |
木本猪毛菜 S. arbuscula | 220*** | 1 820*** | 0.045*** | 10.2*** | 9** |
[1] | Carroll AB, Pallardy SG, Galen C (2001). Drought stress, plant water status and floral trait expression in fireweed, Epilobium angustifoliun (Onagraceae). American Journal of Botany, 88,438-446. |
[2] |
Ehleringer JR, Cerling TR, Helliker BR (1997). C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112,285-299.
DOI URL PMID |
[3] | Forseth IN, Wait DA, Casper BB (2001). Shading by shrubs in a desert system reduces the physiological and demographic performance of an associated herbaceous perennial. Journal of Ecology, 89,670-680. |
[4] |
Hatch MD (2002). C4 photosynthesis: discovery and resolution. Photosynthesis Research, 73,251-256.
URL PMID |
[5] | He WM (何维明), Ma FY (马风云) (2000). Effects of water gradient on fluorescence characteristics and gas exchange in Sabina vulgaris seedlings. Acta Phytoecologica Sinica (植物生态学报), 24,630-634. (in Chinese with English abstract) |
[6] | Huang JH (黄俊华) (2005). Geographical distribution of Salsola L. in China. Arid Land Geography (干旱区地理), 28,325-329. (in Chinese with English abstract) |
[7] | Hui HX (惠红霞), Xu X (许兴) (2003). Exogenous betaine improves photosynthesis of Lycium barbarum under salt stress. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 23,2137-2142. (in Chinese with English abstract) |
[8] | Institute of Desert Research,Chinese Academy of Sciences (中国科学院兰州沙漠研究所) (1992). Flora in Desertis Reipublicae Populorum Sinarum(中国沙漠植物志), Tomus 3. Science Press, Beijing. (in Chinese) |
[9] | Jiang GM (蒋高明), Lin GH (林光辉) (1996). Photosynthetic responses to light intensity in intact leaves of some coastal desert and tropical rain forest plant species in atmospheres with different CO2 concentrations. Acta Botanica Sinica (植物学报), 38,972-981. (in Chinese with English abstract) |
[10] | Jiang GM (蒋高明) (2001). Review on some hot topics towards the researches in the field of plant physioecology. Acta Phytoecologica Sinica (植物生态学报), 25,514-519. (in Chinese with English abstract) |
[11] | Jones HG, Sutherland RA (1991). Stomatal control of xylem embolism. Plant, Cell and Environment, 14,607-612. |
[12] |
Klich MG (2000). Leaf variation in Elaeagnus angustifolia related to environmental heterogeneity. Environmental and Experimental Botany, 44,171-183.
URL PMID |
[13] | Lee CL (李正理), Li RA (李荣敖) (1981). Anatomical observation of assimilating branches of nine xerophytes in Gansu. Acta Botanica Sinica (植物学报), 23,181-185. (in Chinese with English abstract) |
[14] | Liu JQ (刘家琼) (1982). The xeromorphic structure of different typical plants in deserts of China. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学丛刊), 6,314-319. (in Chinese with English abstract) |
[15] | Moore PD (1994). High hopes for C4 plants. Nature, 367,322-323. |
[16] | Nijs I, Ferris R, Blum H (1997). Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). Plant, Cell and Environment, 20,1041-1050. |
[17] | Pan RC (潘瑞炽) (2001). Plant Physiology (植物生理学) 4th edn. Higher Education Press, Beijing, 66-86. (in Chinese) |
[18] | Roden JS, Wiggins DJ, Ball MC (1997). Photosynthesis and growth of two rain forest species in simulated gaps under elevated CO2. Ecology, 78,385-393. |
[19] |
Ruiz MC, Domingo R, Rorrecillas A, Perez A (2000). Water stress preconditioning to improve drought resistance in young apricot plants. Plant Science, 156,245-251.
DOI URL PMID |
[20] | Su PX, Liu XM, Zhang LX, Zhao AF, Li WR, Chen HS (2004). Comparison of δ 13C values and gas exchange of assimilating shoots of desert plants Haloxylon ammodendron and Calligonum mongolicum with other plants. Israel Journal of Plant Sciences, 52,87-97. |
[21] | Su PX (苏培玺), An LZ (安黎哲), Ma RJ (马瑞君), Liu XM (刘新民) (2005). Kranz anatomy and C4 photosynthetic characteristics of two desert plants Haloxylon ammodendron and Calligonum mongolicum. Acta Phytoecologica Sinica (植物生态学报), 29,1-7. (in Chinese with English abstract) |
[22] | Subbarao GV, Chauhan YS, Johansen C (2000). Patterns of osmotic adjustment in pigeon pea—Its importance as a mechanism of drought resistance. European Journal of Agronomy, 12,239-249. |
[23] |
Tyree MT, Sperry JS (1998). Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiology, 88,574-580.
DOI URL PMID |
[24] | Ueda Y, Nishihara S, Tomita H, Oda Y (2000). Photosynthetic response of Japanese rose species Rosa bracteata and Rosa rugosa to temperature and light. Scientia Horticulturae, 84,365-371. |
[25] |
Von Caemmerer S, Farquhar GD (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153,376-387.
DOI URL PMID |
[26] | Voznesenskaya EV, Gamaley YV (1986). The ultrastructural characteristics of leaf types with Kranz anatomy. Botanicheskii Zhurnal, 71,1291-1307. (in Russian with English abstract). |
[27] | Wang XL (王勋陵) (1993). The development of plant ecological anatomy. Chinese Bulletin of Botany (植物学通报), 10,1-10. (in Chinese with English abstract) |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[4] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[5] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[6] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[7] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[8] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[9] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[10] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[11] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[12] | 单立山, 苏铭, 张正中, 王洋, 王珊, 李毅. 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报, 2018, 42(4): 475-486. |
[13] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[14] | 韩吉梅, 张旺锋, 熊栋梁, 张亚黎. 植物光合作用叶肉导度及主要限制因素研究进展[J]. 植物生态学报, 2017, 41(8): 914-924. |
[15] | 蔡建国, 韦孟琪, 章毅, 魏云龙. 遮阴对绣球光合特性和叶绿素荧光参数的影响[J]. 植物生态学报, 2017, 41(5): 570-576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19