植物生态学报 ›› 2010, Vol. 34 ›› Issue (6): 642-650.DOI: 10.3773/j.issn.1005-264x.2010.06.003
收稿日期:
2009-10-09
接受日期:
2010-01-13
出版日期:
2010-10-09
发布日期:
2010-06-01
通讯作者:
李贤伟
作者简介:
* E-mail: lxw@sicau.edu.cn
RONG Li1,2, LI Shou-Jian3, LI Xian-Wei1,*(), FAN Chuan1
Received:
2009-10-09
Accepted:
2010-01-13
Online:
2010-10-09
Published:
2010-06-01
Contact:
LI Xian-Wei
摘要:
采用原状土芯(intact core)法, 探讨了四川洪雅柳江退耕模式——光皮桦(Betula luminifera)与扁穗牛鞭草(Hemarthria compressa)复合模式(HN)、扁穗牛鞭草草地模式(NC)、柳杉(Cryptameria fortunei)人工林模式(LS)、光皮桦人工林模式(H)细根(包括草根)分解过程中土壤酶动态。结果表明: 1) HN下的土壤脲酶、蔗糖酶、酸性磷酸酶活性较大, LS下的土壤脲酶、酸性磷酸酶活性最小, 显著低于其他模式(p < 0.05)。2) HN、NC和LS下的土壤脲酶与细根(包括草根)分解速率显著相关, HN的蔗糖酶、NC的酸性磷酸酶、LS的多酚氧化酶活性与细根(包括草根)分解速率也呈显著正相关关系(p < 0.05)。3) 除H外, 土壤脲酶活性与细根C/N、纤维素绝对含量呈显著负相关关系(p < 0.05); 除NC外, 多酚氧化酶活性与细根纤维素绝对含量呈显著负相关关系。4)土壤脲酶活性与需氧固氮细菌或与真菌数量显著相关, HN下的土壤蔗糖酶活性与细菌和纤维素分解菌数量呈正相关关系, H与NC下的土壤酸性磷酸酶还分别与细菌和纤维素分解菌数量呈正相关关系(p < 0.05)。以上结果显示: 由光皮桦与扁穗牛鞭草不同生活型植物构成的复合模式有利于土壤酶活性的提高; 土壤脲酶活性高低能够反映这几种退耕模式细根(包括草根)分解速率的快慢, 细根(包括草根)的C/N是影响土壤脲酶活性的一个重要因素; 土壤酶活性与土壤真菌、需氧固氮细菌、纤维分解菌及细菌数量有关。
荣丽, 李守剑, 李贤伟, 范川. 华西雨屏区不同退耕模式细根(包括草根)分解过程中土壤酶动态. 植物生态学报, 2010, 34(6): 642-650. DOI: 10.3773/j.issn.1005-264x.2010.06.003
RONG Li, LI Shou-Jian, LI Xian-Wei, FAN Chuan. Soil enzyme dynamics during fine root (including grass root) decomposition in different farmland-to-forest/grassland conversions in the rainy zone of western China. Chinese Journal of Plant Ecology, 2010, 34(6): 642-650. DOI: 10.3773/j.issn.1005-264x.2010.06.003
模式 Model | 树高 TH (m) | 胸径 DBH (cm) | 郁闭度/覆盖度(%) CD/C | 林分密度 SD (株·hm-2) | 林下植被 Floor vegetation | 地理位置 Geographical locations | |||
---|---|---|---|---|---|---|---|---|---|
经纬度 Longitude and latitude | 海拔 Altitude (m) | 坡度 Slope | 坡向 Slope aspect | ||||||
HN | 12.5 | 7.4 | 0.5 (100%) | 4 200 | 扁穗牛鞭草Hemarthria compressa | 103°22' E, 29°24' N, | 620-630 | 25° | WE |
H | 13.6 | 7.5 | 0.5 (100%) | 4 200 | 鸭茅Dactylis glomerata、铁线蕨Adiantum capillus-veneris、鸢尾Iris tectorum maxim | 103°22' E, 29°24' N, | 620-630 | 25° | WE |
NC | 0.8 | - | 100% | - | - | 103°22' E, 29°24' N, | 620-630 | 27° | WE |
LS | 7.8 | 4.5 | 0.4 (100%) | 2 700 | 鸭茅D.glomerata、青蒿Herba Artemisiae、高羊茅Festuca arun- dinacea | 103°22' E, 29°24' N, | 620-630 | 26° | WE |
表1 试验地概况
Table 1 Description of the plots
模式 Model | 树高 TH (m) | 胸径 DBH (cm) | 郁闭度/覆盖度(%) CD/C | 林分密度 SD (株·hm-2) | 林下植被 Floor vegetation | 地理位置 Geographical locations | |||
---|---|---|---|---|---|---|---|---|---|
经纬度 Longitude and latitude | 海拔 Altitude (m) | 坡度 Slope | 坡向 Slope aspect | ||||||
HN | 12.5 | 7.4 | 0.5 (100%) | 4 200 | 扁穗牛鞭草Hemarthria compressa | 103°22' E, 29°24' N, | 620-630 | 25° | WE |
H | 13.6 | 7.5 | 0.5 (100%) | 4 200 | 鸭茅Dactylis glomerata、铁线蕨Adiantum capillus-veneris、鸢尾Iris tectorum maxim | 103°22' E, 29°24' N, | 620-630 | 25° | WE |
NC | 0.8 | - | 100% | - | - | 103°22' E, 29°24' N, | 620-630 | 27° | WE |
LS | 7.8 | 4.5 | 0.4 (100%) | 2 700 | 鸭茅D.glomerata、青蒿Herba Artemisiae、高羊茅Festuca arun- dinacea | 103°22' E, 29°24' N, | 620-630 | 26° | WE |
模式 Model | 水溶性总糖 Water soluble total carbohydrate | 粗蛋白 Crude protein | 半纤维素 Hemicellulose | 纤维素 Cellulose | 木质素 Lignin | 灰分 Ash |
---|---|---|---|---|---|---|
HN | 4.98 | 2.33 | 15.46 | 19.79 | 22.94 | 3.22 |
H | 4.20 | 2.05 | 13.10 | 16.24 | 31.15 | 1.12 |
NC | 5.20 | 2.86 | 19.40 | 28.06 | 3.85 | 7.81 |
LS | 3.80 | 1.48 | 11.20 | 26.30 | 34.71 | 2.01 |
表2 四种模式细根(包括草根)初始化学成分含量(%)
Table 2 Initial chemical component contents of fine roots (including grass roots) in four models (%)
模式 Model | 水溶性总糖 Water soluble total carbohydrate | 粗蛋白 Crude protein | 半纤维素 Hemicellulose | 纤维素 Cellulose | 木质素 Lignin | 灰分 Ash |
---|---|---|---|---|---|---|
HN | 4.98 | 2.33 | 15.46 | 19.79 | 22.94 | 3.22 |
H | 4.20 | 2.05 | 13.10 | 16.24 | 31.15 | 1.12 |
NC | 5.20 | 2.86 | 19.40 | 28.06 | 3.85 | 7.81 |
LS | 3.80 | 1.48 | 11.20 | 26.30 | 34.71 | 2.01 |
图2 四种模式下土壤酶活性变化(平均值±标准误, n = 6)。 A, 脲酶活性。B, 蔗糖酶活性。C, 酸性磷酸酶活性。D, 纤维素酶活性。E, 多酚氧化酶活性。H、HN、LS、NC, 同表1。
Fig. 2 Variations of soil enzyme activities in four models (mean ± SE, n = 6). A, Urease activity. B, Sucrase activity. C, Acid phosphatase activity. D, Cellulase activity. E, Polyphenoloxidase activity. H, HN, LS and NC, see Table 1.
模式 Model | 脲酶 Urease | 蔗糖酶 Sucrase | 酸性磷酸酶 Acid phosphatase | 纤维素酶 Cellulase | 多酚氧化酶 Polyphenoloxidase | |||||
---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | |
HN | 0.891 0* | 0.017 2 | 0.943 5** | 0.004 7 | 0.303 9 | 0.558 2 | 0.132 8 | 0.080 2 | 0.474 9 | 0.341 2 |
H | 0.751 5 | 0.084 9 | 0.195 9 | 0.709 9 | 0.604 3 | 0.203 9 | 0.037 0 | 0.944 5 | 0.497 5 | 0.315 3 |
NC | 0.809 1* | 0.051 2 | 0.631 2 | 0.178 9 | 0.880 0* | 0.020 7 | 0.028 0 | 0.957 3 | 0.134 4 | 0.799 7 |
LS | 0.931 2** | 0.011 0 | 0.728 2 | 0.100 8 | 0.095 6 | 0.857 0 | 0.446 1 | 0.375 2 | 0.886 0* | 0.018 7 |
表3 土壤酶与细根(包括草根)分解速率相关关系(n = 6)
Table 3 Relationships between soil enzyme and decomposition rate of fine root (including grass root) (n = 6)
模式 Model | 脲酶 Urease | 蔗糖酶 Sucrase | 酸性磷酸酶 Acid phosphatase | 纤维素酶 Cellulase | 多酚氧化酶 Polyphenoloxidase | |||||
---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | |
HN | 0.891 0* | 0.017 2 | 0.943 5** | 0.004 7 | 0.303 9 | 0.558 2 | 0.132 8 | 0.080 2 | 0.474 9 | 0.341 2 |
H | 0.751 5 | 0.084 9 | 0.195 9 | 0.709 9 | 0.604 3 | 0.203 9 | 0.037 0 | 0.944 5 | 0.497 5 | 0.315 3 |
NC | 0.809 1* | 0.051 2 | 0.631 2 | 0.178 9 | 0.880 0* | 0.020 7 | 0.028 0 | 0.957 3 | 0.134 4 | 0.799 7 |
LS | 0.931 2** | 0.011 0 | 0.728 2 | 0.100 8 | 0.095 6 | 0.857 0 | 0.446 1 | 0.375 2 | 0.886 0* | 0.018 7 |
模式Model | 酶类 Enzyme | 细菌 Bacteria | 真菌 Fungi | 放线菌Actinomycete | 需氧固氮细菌 Aerobic azotobacter | 纤维素分解菌 Cellulolytic bacteria |
---|---|---|---|---|---|---|
HN | 脲酶Urease | 0.429 5 | 0.965 2** | 0.628 0 | 0.813 2* | -0.866 7* |
蔗糖酶Sucrase | 0.878 6* | 0.878 2* | 0.215 3 | 0.385 0 | 0.936 0** | |
酸性磷酸酶 Acid phosphatase | 0.401 3 | 0.244 6 | 0.616 5 | 0.115 7 | 0.385 0 | |
纤维素酶Cellulase | 0.569 5 | -0.301 3 | -0.540 3 | -0.795 2 | 0.058 1 | |
多酚氧化酶Polyphenoloxidase | 0.645 2 | 0.426 2 | 0.627 4 | -0.115 7 | 0.650 4 | |
H | 脲酶Urease | 0.437 0 | 0.598 3 | 0.548 3 | 0.990 0** | 0.254 5 |
蔗糖酶Sucrase | 0.859 1* | 0.366 4 | 0.623 1 | 0.324 0 | 0.588 0 | |
酸性磷酸酶 Acid phosphatase | 0.867 3* | 0.653 5 | 0.685 5 | 0.653 6 | 0.673 0 | |
纤维素酶Cellulase | 0.730 2 | 0.342 2 | 0.254 9 | -0.268 9 | 0.785 9 | |
多酚氧化酶Polyphenoloxidase | 0.468 2 | 0.503 0 | 0.008 7 | 0.255 6 | 0.753 1 | |
NC | 脲酶Urease | 0.160 8 | 0.858 0* | 0.009 5 | 0.735 4 | 0.000 0 |
蔗糖酶Sucrase | 0.551 8 | 0.717 4 | 0.410 7 | 0.282 0 | 0.680 3 | |
酸性磷酸酶 Acid phosphatase | 0.778 7 | 0.935 0** | 0.443 7 | 0.293 1 | 0.887 3* | |
纤维素酶Cellulase | 0.768 1 | 0.013 4 | -0.882 8 | -0.479 1 | 0.098 3 | |
多酚氧化酶Polyphenoloxidase | 0.242 3 | -0.088 6 | 0.258 5 | 0.585 2 | 0.153 4 | |
LS | 脲酶Urease | 0.289 2 | 0.924 0** | 0.777 1 | 0.873 2* | 0.501 1 |
蔗糖酶Sucrase | 0.121 2 | 0.617 3 | -0.696 4 | -0.560 8 | -0.157 8 | |
酸性磷酸酶 Acid phosphatase | 0.513 9 | 0.001 7 | 0.700 9 | 0.030 3 | 0.418 2 | |
纤维素酶Cellulase | 0.375 5 | -0.430 7 | 0.075 1 | -0.067 3 | 0.385 7 | |
多酚氧化酶Polyphenoloxidase | 0.658 1 | 0.692 8 | 0.710 0 | 0.831 8* | 0.849 2* |
表4 土壤酶与土壤微生物相关关系(r) (n = 6)
Table 4 Relationships between soil enzyme and soil microorganism (r) (n = 6)
模式Model | 酶类 Enzyme | 细菌 Bacteria | 真菌 Fungi | 放线菌Actinomycete | 需氧固氮细菌 Aerobic azotobacter | 纤维素分解菌 Cellulolytic bacteria |
---|---|---|---|---|---|---|
HN | 脲酶Urease | 0.429 5 | 0.965 2** | 0.628 0 | 0.813 2* | -0.866 7* |
蔗糖酶Sucrase | 0.878 6* | 0.878 2* | 0.215 3 | 0.385 0 | 0.936 0** | |
酸性磷酸酶 Acid phosphatase | 0.401 3 | 0.244 6 | 0.616 5 | 0.115 7 | 0.385 0 | |
纤维素酶Cellulase | 0.569 5 | -0.301 3 | -0.540 3 | -0.795 2 | 0.058 1 | |
多酚氧化酶Polyphenoloxidase | 0.645 2 | 0.426 2 | 0.627 4 | -0.115 7 | 0.650 4 | |
H | 脲酶Urease | 0.437 0 | 0.598 3 | 0.548 3 | 0.990 0** | 0.254 5 |
蔗糖酶Sucrase | 0.859 1* | 0.366 4 | 0.623 1 | 0.324 0 | 0.588 0 | |
酸性磷酸酶 Acid phosphatase | 0.867 3* | 0.653 5 | 0.685 5 | 0.653 6 | 0.673 0 | |
纤维素酶Cellulase | 0.730 2 | 0.342 2 | 0.254 9 | -0.268 9 | 0.785 9 | |
多酚氧化酶Polyphenoloxidase | 0.468 2 | 0.503 0 | 0.008 7 | 0.255 6 | 0.753 1 | |
NC | 脲酶Urease | 0.160 8 | 0.858 0* | 0.009 5 | 0.735 4 | 0.000 0 |
蔗糖酶Sucrase | 0.551 8 | 0.717 4 | 0.410 7 | 0.282 0 | 0.680 3 | |
酸性磷酸酶 Acid phosphatase | 0.778 7 | 0.935 0** | 0.443 7 | 0.293 1 | 0.887 3* | |
纤维素酶Cellulase | 0.768 1 | 0.013 4 | -0.882 8 | -0.479 1 | 0.098 3 | |
多酚氧化酶Polyphenoloxidase | 0.242 3 | -0.088 6 | 0.258 5 | 0.585 2 | 0.153 4 | |
LS | 脲酶Urease | 0.289 2 | 0.924 0** | 0.777 1 | 0.873 2* | 0.501 1 |
蔗糖酶Sucrase | 0.121 2 | 0.617 3 | -0.696 4 | -0.560 8 | -0.157 8 | |
酸性磷酸酶 Acid phosphatase | 0.513 9 | 0.001 7 | 0.700 9 | 0.030 3 | 0.418 2 | |
纤维素酶Cellulase | 0.375 5 | -0.430 7 | 0.075 1 | -0.067 3 | 0.385 7 | |
多酚氧化酶Polyphenoloxidase | 0.658 1 | 0.692 8 | 0.710 0 | 0.831 8* | 0.849 2* |
[1] | Allison SD, Vitousek PM (2004). Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica, 36, 285-296. |
[2] | Bao SD (鲍士旦) (2000). Soil and Agricultural Chemistry Analysis (土壤农化分析). China Agricultural Press, Beijing. (in Chinese) |
[3] | Burns RG, Dick RP (2002). Enzymes in the Environment: Activity, Ecology and Applications. Marcel Dekker Inc., New York. |
[4] | Cao H (曹慧), Sun H (孙辉), Yang H (杨浩), Sun B (孙波), Zhao QG (赵其国) (2003). A review of soil enzyme activity and its indication for soil quality. Chinese Journal of Applied and Environmental Biology (应用与环境生物学报), 9(1), 105-109. (in Chinese with English abstract) |
[5] |
Couteaux M, Bottner P, Berg B (1995). Litter decomposition, climate and litter quality. Tree, 10, 63-66.
URL PMID |
[6] | Chamier AC, Dixoon PA (1982). Pectinases in leaf degradation by aquatic hyphomycetes: the enzymes and leaf maceration. Journal of Genetic Microbiology, 128, 2469-2483. |
[7] | Chapin III FS, Matson PM, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Spring-Verlag, New York. |
[8] |
Chen H, Harmon ME, Griffiths RP (2001). Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest. Canadian Journal of Forest Research, 31, 246-260.
DOI URL |
[9] | Dai QH (戴全厚), Liu GB (柳国彬), Jiang J (姜峻), Xue S (薛箑), Zhai S (翟胜) (2008). Effect of soil enzyme activities under different vegetation restoration in eroded hilly Loess Plateau. Chinese Agricultural Science Bulletin (中国农学通报), 24, 429-434. (in Chinese with English abstract) |
[10] |
Diamantidis G, Effosse A, Potier P, Bally R (2000). Purification and characterization of the first bacterial Laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biology & Biochemistry, 32, 919-927.
DOI URL |
[11] |
Emmerling C, Liebner C, Haubold-Rosar M, Katzur J, Schröder D (2000). Impact of application of organic waste materials on microbial and enzyme activities of mine soils in the Lusatian coal mining region. Plant and Soil, 220, 129-138.
DOI URL |
[12] | Gray DB, Mary KT, Julie EJ (2002). Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology & Biochemistry, 34, 1073-1082. |
[13] | Guan SY (关松荫) (1986). Soil Enzyme and Study Method (土壤酶及其研究方法). China Agricultural Press, Beijing. (in Chinese) |
[14] | Huang ZQ, Liao LP, Wang SL, Cao GQ (2000). Allelopathy of phenolics from decomposing stump-roots in replant Chinese fir woodland. Journal of Chemical Ecology, 26, 2211-2219. |
[15] | Insam H (2000). Development in soil microbiology since the mid 1960s. Geoderma, 100, 389-402. |
[16] | Jagadish CT, Subhash CM, Shyam K (2001). Influence of straw size on activity and biomass of soil microorganisms during decomposition. European Journal of Soil Biology, 37, 157-160. |
[17] | Joshi SR, Mishra RR, Sharma GD (1993). Microbial enzyme activities related to litter decomposition near a highway in a sub-tropical forest of North East India. Soil Biology and Biochemistry, 24, 1763-1770. |
[18] | Kim JG, Rejmánková E (2004). Decomposition of macrophytes and dynamics of enzyme activities in subalpine marshes in Lake Tahoe basin, U.S.A. Plant and Soil, 266, 303-313. |
[19] | Kourtev PS, Ehrenfeld JG, Huan WZ (2000). Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biology and Biochemistry, 34, 1207-1218. |
[20] | Kshattriya S, Sharma GD, Mishra RR (1992). Enzyme activities related to litter decomposition in forests of different age and altitude in North East India. Soil Biology and Biochemistry, 24, 265-270. |
[21] | Li CR (李传荣), Xu JW (许景伟), Song HY (宋海燕), Li CY (李春艳), Zheng L (郑莉), Wang WD (王卫东), Wang YH (王月海) (2006). Soil enzyme activities in different plantations in lowlands of the Yellow River delta, China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 802-809. (in Chinese with English abstract) |
[22] | Liang BC, Wang XL, Ma BL (2002). Maize root-induced change in soil organic carbon pools. Soil Science and Society of America Journal, 66, 845-847. |
[23] | Lü WG (吕卫光), Shen QR (沈其荣), Yu TY (余庭园), Zhu HT (诸海涛) (2006). The effect of added phenolic acids on soil enzyme activities and nutrients. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 12, 845-849. (in Chinese with English abstract) |
[24] | Microbiology Department, Nanjing Institute of Soil Science, Chinese Academy of Sciences (中国科学院南京土壤微生物所微生物实验室) (1985). Research Methods of Soil Microorganism (土壤微生物研究方法). Science Press, Beijing. (in Chinese) |
[25] | Nannipieri P, Muccini L, Ciardi C (1983). Microbial biomass and enzyme activities: production and persistence. Soil Biology & Biochemistry, 15, 676-685. |
[26] | Rong L (荣丽), Li XW (李贤伟), Zhang J (张健), Zhu TH (朱天辉), Fan C (范川), Pu DQ (蒲德强) (2009). Major microbial functional groups related to fine root and grass root decomposition in different models of conversion of farmland to forest in the rainy zone of west China. Journal of Natural Resources (自然资源学报), 24, 1069-1079. (in Chinese with English abstract) |
[27] | Sinsabaugh RL, Antibus R, Linkins AE, Raybum L, Repert D, Weiland T (1992). Wood decomposition over a first-order watershed: mass loss as a function of lignocellulase activity. Soil Biology & Biochemistry, 24, 743-749. |
[28] |
Sinsabaugh RL, Findlay S (1995). Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River Estuary. Microbial Ecology, 30, 127-141.
URL PMID |
[29] | Sinsabaugh RL, Moorhead DL, Linkins AE (1994). The enzyme basis of plant litter decomposition: emergence of an ecological process. Applied Soil Ecology, 1, 97-111. |
[30] | Tanaka Y (1991). Microbial decomposition of reed (Phragmites communis) leaves in saline lake. Hydrobiologia, 220, 119-129. |
[31] | Vance ED, Chapin III FS (2001). Substrate limitations to microbial activity in taiga forest floors. Soil Biology & Biochemistry, 33, 173-188. |
[32] | van Soest PJ, Wine RH (1968). Determination of lignin and cellulose in acid-detergent fibre with permanganate. Journal of the Association of Official Agricultural Chemists, 51, 780-785. |
[33] | Wan ZM (万忠梅), Wu JG (吴景贵) (2005). Study progress on factors affecting soil enzyme activity. Journal of Northwest Sci-Tech University of Agricultural and Forestry (Natural Science Edition) 西北农林科技大学学报(自然科学版)), 22(6), 87-92. (in Chinese with English abstract) |
[34] | Wang Q (王巧), Li XW (李贤伟), Yang M (杨渺), Li DH (李德会), Rong L (荣丽) (2007). Biomass and spatial distribution of the fine root of Betula luminifera-Hemarthria compressa composite mode. Journal of Sichuan Agricultural University (四川农业大学学报), 25, 430-435. (in Chinese with English abstract) |
[35] | Wood TG (1991). Field investigation on the decomposition of leaves of Eucalyptus delegatensis in relation to environmental factors. Pedobiologia, 14, 343-371. |
[36] | Yang WQ (杨万勤) (2006). Forest Soil Ecology (森林土壤生态学). Sichuan Science Press, Chengdu. (in Chinese) |
[37] | Yang WQ (杨万勤), Wang KY (王开运) (2004). Advances in forest soil enzymology. Scientia Silvae Sinicae (林业科学), 40(2), 152-159. (in Chinese with English abstract) |
[38] | Yang WQ (杨万勤), Zhong ZC (钟章成), Tao JP (陶建平), He WM (何维明) (2001). Study on relationship between soil enzymic activities and plant species diversity in forest ecosystem of Mt. Jin Yun. Scientia Silvae Sinicae (林业科学), 27(4), 124-128. (in Chinese with English abstract) |
[39] | Yang YG (杨云贵), Long MX (龙明秀), Wang Y (王莺), Jiang ZL (江中良) (2004). Evaluation on the nutrition value of forage, silage corn and straw using Van-Soest method. Acta Agrestia Sinica (草地学报), 12, 132-135. (in Chinese with English abstract) |
[40] | Zhang JE (章家恩) (2006). Frequently-Used Method and Technology in Ecology (生态学常用试验研究方法与技术). Chemical Industry Press, Beijing. (in Chinese) |
[41] | Zhang P (张鹏), Tian XJ (田兴军), He XB (何兴兵), Song FQ (宋富强), Ren LL (任利利) (2007). Enzyme activities in litter, fragmentation and humus layers of subtropical forests. Ecology and Environment (生态环境), 16, 1024-1029. (in Chinese with English abstract) |
[42] | Zhao B (赵斌), He SJ (何绍江) (2002). Microbiology Experiment (微生物学试验). Science Press, Beijing. (in Chinese) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[3] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[4] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[5] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[6] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[7] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[8] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[9] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[10] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[11] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
[12] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[13] | 曹珍, 刘永英, 宋世凯, 张莉娜, 高德. 陆地生境岛屿藓类植物小岛屿效应驱动因素分析——以太行山脉中段山顶为例[J]. 植物生态学报, 2023, 47(1): 65-76. |
[14] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[15] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19