植物生态学报 ›› 2010, Vol. 34 ›› Issue (3): 340-347.DOI: 10.3773/j.issn.1005-264x.2010.03.011
收稿日期:
2009-06-20
接受日期:
2009-09-12
出版日期:
2010-06-20
发布日期:
2010-03-01
通讯作者:
钟章成
作者简介:
* E-mail: zzhong@swu.edu.cn
WANG Yong-Jian1, ZHONG Zhang-Cheng2,*()
Received:
2009-06-20
Accepted:
2009-09-12
Online:
2010-06-20
Published:
2010-03-01
Contact:
ZHONG Zhang-Cheng
摘要:
通过不同蝴蝶花(Iris japonica)起始源株密度的控制实验, 探讨源株对克隆植物蝴蝶花克隆繁殖、生长和生物量分配的影响。结果表明: 1)克隆数量特征: 1个起始源株处理(O)蝴蝶花新分株数显著高于2个起始源株(T)及4个起始源株处理(F), 而新分株死亡率显著低于后二者; 随着起始源株数增加(竞争增强), 一级与二级子株数显著降低。随着源株竞争增强, 克隆细根茎与根的长度、表面积、体积与根(茎)长密度逐渐降低。2)叶片特征: 随着源株竞争增强, 母株重度枯萎与总枯萎叶片数显著增加, 子株中度枯萎、重度枯萎与总枯萎叶片数显著增加; 源株竞争增强, 源株叶面积、源株与子株叶片数显著降低, 而源株叶面积比(leaf area ratio, LAR)显著增加。3)生物量及分配: 随着源株竞争增强, 细根茎、粗根茎、克隆繁殖、地上部分、地下部分及总生物量显著降低, 细根茎与地下部分分配降低, 母株粗根茎分配与地上部分分配显著增加。总的看来, 随着蝴蝶花源株竞争增强, 植株叶片生长状况受到更大的影响, 植株生长受限, 克隆繁殖减弱, 而其通过增加LAR, 提高叶片效率与增加母株粗根茎分配, 降低生长强度与消耗, 储备资源, 以待来年的生长与繁殖。
王永健, 钟章成. 模拟源株密度对蝴蝶花生长和克隆繁殖的影响. 植物生态学报, 2010, 34(3): 340-347. DOI: 10.3773/j.issn.1005-264x.2010.03.011
WANG Yong-Jian, ZHONG Zhang-Cheng. Effect of simulated ortet density on growth and clonal propagation of Iris japonica. Chinese Journal of Plant Ecology, 2010, 34(3): 340-347. DOI: 10.3773/j.issn.1005-264x.2010.03.011
图1 不同起始源株密度处理设计。 O, 1个起始源株。T, 2个起始源株。F, 4个起始源株。
Fig. 1 Treatments of different original ortets. O, One initial separate ortet. T, Two initial separate ortets. F, Four initial separate ortets.
总生物量 Total biomass | 繁殖 Reproduction | 有性繁殖 Sexual reproduction (SR) | 花 Flower |
果实 Fruit | |||
克隆繁殖 Clonal propagation (CR) | 细根茎与根 Fine rhizome (Fr) | ||
粗根茎 Coarse rhizome (Cr) | |||
克隆叶(未开花子株) Clonal leaf (Daughter ramet without flowering) | |||
生长 Growth | 叶(母株与开花子株) Leaf (Mother ramet and flowering daughter ramet) |
表1 蝴蝶花植株生物量组分划分
Table 1 Classification for each part of Iris japonica
总生物量 Total biomass | 繁殖 Reproduction | 有性繁殖 Sexual reproduction (SR) | 花 Flower |
果实 Fruit | |||
克隆繁殖 Clonal propagation (CR) | 细根茎与根 Fine rhizome (Fr) | ||
粗根茎 Coarse rhizome (Cr) | |||
克隆叶(未开花子株) Clonal leaf (Daughter ramet without flowering) | |||
生长 Growth | 叶(母株与开花子株) Leaf (Mother ramet and flowering daughter ramet) |
图2 初始源株数对蝴蝶花不同时段每源株新分株数(A)与每源株死亡分株数(B)的影响(平均值±标准误)。 图中071022表示2007年10月22日, 1121表示11月21日, 依此类推, 第一次出现的年份标出年, 其后出现只标出月日。每源株新分株数与每源株死亡分株数为随时间变化的累加值。O, 1个起始源株; T, 2个起始源株; F, 4个起始源株。
Fig. 2 Effects of the number of original ortets on the size (number of new ramets (A) and number of dead ramets (B) per ortet at different time) of Iris japonica (mean ± SE). In the figure, “071022” means 22th October, 2007; “1121” means 21th November. Following this rule, if the year shows the first time in figure, year-month-day are fully written out, whereafter only month and day are listed. Number of new ramets and dead ramets per ortet both are the accumulated value with time. O, one initial separate ortet; T, two initial separate ortets; F, four initial separate ortets.
图3 不同蝴蝶花初始源株密度下细根茎及根特征(平均值±标准误)。 不同字母(a和b)表示不同处理间差异显著(p < 0.05)。ns, 无显著差异。F、O、T, 同图2; Fr, 细根茎; R, 根。
Fig. 3 Characteristics of fine rhizome and root in different original ortets of Iris japonica (mean ± SE). Different letters (a and b) mean significant differences (p < 0.05) among different treatments. ns, no significant differences. F, O, T, see Fig. 2; Fr, fine rhizome; R, root.
参数 Parameter | 处理 Treatment | F(2,27) | p | ||
---|---|---|---|---|---|
1个起始源株 One initial separate ortet | 2个起始源株 Two initial separate ortets | 4个起始源株 Four initial separate ortets | |||
一级子株数 Number of primary daughter ramet (per ortet) | 6.10 ± 0.80 a | 4.44 ± 0.37 ab | 3.34 ± 0.45 b | 5.375 | 0.012 |
二级子株数 Number of secondary daughter ramet (per ortet) | 3.40 ± 0.65 a | 1.44 ± 0.39 b | 0.84 ± 0.32 b | 7.250 | 0.003 |
粗根茎特征 Characteristics of coarse rhizome | |||||
母株粗根茎长 Length of mother ramet (cm) | 11.90 ± 1.93 ns | 9.68 ± 0.57 ns | 10.76 ± 0.79 ns | 0.790 | 0.476 |
母株粗根茎直径 Average diameter of mother ramet (cm) | 0.86 ± 0.04 ns | 0.89 ± 0.04 ns | 0.86 ± 0.03 ns | 0.146 | 0.865 |
一级子株粗根茎长 Length of primary daughter ramet (cm) | 4.51 ± 0.39 ns | 3.89 ± 0.25 ns | 4.08 ± 0.28 ns | 0.872 | 0.420 |
一级子株粗根茎直径 Average diameter of primary daughter ramet (cm) | 0.78 ± 0.02 a | 0.74 ± 0.02 ab | 0.70 ± 0.02 b | 4.699 | 0.011 |
二级子株粗根茎长 Length of secondary daughter ramet (cm) | 4.14 ± 0.54 a | 2.84 ± 0.29 b | 3.00 ± 0.21 b | 3.549 | 0.048 |
二级子株粗根茎直径 Average diameter of secondary daughter ramet (cm) | 0.70 ± 0.04 ns | 0.72 ± 0.05 ns | 0.70 ± 0.04 ns | 0.063 | 0.939 |
表2 不同蝴蝶花初始源株密度下克隆分株数与粗根茎特征(平均值±标准误)
Table 2 Characteristics of new ramets and coarse rhizome in different original ortets of Iris japonica (mean ± SE)
参数 Parameter | 处理 Treatment | F(2,27) | p | ||
---|---|---|---|---|---|
1个起始源株 One initial separate ortet | 2个起始源株 Two initial separate ortets | 4个起始源株 Four initial separate ortets | |||
一级子株数 Number of primary daughter ramet (per ortet) | 6.10 ± 0.80 a | 4.44 ± 0.37 ab | 3.34 ± 0.45 b | 5.375 | 0.012 |
二级子株数 Number of secondary daughter ramet (per ortet) | 3.40 ± 0.65 a | 1.44 ± 0.39 b | 0.84 ± 0.32 b | 7.250 | 0.003 |
粗根茎特征 Characteristics of coarse rhizome | |||||
母株粗根茎长 Length of mother ramet (cm) | 11.90 ± 1.93 ns | 9.68 ± 0.57 ns | 10.76 ± 0.79 ns | 0.790 | 0.476 |
母株粗根茎直径 Average diameter of mother ramet (cm) | 0.86 ± 0.04 ns | 0.89 ± 0.04 ns | 0.86 ± 0.03 ns | 0.146 | 0.865 |
一级子株粗根茎长 Length of primary daughter ramet (cm) | 4.51 ± 0.39 ns | 3.89 ± 0.25 ns | 4.08 ± 0.28 ns | 0.872 | 0.420 |
一级子株粗根茎直径 Average diameter of primary daughter ramet (cm) | 0.78 ± 0.02 a | 0.74 ± 0.02 ab | 0.70 ± 0.02 b | 4.699 | 0.011 |
二级子株粗根茎长 Length of secondary daughter ramet (cm) | 4.14 ± 0.54 a | 2.84 ± 0.29 b | 3.00 ± 0.21 b | 3.549 | 0.048 |
二级子株粗根茎直径 Average diameter of secondary daughter ramet (cm) | 0.70 ± 0.04 ns | 0.72 ± 0.05 ns | 0.70 ± 0.04 ns | 0.063 | 0.939 |
图4 不同起始源株密度蝴蝶花母株与子株不同枯萎程度叶片数量(平均值±标准误)。 不同字母(a和b)表示不同处理间差异显著(p < 0.05)。High, 重度枯萎; Moderate, 中度枯萎; Slight, 轻度枯萎; Total, 全部枯萎叶。F、O、T, 同图2; ns, 无显著差异。
Fig. 4 Number of leaves of mother ramet and daughter ramet per ortet at different withered class in different original ortets of Iris japonica (mean ± SE). Different letters (a and b) mean significant differences (p < 0.05) among different treatments. High, high withered; Moderate, moderate withered; Slight, slight withered; Total, total withered leaves. F, O, T, see Fig. 2; ns, no significant differences.
参数 Parameter | 处理 Treatment | F(2,27) | p | ||
---|---|---|---|---|---|
1个起始源株 One initial separate ortet | 2个起始源株 Two initial separate ortets | 4个起始源株 Four initial separate ortets | |||
源株叶片数 Number of leaves (per ortet) | 82.90 ± 1.00 a | 52.11 ± 6.71 b | 40.25 ± 4.59 b | 7.980 | 0.002 |
母株叶片数 Number of leaves for mother ramet (per ortet) | 11.30 ± 0.92 ns | 9.83 ± 0.41 ns | 9.59 ± 0.28 ns | 2.070 | 0.148 |
子株叶片数 Number of leaves for daughter ramet (per ortet) | 71.60 ± 9.51 a | 42.28 ± 6.53 b | 30.66 ± 4.42 b | 7.992 | 0.002 |
源株叶面积 Leaf area (per ortet) (cm2) | 3050.41 ± 325.35 a | 2291.00 ± 305.36 ab | 2019.49 ± 267.84 b | 3.498 | 0.047 |
母株叶面积 Leaf area (per mother ramet) (cm2) | 1105.30 ± 116.39 ns | 950.64 ± 68.35 ns | 915.03 ± 72.11 ns | 1.279 | 0.297 |
源株LMA Leaf mass per unit area (per ortet) (mg·cm-2) | 7.33 ± 0.21 ns | 7.73 ± 0.10 ns | 7.27 ± 0.14 ns | 2.348 | 0.117 |
源株LAR Leaf area ratio (per ortet) (cm2 · mg-1) | 90.11 ± 2.12 b | 88.69 ± 1.42 b | 95.89 ± 2.28 a | 3.484 | 0.047 |
表3 不同初始源株密度下蝴蝶花叶片特征(平均值±标准误)
Table 3 Characteristics of leaves in different original ortets of Iris japonica (mean ± SE)
参数 Parameter | 处理 Treatment | F(2,27) | p | ||
---|---|---|---|---|---|
1个起始源株 One initial separate ortet | 2个起始源株 Two initial separate ortets | 4个起始源株 Four initial separate ortets | |||
源株叶片数 Number of leaves (per ortet) | 82.90 ± 1.00 a | 52.11 ± 6.71 b | 40.25 ± 4.59 b | 7.980 | 0.002 |
母株叶片数 Number of leaves for mother ramet (per ortet) | 11.30 ± 0.92 ns | 9.83 ± 0.41 ns | 9.59 ± 0.28 ns | 2.070 | 0.148 |
子株叶片数 Number of leaves for daughter ramet (per ortet) | 71.60 ± 9.51 a | 42.28 ± 6.53 b | 30.66 ± 4.42 b | 7.992 | 0.002 |
源株叶面积 Leaf area (per ortet) (cm2) | 3050.41 ± 325.35 a | 2291.00 ± 305.36 ab | 2019.49 ± 267.84 b | 3.498 | 0.047 |
母株叶面积 Leaf area (per mother ramet) (cm2) | 1105.30 ± 116.39 ns | 950.64 ± 68.35 ns | 915.03 ± 72.11 ns | 1.279 | 0.297 |
源株LMA Leaf mass per unit area (per ortet) (mg·cm-2) | 7.33 ± 0.21 ns | 7.73 ± 0.10 ns | 7.27 ± 0.14 ns | 2.348 | 0.117 |
源株LAR Leaf area ratio (per ortet) (cm2 · mg-1) | 90.11 ± 2.12 b | 88.69 ± 1.42 b | 95.89 ± 2.28 a | 3.484 | 0.047 |
图5 不同起始源株密度蝴蝶花克隆繁殖生物量(A)及分配(B) (平均值±标准误)。 不同字母(a和b)表示不同处理间差异显著(p < 0.05)。ns, 无显著差异。AG, 地上部分; BG, 地下部分; Cr, 粗根茎; CR, 克隆繁殖; Fr, 细根茎; Growth, 植株生长部分; LCR, 克隆叶; Total, 植株总生物量。
Fig. 5 Biomass (A) and allocation (B) of clonal propagation in different original ortets of Iris japonica (mean ± SE). Different letters (a and b) mean significant differences (p < 0.05) among different treatments. ns, no significant differences. AG, aboveground; BG, belowground; Cr, coarse rhizome; CR, clonal propagation of the whole plant; Fr, fine rhizome of the whole plant; Growth, growth part of the whole plant; LCR, leaf of CR; Total, total biomass of the whole plant.
[1] | Cheplick GP, Gutierrez CM (2000). Clonal growth and storage in relation to competition in genets of the rhizomatous perennial Amphibromus scabrivalvis. Canadian Journal of Botany, 78, 537-546. |
[2] | Cheplick GP, Salvadori GM (1991). Intra- and interclonal competition in the cleistogamous grass Amphibromus scabrivalvis. American Journal of Botany, 78, 1494-1502. |
[3] | de Roij-van der Goes PCEM, van der Putten WH, Peters BAM (1995). Effects of sand deposition on the interaction between Ammophila arenaria, plant-parasitic nematodes and soil-borne fungi. Canadian Journal of Botany, 73, 1141-1150. |
[4] | Dong M (董鸣), Yu FH (于飞海) (2007). Terms and concepts in clonal plant ecology. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 689-694. (in Chinese) |
[5] |
Hulme PE (1996). Herbivores and the performance of grassland plants: a comparison of arthropod, mollusc and rodent herbivory. Journal of Ecology, 84, 43-51.
DOI URL |
[6] | Oborny B, Kun Á, Czárán T, Bokros S (2000). The effect of clonal integration on plant competition for mosaic habitat space. Ecology, 81, 3291-3304. |
[7] | Philbrick CT, Les DH (1996). Evolution of aquatic angiosperm reproductive systems. BioScience, 46, 813-826. |
[8] | Prati D, Schmid B (2000). Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos, 90, 442-456. |
[9] | Rautiainen P, Koivula K, Hyvarinen M (2004). The effect of within-genet and between-genet competition on sexual reproduction and vegetative spread in Potentilla anserine ssp. egedii. Journal of Ecology, 92, 505-511. |
[10] | Saikkonen K, Koivunen S, Vuorisalo T, Mutikainen P (1998). Interactive effects of pollination and heavy metals on resource allocation in Potentilla anserina L. Ecology, 79, 1620-1629. |
[11] | Skálová H, Pecháčková S, Suzuki J, Herben T, Hara T, Hadincová V, Krahulec F (1997). Within population genetic differentiation in traits affecting clonal growth: Festuca rubra in a mountain grassland. Journal of Evolutionary Biology, 10, 383-406. |
[12] | Sullivan PGA (1994). Tradeoff between Sexual and Asexual Reproduction in the Dioecious Clonal Macrophyte Vallisneria americana: Environmental and Genetic Influences. PhD Dissertation, State University of New York. 1-39. |
[13] | Taylor PD (1988). An inclusive fitness model for dispersal of offspring. Journal of Theoretical Biology, 130, 363-378. |
[14] | van Kleunen M, Fischer M, Schmid B (2001). Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos, 94, 515-524. |
[15] | Wang HY (王洪义), Wang ZW (王正文), Li LH (李凌浩), Chen YJ (陈雅君), Ren LY (任丽昀) (2005). Reproductive tendency of clonal plants in various habitats. Chinese Journal of Ecology (生态学杂志), 24, 670-676. (in Chinese with English abstract) |
[16] | Wang YJ, Zhong ZC, Tao JP (2008). Patterns of ramet population of Iris japonica Thunb. and their effects on herb diversity in different microsites on Jinyun Mountain, China. Acta Ecologica Sinica (English Edition), 28, 3082-3091. |
[17] | Wijesinghe DK, Hutchings MJ (1997). The effects of spatial scale of environmental heterogeneity on the growth of a clonal plant: an experimental study with Glechoma hederacea. Journal of Ecology, 85, 17-28. |
[18] | Winkler E, Fischer M (2001). The role of vegetative spread and seed dispersal for optimal life histories of clonal plants: a simulation study. Evolutionary Ecology, 15, 281-301. |
[19] | Yu YJ (余应建), Liu YG (刘应高), Zhang C (张翅), Feng B (冯波) (2006). A survey of freezing injury of Bambusa pervariabilis × Dendrocala mopsis grandis in Ya’an. Journal of Bamboo Research (竹子研究汇刊), 25(3), 19-23. (in Chinese with English abstract) |
[20] | Zhang YF (张玉芬), Zhang DY (张大勇) (2006). Asexual and sexual reproductive strategies in clonal plants. Acta Phytoecologica Sinica (植物生态学报), 30, 174-183. (in Chinese with English abstract) |
[21] | Zhang YK (张学昆), Zhang CL (张春雷), Liao X (廖星), Wang HZ (王汉中) (2008). Investigation on 2008’ low temperature and freeze injure on winter rape along Yangtze River. Chinese Journal of Oil Crop Sciences (中国油料作物学报), 30, 122-126. (in Chinese with English abstract) |
[22] | Zhao L (赵磊), Zhi YB (智颖飙), Li HL (李红丽), An SQ (安树青), Deng ZF (邓自发), Zhou CF (周长芳) (2007). Effects of initial clone number on morphological plasticity and biomass allocation of the invasive Spartina anglica. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 607-612. (in Chinese with English abstract) |
[23] | Zhu YJ (朱雅娟), Alaten B (阿拉腾宝), Dong M (董鸣), Huang ZY (黄振英) (2007). Effects of increasing water or nutrient supplies on reproduction trade-offs in the natural populations of clonal plant, Hedysarum laeve. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 658-664. (in Chinese with English abstract) |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 冉松松, 余再鹏, 万晓华, 傅彦榕, 邹秉章, 王思荣, 黄志群. 邻域树种多样性对杉木叶片氮磷生态化学计量比的影响[J]. 植物生态学报, 2023, 47(7): 932-942. |
[3] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[4] | 史欢欢, 雪穷, 于振林, 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(1): 77-87. |
[5] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[6] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[7] | 谭一波, 田红灯, 曾春阳, 沈浩, 申文辉, 叶建平, 甘国娟. 猫儿山铁杉相邻植株冠层机械磨损对枝叶性状的影响[J]. 植物生态学报, 2021, 45(12): 1281-1291. |
[8] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[9] | 康剑, 梁寒雪, 蒋少伟, 朱火星, 周鹏, 黄建国. 竞争和气候对新疆阿尔泰山西伯利亚五针松树木径向生长的影响[J]. 植物生态学报, 2020, 44(12): 1195-1202. |
[10] | 张婵, 安宇梦, Yun JÄSCHKE, 王林林, 周知里, 王力平, 杨永平, 段元文. 青藏高原及周边高山地区的植物繁殖生态学研究进展[J]. 植物生态学报, 2020, 44(1): 1-21. |
[11] | 彭扬, 彭培好, 李景吉. 模拟氮沉降对矢车菊属植物Centaurea stoebe种群生长和竞争能力的影响[J]. 植物生态学报, 2016, 40(7): 679-685. |
[12] | 陈智裕, 李琦, 邹显花, 马祥庆, 吴鹏飞. 邻株竞争对低磷环境杉木幼苗光合特性及生物量分配的影响[J]. 植物生态学报, 2016, 40(2): 177-. |
[13] | 陈永刚, 汤孟平, 杨春菊, 马天午, 王礼. 天然毛竹林竞争空间关系分析[J]. 植物生态学报, 2015, 39(7): 726-735. |
[14] | 李单凤, 于顺利, 王国勋, 方伟伟. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制[J]. 植物生态学报, 2015, 39(5): 453-465. |
[15] | 陈仁飞, 姬明飞, 关佳威, 邓建明. 植物对称性竞争与非对称性竞争研究进展及展望[J]. 植物生态学报, 2015, 39(5): 530-540. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19