植物生态学报 ›› 2010, Vol. 34 ›› Issue (6): 651-660.DOI: 10.3773/j.issn.1005-264x.2010.06.004
温家石1, 葛滢1, 焦荔2, 邓志平3, 彭长辉4, 常杰1,*()
收稿日期:
2009-10-13
接受日期:
2010-01-07
出版日期:
2010-10-13
发布日期:
2010-06-01
通讯作者:
常杰
作者简介:
* E-mail: jchang@zju.edu.cn
WEN Jia-Shi1, GE Ying1, JIAO Li2, DENG Zhi-Ping3, PENG Chang-Hui4, CHANG Jie1,*()
Received:
2009-10-13
Accepted:
2010-01-07
Online:
2010-10-13
Published:
2010-06-01
Contact:
CHANG Jie
摘要:
城市土地利用显著改变了原有生态系统的结构和功能, 特别是建成区植被的碳吸收和碳储存能力。该研究通过实地调查和测量, 估算城市建成区内乔木、灌木、草坪的生物量和净初级生产力(net primary productivity, NPP), 该方法考虑了园林管理(如修剪或割草)对建成区碳吸收和碳储存的影响。结果表明, 台州城市树木个体生物量年增量是野外森林中同类树木的近2倍; 乔木修剪量占乔木NPP的1/3。目前台州市建成区的植被碳吸收能力为2.1 × 103 kg C·hm-2·a-1(其中乔木的贡献为64%, 灌木为9%, 草坪为27%), 低于本地野外森林同面积的碳吸收能力; 通过与野外常绿阔叶林比较发现, 增加台州建成区的绿化覆盖率(从23%提高到46%)即可补偿因城市扩张引起的植被碳吸收能力的损失。
温家石, 葛滢, 焦荔, 邓志平, 彭长辉, 常杰. 城市土地利用是否会降低区域碳吸收能力?——台州市案例研究. 植物生态学报, 2010, 34(6): 651-660. DOI: 10.3773/j.issn.1005-264x.2010.06.004
WEN Jia-Shi, GE Ying, JIAO Li, DENG Zhi-Ping, PENG Chang-Hui, CHANG Jie. Does urban land use decrease carbon sequestration? —A case study in Taizhou, China. Chinese Journal of Plant Ecology, 2010, 34(6): 651-660. DOI: 10.3773/j.issn.1005-264x.2010.06.004
图2 城市植被中乔木、灌木和草坪的生产力(A)和生物量(B)(平均值±标准误差)。 草坪的径向增长一栏代表其新增生物量。
Fig. 2 Net primary productivity (A) and biomass (B) of trees, shrubs and lawns within urban vegetations (means ± SE). Bar of lawn mean annual biomass increment (MABI) means new growth of lawn biomass.
管理措施 Management regime | 乔木 Tree | 灌木 Shrub | 草坪 Lawn |
---|---|---|---|
遮阴 Sun shielding | 抵挡太阳暴晒 When sun is drying | 抵挡太阳暴晒 When sun is drying | - |
排水 Drainage | 暴雨之后及时排水 After heavy rain | 暴雨之后及时排水 After heavy rain | 暴雨之后及时排水 After heavy rain |
施肥 Fertilization | 仅对新植小树施肥 When newly transplanted | 仅对新植灌丛施肥 When newly transplanted | 每年2-4次, 主要在春天施撒 2-4 times mainly in spring |
固定 Fixation | 台风来临前 Before typhoon | - | - |
浇水 Irrigation | 仅有少量几次, 主要在夏季 Few times a year and mainly in summer | 比树木浇水频繁, 主要在夏季 More frequence than trees and mainly in summer | 最为频繁, 主要在夏季 The most frequence and mainly in summer |
修剪(割草) Pruning (mowing) | 每年2-4次, 主要在秋冬季 2-4 times a year and mainly in spring and autumn | 每年4-8次, 主要在生长季 4-8 times a year and mainly in spring and autumn | 每年2-12次, 主要在生长季 2-12 times a year and mainly in spring and autumn |
除虫 Anti-pest | 在早春或夏季 In early spring and occasionally in summer | 在早春或夏季 In early spring and occasionally in summer | 在早春或夏季 In early spring and occasionally in summer |
表1 样地园林管理情况
Table 1 Management regimes in study site
管理措施 Management regime | 乔木 Tree | 灌木 Shrub | 草坪 Lawn |
---|---|---|---|
遮阴 Sun shielding | 抵挡太阳暴晒 When sun is drying | 抵挡太阳暴晒 When sun is drying | - |
排水 Drainage | 暴雨之后及时排水 After heavy rain | 暴雨之后及时排水 After heavy rain | 暴雨之后及时排水 After heavy rain |
施肥 Fertilization | 仅对新植小树施肥 When newly transplanted | 仅对新植灌丛施肥 When newly transplanted | 每年2-4次, 主要在春天施撒 2-4 times mainly in spring |
固定 Fixation | 台风来临前 Before typhoon | - | - |
浇水 Irrigation | 仅有少量几次, 主要在夏季 Few times a year and mainly in summer | 比树木浇水频繁, 主要在夏季 More frequence than trees and mainly in summer | 最为频繁, 主要在夏季 The most frequence and mainly in summer |
修剪(割草) Pruning (mowing) | 每年2-4次, 主要在秋冬季 2-4 times a year and mainly in spring and autumn | 每年4-8次, 主要在生长季 4-8 times a year and mainly in spring and autumn | 每年2-12次, 主要在生长季 2-12 times a year and mainly in spring and autumn |
除虫 Anti-pest | 在早春或夏季 In early spring and occasionally in summer | 在早春或夏季 In early spring and occasionally in summer | 在早春或夏季 In early spring and occasionally in summer |
城市 City | 年平均降水量 Annual average precipitation (mm) | 年平均气温 Annual average temperature (oC) | 地上生物量 Aboveground biomass (× 103 kg C·hm-2 ) | 地上生产力 Aboveground NPP (× 103 kg C·hm-2·a-1) | 来源 Source |
---|---|---|---|---|---|
中国台州 Taizhou, China | 1 525 | 17 | 1.3 ± 0.3 | 1.8 ± 0.5 | This study |
美国沃纳德克里克 Walnut creek, USA | 510 | 8 | 0.5 | 1.0 | |
美国柯林堡 Fort Collin, USA | 385 | 9 | - | 1.75 | |
美国芝加哥 Chicago, USA | 965 | 15 | 0.81 | 0.4 | |
美国弗朗特里戈 Front range, USA | 350 | 9 | 1.3 ± 0.1 | 2.2 ± 0.2 |
表2 不同气候条件下的5个城市的草坪地上部分生产力(平均值±标准误)
Table 2 Aboveground biomass and NPP (net primary productivity) of lawns and climate conditions among five cities (mean ± SE)
城市 City | 年平均降水量 Annual average precipitation (mm) | 年平均气温 Annual average temperature (oC) | 地上生物量 Aboveground biomass (× 103 kg C·hm-2 ) | 地上生产力 Aboveground NPP (× 103 kg C·hm-2·a-1) | 来源 Source |
---|---|---|---|---|---|
中国台州 Taizhou, China | 1 525 | 17 | 1.3 ± 0.3 | 1.8 ± 0.5 | This study |
美国沃纳德克里克 Walnut creek, USA | 510 | 8 | 0.5 | 1.0 | |
美国柯林堡 Fort Collin, USA | 385 | 9 | - | 1.75 | |
美国芝加哥 Chicago, USA | 965 | 15 | 0.81 | 0.4 | |
美国弗朗特里戈 Front range, USA | 350 | 9 | 1.3 ± 0.1 | 2.2 ± 0.2 |
生态系统 Ecosystem | 碳储存 Carbon storage (× 103 kg C·hm-2) | 碳吸收 Carbon sequestration (× 103 kgC·hm-2·a-1) | 补偿覆盖率 Compensated coverage (%) |
---|---|---|---|
台州建成区 Taizhou built-up area | 7.8* | 2.1* | 23 |
常绿阔叶林 Evergreen broad-leaved forest | 44.6 a | 4.2a | 46 |
针阔混交林 Coniferous and broad-leaved mixed forest | 35.0 a | 3.3 a | 36 |
马尾松林 Pinus massoniana forest | 12.5 b | 2.2b | 24 |
25.6 a | 2.5 a | 27 | |
杉木林 Cunninghamia lanceolata forest | 20.0 b | 2.2b | 24 |
26.8 a | 2.3 a | 25 |
表3 台州建成区达到本地森林的碳吸收所需覆盖率
Table 3 Carbon storage and sequestration of Taizhou built-up area and natural forest in southeast China and the compensation coverage by urban vegetation
生态系统 Ecosystem | 碳储存 Carbon storage (× 103 kg C·hm-2) | 碳吸收 Carbon sequestration (× 103 kgC·hm-2·a-1) | 补偿覆盖率 Compensated coverage (%) |
---|---|---|---|
台州建成区 Taizhou built-up area | 7.8* | 2.1* | 23 |
常绿阔叶林 Evergreen broad-leaved forest | 44.6 a | 4.2a | 46 |
针阔混交林 Coniferous and broad-leaved mixed forest | 35.0 a | 3.3 a | 36 |
马尾松林 Pinus massoniana forest | 12.5 b | 2.2b | 24 |
25.6 a | 2.5 a | 27 | |
杉木林 Cunninghamia lanceolata forest | 20.0 b | 2.2b | 24 |
26.8 a | 2.3 a | 25 |
图3 1995-2007年台州建成区面积和建成区绿化覆盖面积以及绿化覆盖率(中国统计局1996-2008)。
Fig. 3 Dynamic of the built up area and greenspace area in Taizhou City from 1995 to 2007 (China Statistical Bureau, 1996-2008).
城市 City | 位置 Location | 年平均降水 Mean annual precipitation (mm) | 年平均气温Mean annual temperature (°C) | 碳吸收 Carbon sequestration (× 103 kg C·hm-2·a-1) | 来源 Source |
---|---|---|---|---|---|
中国台州 Taizhou, China | 28°50′ N, 120°34′ E | 1 521 | 17.1 | 0.90 ± 0.09* | This study |
美国亚特兰大 Atlanta, USA | 33°46′ N, 84°25′ W | 1 220 | 7.2 | 0.94 ± 0.13 | |
美国巴尔地摩 Baltimore, USA | 39°17′ N, 76°39′ W | 1 080 | 12.6 | 0.52 ± 0.07 | |
美国锡拉丘兹 Syracuse, USA | 43°03′ N, 76°08′ W | 984 | 8.7 | 0.54 ± 0.07 | |
美国波士顿 Boston, USA | 42°21′ N, 71°03′ W | 1 092 | 10.9 | 0.49 ± 0.06 | |
美国纽约 NewYork, USA | 40°45′ N, 73°59′ W | 1 262 | 8.7 | 0.26 ± 0.06 | |
美国新泽西 JerseyCity, USA | 40°43′ N, 74°04′ W | 1 016 | 11.0 | 0.15 ± 0.03 | |
美国费城 Philadelphia, USA | 39°57′ N, 75°09′ W | 1 068 | 12.9 | 0.31 ± 0.04 | |
美国芝加哥 Chicago, USA | 41°54′ N, 87°39′ W | 965 | 13.7 | 0.48 | |
韩国中浪 Junglang, Korea | 36°43′ N, 126°58′ E | 1 312 | 12.5 | 0.80 ± 0.12 | |
韩国江南 Kangnam, Korea | 37°30′ N, 127°02′ E | 1 312 | 12.5 | 0.53 ± 0.06 | |
韩国春川 Chuncheon, Korea | 37°28′ N, 127°37′ E | 1 217 | 11.0 | 0.56 ± 0.08 | |
韩国江陵 Kangleung, Korea | 37°47′ N, 128°40′ E | 1 327 | 13.2 | 0.71 ± 0.10 |
表4 不同气候带17个城市的城市森林的碳吸收(平均值±标准误差)
Table 4 Carbon sequestration of urban forest for 17 cities among the climate zones (mean ± SE)
城市 City | 位置 Location | 年平均降水 Mean annual precipitation (mm) | 年平均气温Mean annual temperature (°C) | 碳吸收 Carbon sequestration (× 103 kg C·hm-2·a-1) | 来源 Source |
---|---|---|---|---|---|
中国台州 Taizhou, China | 28°50′ N, 120°34′ E | 1 521 | 17.1 | 0.90 ± 0.09* | This study |
美国亚特兰大 Atlanta, USA | 33°46′ N, 84°25′ W | 1 220 | 7.2 | 0.94 ± 0.13 | |
美国巴尔地摩 Baltimore, USA | 39°17′ N, 76°39′ W | 1 080 | 12.6 | 0.52 ± 0.07 | |
美国锡拉丘兹 Syracuse, USA | 43°03′ N, 76°08′ W | 984 | 8.7 | 0.54 ± 0.07 | |
美国波士顿 Boston, USA | 42°21′ N, 71°03′ W | 1 092 | 10.9 | 0.49 ± 0.06 | |
美国纽约 NewYork, USA | 40°45′ N, 73°59′ W | 1 262 | 8.7 | 0.26 ± 0.06 | |
美国新泽西 JerseyCity, USA | 40°43′ N, 74°04′ W | 1 016 | 11.0 | 0.15 ± 0.03 | |
美国费城 Philadelphia, USA | 39°57′ N, 75°09′ W | 1 068 | 12.9 | 0.31 ± 0.04 | |
美国芝加哥 Chicago, USA | 41°54′ N, 87°39′ W | 965 | 13.7 | 0.48 | |
韩国中浪 Junglang, Korea | 36°43′ N, 126°58′ E | 1 312 | 12.5 | 0.80 ± 0.12 | |
韩国江南 Kangnam, Korea | 37°30′ N, 127°02′ E | 1 312 | 12.5 | 0.53 ± 0.06 | |
韩国春川 Chuncheon, Korea | 37°28′ N, 127°37′ E | 1 217 | 11.0 | 0.56 ± 0.08 | |
韩国江陵 Kangleung, Korea | 37°47′ N, 128°40′ E | 1 327 | 13.2 | 0.71 ± 0.10 |
[1] | Alberti M (2005). The effects of urban patterns on ecosystem function. International Regional Science Review, 28, 168-192. |
[2] | Barlaz MA (1998). Carbon storage during biodegradation of municipal solid waste components in laboratory -scale landfills. Global Biogeochemical Cycles, 12, 373-380. |
[3] | Barnes BV, Zak DR, Denton SD (1998). Forest Ecology. John Wiley & Sons, New York. |
[4] | Bo Z (2003). Aboveground biomass partition and leaf development of Chinese subtropical trees following pruning. Forest Ecology and Management, 173, 135-144. |
[5] | Elfadl MA, Luukkanen O (2003). Effect of pruning on Prosopis juliflora: considerations for tropical dryland agroforestry. Journal of Arid Environments, 53, 441-455. |
[6] | Falk JH (1976). Energetics of a suburban lawn ecosystem. Ecology, 57, 141-150. |
[7] | Fang JY (方精云), Liu GH (刘国华), Xu SL (徐嵩龄) (1996). Biomass and net production of forest vegetation in China. Acta Ecologica Sinica (生态学报), 1996, 16, 497-508. |
[8] | Feng ZW (冯宗炜), Wang XK (王效科), Wu G (吴刚) (1999). Biomass and Net Primary Productivity of China’s Forest Ecosystems (中国森林生态系统的生物量和生产力). Science Press, Beijing, China. 41-46. (in Chinese) |
[9] |
Fuller RA, Gaston KJ (2009). The scaling of green space coverage in European cities. Biology Letters, 5, 352-355.
URL PMID |
[10] |
Golubiewski NE (2006). Urbanization increases grassland carbon pools -effects of landscaping in Colorado’s Front Range. Ecological Applications, 16, 555-571.
DOI URL PMID |
[11] |
Gregg JW, Jones CG, Dawson TE (2003). Urbanization effects on tree growth in the vicinity of New York City. Nature, 424, 183-187.
URL PMID |
[12] |
Grimm NB, Faeth SH, Golubiewski NE (2008). Global change and the ecology of cities. Science, 319, 756-760.
URL PMID |
[13] | Herte M, Kobriger N, Stearns F (1971). Productivity of an urban park. University of Wisconsin Field Station Bulletin, 4, 14-18. |
[14] | Imhoff ML, Tucker CJ, Lawrence WT (2000). The use of multisource satellite and geospatial data to study the effect of urbanization on primary productivity in the United States. IEEE Transaction on Geoscience and Remote Sensing, 38, 2549-2556. |
[15] |
Jo HK (2002). Impacts of urban greenspace on offsetting carbon emissions for middle Korea. Journal of Environmental Management, 64, 115-126.
URL PMID |
[16] | Jo HK, McPherson EG (1995). Carbon storage and flux in urban residential greenspace. Journal of Environmental Management, 45, 109-133. |
[17] | Kaye JP, Mcculley RL, Burke IC (2005). Carbon fluxes, nitrogen cycling and soil microorganisms in adjacent urban, native and agricultural ecosystems. Globe Change Biology, 11, 575-587. |
[18] | Liu QX (刘其霞), Chang J (常杰), Jiang B (江波), Yuan WG (袁位高), Qi LZ (戚连忠), Zhu JR (朱锦茹), Ge Y (葛滢), Shen Q (沈琪) (2005). The biomass of the evergreen broad-leaved ecological public-welfare forests in Zhe- jiang, East China. Acta Ecologica Sinica (生态学报), 25, 2139-2144. (in Chinese with English abstract) |
[19] | McHale MR, Burke IC, Lefsky MA (2009). Urban forest biomass estimates: Is it important to use allometric relationships developed specifically for urban trees? Urban Ecosystems, 12, 95-113. |
[20] | McNaughton SJ (1979). Grazing as an optimization process grass: ungulate relationships in the Serengeti. The American Naturalist, 113, 691-703. |
[21] | Milesi C, Elvidge CD, Nemani RR, Running SW (2003). Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sensing of Environment, 86, 401-410. |
[22] | Ministry of Construction P.R.China (中国建设部)(1998). Standard of Basic Terms of Urban Planning (城市规划基本术语标准) GB/T 50280-98. China Architecture & Building Press, Beijing. (in Chinese) |
[23] | Niinemets U, Peñuelas J (2007). Gardening and urban landscaping: significant players in global change. Trends in Plant Science, 13(2), 60-65. |
[24] | Nowak DJ (1994). Atmospheric carbon dioxide reduction by Chicago’s urban forest. In: McPherson EG, Nowak DJ, Rowntree RA eds. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. USDA Forest Service General Technical Report NE-186, Radnor, PA. 83-94. |
[25] |
Nowak DJ, Crane DE (2002). Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 116, 381-389.
DOI URL PMID |
[26] |
Noy-Meir I (1993). Compensating growth of grazed plants and its relevance to the use of rangelands. Ecological Applications, 3, 32-34.
URL PMID |
[27] | Parkinson RW, Perez-Bedmar M, Santangelo JA (1999). Red mangrove (Rhizophora mangle L.) litter fall response to selective pruning (Indian River Lagoon, Florida USA). Hydrobiologia, 413, 63-76. |
[28] |
Piao SL, Fang JY, Ciais P (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1014.
DOI URL PMID |
[29] | Rhoades RW, Stipes RJ (1999). Growth of trees on the Virginia Tech campus in response to various factors. Journal of Arboriculture, 25, 211-217 |
[30] | Shochat E, Stefanov WL, Whitehouse MEA (2004). Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Ecological Applications, 14, 268-280. |
[31] |
Shochat E, Warren PS, Faeth SH (2006). From patterns to emerging processes in mechanistic urban ecology. Trends in Ecology and Evolution, 21(4), 186-191.
DOI URL PMID |
[32] | Stabler LB (2008). Management regimes affect woody plant productivity and water use efficiency in an urban desert ecosystem. Urban Ecosystems, 11, 197-211. |
[33] | State Statistical Bureau (中国统计局) (1995). China City Statistical Yearbook 1995 (中国城市统计年鉴1995). Chinese Statistical Press, Beijing. (in Chinese) |
[34] | State Statistical Bureau (中国统计局) (2008). China City Statistical Yearbook 2008 (中国城市统计年鉴2008). Chinese Statistical Press, Beijing. (in Chinese) |
[35] |
Xu C, Liu M, Ana S, Chen JM, Yan P (2007). Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China. Journal of Environmental Management, 85, 597-606.
URL PMID |
[36] | Yao FP (姚丰平), Wu JS (吴军寿), Yao LW (姚理武), Fan LM (范良敏), Cheng YP (程亚平), Mei JW (梅建伟) (2003). Determination and evaluation of biomass of different broad-leaf stand types in Qingyuan forest center. Journal of Zhejiang Forest Science and Technology (浙江林业科技), 23(3), 74-78. (in Chinese with English abstract) |
[37] | Yao YJ (姚迎九), Kang WX (康文星), Tian DL (田大伦) (2003). Study of the biomass and productivity of Cinnamomum camphora plantation. Journal of Central South Forestry University (中南林学院学报), 23, 1-5. (in Chinese with English abstract) |
[38] | Yu DY, Shao HB, Shi PJ, Zhu WQ, Pan YZ (2009). How does the conversion of land cover to urban use affect net primary productivity? A case study in Shenzhen city. China Agricultural and Forest Meteorology, 149, 2054-2060. |
[39] | Zhang J, Ge Y, Chang J (2007). Carbon storage by ecological service forests in Zhejiang Province, subtropical China. Forest Ecology and Management, 245, 64-75. |
[40] | Zhao M, Zhou GS (2005). Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest Ecology and Management, 207, 295-313. |
[41] | Zhao SQ, Da LJ, Tang ZY, Fang HJ, Song K, Fang JY (2006). Ecological consequences of rapid urban expansion: Shanghai, China. Frontier in Ecology and the Environment, 4, 341-346. |
[42] |
Zhou LM, Dickinson RE, Tian YH, Fang JY, Li QX, Kaufmann RK, Tucker CJ, Myneni RB (2004). Evidence for a significant urbanization effect on climate in China. Proceedings of the National Academy of Sciences of the United States of America, 101, 9540-9544.
DOI URL PMID |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[9] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[10] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[11] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[12] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[13] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[14] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[15] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19