植物生态学报 ›› 2010, Vol. 34 ›› Issue (12): 1394-1403.DOI: 10.3773/j.issn.1005-264x.2010.12.005
周晓兵1,2, 张元明1,*(), 王莎莎1,2, 张丙昌1
收稿日期:
2010-03-29
接受日期:
2010-06-23
出版日期:
2010-03-29
发布日期:
2010-12-28
通讯作者:
张元明
作者简介:
(E-mail: zhangym@ms.xjb.ac.cn)
ZHOU Xiao-Bing1,2, ZHANG Yuan-Ming1,*(), WANG Sha-Sha1,2, ZHANG Bing-Chang1
Received:
2010-03-29
Accepted:
2010-06-23
Online:
2010-03-29
Published:
2010-12-28
Contact:
ZHANG Yuan-Ming
摘要:
氮素和水分是荒漠生态系统的两个主要限制因子, 研究两者对荒漠植物的效应有助于深入了解荒漠生态系统对全球变化的响应。该文选择准噶尔盆地荒漠地区两种常见的一年生植物涩荠(Malcolmia africana)和钩刺雾冰藜(Bassia hyssopifolia), 设置0、0.18和0.72 g N·m -2·week -13个施氮浓度和湿润与干旱两个土壤水分处理, 研究模拟氮沉降增加和干旱对其生长和光合生理的影响。结果表明: (1)两种植物的根长、根重、叶片数、叶面积、总生物量和冠根比均随着施氮浓度的增加而增加, 干旱能够抑制氮对植物生长的促进作用, 但是, 氮的增加同时也能部分缓解干旱对植物生长的影响。与钩刺雾冰藜相比, 涩荠的根长、生物量和冠根比更易受氮增加和干旱的影响。(2)两种植物的最大净光合速率、叶绿素含量、可溶性蛋白含量随着氮浓度增加而增加, 但涩荠和钩刺雾冰藜对氮增加和干旱的生理响应也有所不同, 涩荠的响应更加敏感。两种植物对氮沉降和干旱胁迫响应的差异可能是其生活型等生物学特性差异所引起。通过对两种一年生植物的生长和光合生理分析表明, 在古尔班通古特沙漠, 春季丰富的降水和氮素增加将有利于涩荠和钩刺雾冰藜的生长和生产力的增加, 相对地下生长, 地上部分增加更显著。当干旱季节来临时, 氮的增加又能够在一定程度上降低干旱对这两种植物的负效应, 说明其对干旱具有一定的生态补偿作用。
周晓兵, 张元明, 王莎莎, 张丙昌. 模拟氮沉降和干旱对准噶尔盆地两种一年生荒漠植物生长和光合生理的影响. 植物生态学报, 2010, 34(12): 1394-1403. DOI: 10.3773/j.issn.1005-264x.2010.12.005
ZHOU Xiao-Bing, ZHANG Yuan-Ming, WANG Sha-Sha, ZHANG Bing-Chang. Combined effects of simulated nitrogen deposition and drought stress on growth and photosynthetic physiological responses of two annual desert plants in Junggar Basin, China. Chinese Journal of Plant Ecology, 2010, 34(12): 1394-1403. DOI: 10.3773/j.issn.1005-264x.2010.12.005
pH | 体积含水量 Volumetric water content (%) | 有机碳 Organic C (g·kg-1) | 总氮 Total N (g·kg-1) | 总磷 Total P (g·kg-1) | 总钾 Total K (g·kg-1) | 有效氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 有效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
8.36 ± 0.16 | 7.74 ± 2.18 | 1.69 ± 0.55 | 0.19 ± 0.09 | 0.40 ± 0.04 | 10.94 ± 0.78 | 36.31 ± 9.44 | 6.31 ± 1.53 | 167.75 ± 20.72 |
表1 土壤基质的物理和化学特征(平均值±标准偏差)
Table 1 Physical and chemical characteristics of substrate soil (mean ± SD)
pH | 体积含水量 Volumetric water content (%) | 有机碳 Organic C (g·kg-1) | 总氮 Total N (g·kg-1) | 总磷 Total P (g·kg-1) | 总钾 Total K (g·kg-1) | 有效氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 有效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
8.36 ± 0.16 | 7.74 ± 2.18 | 1.69 ± 0.55 | 0.19 ± 0.09 | 0.40 ± 0.04 | 10.94 ± 0.78 | 36.31 ± 9.44 | 6.31 ± 1.53 | 167.75 ± 20.72 |
物种 Species | 处理 Treatment | 根长 Root length | 根重 Root weight | 叶片数 Leaf number | 叶面积 Leaf area | 生物量 Biomass |
---|---|---|---|---|---|---|
涩荠 Malcolmia africana | 水分 water | 10.56** | 485.71** | 22.26** | 58.32** | 2 158.61** |
氮 N | 4.43* | 62.19** | 7.43** | 68.45** | 804.31** | |
水分×氮 Water × N | 0.77 | 11.77** | 5.29** | 21.31** | 235.69** | |
钩刺雾冰藜 Bassia hyssopifolia | 水分 water | 3.11 | 272.14** | 19.19** | 49.64** | 7 319.02** |
氮 N | 2.25 | 544.34** | 54.98** | 82.15** | 2 4217.89** | |
水分×氮 Water × N | 0.08 | 21.99** | 31.87** | 23.42** | 4 463.67** |
表2 氮和水分处理对植物生长影响的双因素方差分析
Table 2 Two-way ANOVA analysis of N and water treatment effects on plant growth
物种 Species | 处理 Treatment | 根长 Root length | 根重 Root weight | 叶片数 Leaf number | 叶面积 Leaf area | 生物量 Biomass |
---|---|---|---|---|---|---|
涩荠 Malcolmia africana | 水分 water | 10.56** | 485.71** | 22.26** | 58.32** | 2 158.61** |
氮 N | 4.43* | 62.19** | 7.43** | 68.45** | 804.31** | |
水分×氮 Water × N | 0.77 | 11.77** | 5.29** | 21.31** | 235.69** | |
钩刺雾冰藜 Bassia hyssopifolia | 水分 water | 3.11 | 272.14** | 19.19** | 49.64** | 7 319.02** |
氮 N | 2.25 | 544.34** | 54.98** | 82.15** | 2 4217.89** | |
水分×氮 Water × N | 0.08 | 21.99** | 31.87** | 23.42** | 4 463.67** |
图1 不同水分条件下涩荠和钩刺雾冰藜的根长、根重、叶片数(平均值±标准偏差, n = 5)。不同的字母代表处理间的差异显著(p < 0.05)。
Fig. 1 The root length, root weight, leaf number of Malcolmia africana and Bassia hyssopifolia under different water regimes (mean ± SD, n = 5). DS, drought stress; WW, well watered. Different letters indicate significance among treatments (p < 0.05).
图2 不同水分条件下涩荠和钩刺雾冰藜的叶面积、生物量、冠根比(平均值±标准偏差, n = 5)。图注同图1。
Fig. 2 The leaf area, biomass, shoot/root (S/R) of Malcolmia africana and Bassia hyssopifolia under different water regimes (mean ± SD, n = 5). Notes see Fig. 1.
物种 Species | 处理 Treatment | 最大净光合速率 Max net photosynthetic rate | 叶绿素 Chlorophyll | 可溶性蛋白 Soluble protein |
---|---|---|---|---|
涩荠 Malcolmia africana | 水分 water | 148.18** | 17.76** | 6.85* |
氮 N | 69.02** | 59.05** | 51.36* | |
水分×氮 Water × N | 1.33 | 15.24** | 0.13 | |
钩刺雾冰藜 Bassia hyssopifolia | 水分 water | 1.97** | 2.54 | 84.34** |
氮 N | 23.38 | 201.16** | 60.16** | |
水分×氮 Water × N | 2.35 | 4.92** | 13.67** |
表3 氮和水分处理对植物生理影响的双因素方差分析
Table 3 Two-way ANOVA analysis for the effects of N and water treatment on physiological traits
物种 Species | 处理 Treatment | 最大净光合速率 Max net photosynthetic rate | 叶绿素 Chlorophyll | 可溶性蛋白 Soluble protein |
---|---|---|---|---|
涩荠 Malcolmia africana | 水分 water | 148.18** | 17.76** | 6.85* |
氮 N | 69.02** | 59.05** | 51.36* | |
水分×氮 Water × N | 1.33 | 15.24** | 0.13 | |
钩刺雾冰藜 Bassia hyssopifolia | 水分 water | 1.97** | 2.54 | 84.34** |
氮 N | 23.38 | 201.16** | 60.16** | |
水分×氮 Water × N | 2.35 | 4.92** | 13.67** |
图3 不同处理下涩荠和钩刺雾冰藜的最大净光合速率、叶绿素、可溶性蛋白含量(平均值±标准偏差, n = 3)。 不同字母表示涩荠或钩刺雾冰藜之间差异显著(p < 0.05)。
Fig. 3 The maximum net photosynthetic rate (Pmax), chlorophyll (Chl), soluble protein (SP) of Malcolmia africana and Bassia hyssopifolia under different treatments (mean ± SD, n = 3). Different letters indicate significance of M. africana or B. hyssopifolia under different treatments (p < 0.05). CW, control + well watered; MW, medium N + well watered; HW, high N + well watered; CD, control + drought stress; MD, medium N + drought stress; HD, high N + drought stress.
[1] | Anderson GQA, Andrews M, Percival SM, Kirby JS (1997). Nitrogen nutrition of brant (Branta bernicla L.) grazing on saltmarsh and pasture species. Proceedings of the XVIII International Grasslands Congress. Winnipeg and Saskatoon, Canada. 263-264. |
[2] | Andrews M (1993). Nitrogen effects on the partitioning of dry matter between shoot and root of higher plants. Current Topics in Plant Physiology, 1, 119-126. |
[3] | Andrews M, Sprent JI, Raven JA, Eady PE (1999). Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies. Plant, Cell & Environment, 22, 949-958. |
[4] | Baez S, Fargione J, Moore DI, Collins SL, Gosz JR (2007). Atmospheric nitrogen deposition in the northern Chihuahuan desert: temporal trends and potential consequences. Journal of Arid Environments, 68, 640-651. |
[5] | Barathi P, Sundar D, Reddy AR (2001). Changes in mulberry leaf metabolism in response to water stress. Biologia Plantarum, 44, 83-87. |
[6] | Barker DH, Vanier C, Naumburg E, Charlet TN, Nielsen KM, Newingham BA, Smith SD (2006). Enhanced monsoon precipitation and nitrogen deposition affect leaf traits and photosynthesis differently in spring and summer in the desert shrub Larrea tridentata. New Phytologist, 169, 799-808. |
[7] |
Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
DOI URL PMID |
[8] |
Brooks ML (2003). Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. Journal of Applied Ecology, 40, 344-353.
DOI URL |
[9] |
Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 53, 65-75.
DOI URL |
[10] | Compton JE, Watrud LS, Porteous LA, DeGrood S (2004). Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecology and Management, 196, 143-158. |
[11] | DaMatta FM, Loos RA, Silva EA, Loureiro ME, Ducatti C (2002). Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffea canephora Pierre. Trees-Structure and Function, 16, 555-558. |
[12] | Egli P, Schmid B (1999). Relationships between leaf nitrogen and limitations of photosynthesis in canopies of Solidago altissima. Acta Oecologica-International Journal of Ecology, 20, 559-570. |
[13] | Evans J (1989). Partitioning of nitrogen between and within leaves grown under different irradiances. Australian Journal of Plant Physiology, 16, 533-548. |
[14] | Fan HB (樊后保), Liu WF (刘文飞), Li YY (李燕燕), Liao YC (廖迎春), Yuan YH (袁颖红), Xu L (徐雷) (2007). Tree growth and soil nutrients in response to nitrogen deposition in a subtropical Chinese fir plantation. Acta Ecologica Sinica (生态学报), 27, 4630-4642. (in Chinese with English abstract) |
[15] | Fenn ME, Haeuber R, Tonnesen GS, Baron JS, Grossman- Clarke S, Hope D, Jaffe DA, Copeland S, Geiser L, Rueth HM, Sickman JO (2003). Nitrogen emissions, deposition, and monitoring in the western United States. BioScience, 53, 391-403. |
[16] | Garg BK, Kathju S, Burman U (2001). Influence of water stress on water relations, photosynthetic parameters and nitrogen metabolism of moth bean genotypes. Biologia Plantarum, 44, 289-292. |
[17] | Hooper DU, Johnson L (1999). Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry, 46, 247-293. |
[18] | Hyvonen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, van Oijen M, Wallin G (2007). The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 173, 463-480. |
[19] | Lajtha K, Schlesinger WH (1986). Plant response to variations in nitrogen availability in a desert shrubland community. Biogeochemistry, 2, 29-37. |
[20] | Li DJ (李德军), Mo JM (莫江明), Fang YT (方运霆), Cai XA (蔡锡安), Xue JH (薛璟花), Xu GL (徐国良) (2004). Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings. Acta Ecologica Sinica (生态学报), 24, 876-882. (in Chinese with English abstract) |
[21] | Li DJ (李德军), Mo JM (莫江明), Fang YT (方运霆), Li ZA (李志安) (2005). Effects of simulated nitrogen deposition on biomass production and allocation of Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Phytoecologica Sinica (植物生态学报), 29, 543-549. (in Chinese with English abstract) |
[22] |
Lichtenthaler HK, Wellburn AR (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592.
DOI URL |
[23] | Lu XK (鲁显楷), Mo JM (莫江明), Peng SL (彭少麟), Fang YT (方运霆) (2006). Effects of simulated N deposition on free amino acids and soluble protein of three dominant understory species in a monsoon evergreen broad-leaved forest of subtropical China. Acta Ecologica Sinica (生态学报), 26, 743-753. (in Chinese with English abstract) |
[24] | Lü CQ (吕超群), Tian HQ (田汉勤), Huang Y (黄耀) (2007). Ecological effects of nitrogen deposition in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 205-218. (in Chinese with English abstract) |
[25] | Ma X (马旭), Tian CY (田长彦), Feng G (冯固), Xiang XS (向祥盛) (2006). Spatio-temporal change of the application of chemical fertilizers in Xinjiang. Arid Land Geography (干旱区地理), 29, 439-444. (in Chinese with English abstract) |
[26] |
Mo JM, Zhang W, Zhu WX, Fang YT, Li DJ, Zhao P (2007). Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in southern China. Plant and Soil, 296, 125-135.
DOI URL |
[27] |
Nakaji T, Fukami M, Dokiya Y, Izuta T (2001). Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees-Structure and Function, 15, 453-461.
DOI URL |
[28] |
Patterson TB, Guy RD, Dang QL (1997). Whole-plant nitrogen- and water-relations traits, and their associated trade-offs, in adjacent muskeg and upland boreal spruce species. Oecologia, 110, 160-168.
DOI URL PMID |
[29] |
Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12, 470-476.
DOI URL |
[30] | Poorter H, Nagel O (1999). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. International Conference on Assimilate Transport and Partitioning (ICATP 99), Newcastle, Australia. 595-607. |
[31] |
Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008). Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate Forests. Global Change Biology, 14, 142-153.
DOI URL |
[32] | Schwinning S, Starr BI, Wojcik NJ, Miller ME, Ehleringer JE, Sanford RL (2005). Effects of nitrogen deposition on an arid grassland in the Colorado Plateau cold desert. Rangeland Ecology & Management, 58, 565-574. |
[33] |
Shangguan ZP, Shao MA, Dyckmans J (2000). Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environmental and Experimental Botany, 44, 141-149.
DOI URL PMID |
[34] |
Throop HL (2005). Nitrogen deposition and herbivory affect biomass production and allocation in an annual plant. Oikos, 111, 91-100.
DOI URL |
[35] | Wan HW (万宏伟), Yang Y (杨阳), Bai SQ (白世勤), Xu YH (徐云虎), Bai YF (白永飞) (2008). Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 611-621. (in Chinese with English abstract) |
[36] |
Warren CR, Livingston NJ, Turpin DH (2004). Photosynthetic responses and N allocation in Douglas-fir needles following a brief pulse of nutrients. Tree Physiology, 24, 601-608.
DOI URL PMID |
[37] | Wu C (吴楚), Wang ZQ (王政权), Fan ZQ (范志强), Sun HL (孙海龙) (2003). Effects of different concentrations and form ratios of nitrogen on chlorophyll biosynthesis, photosynthesis, and biomass partitioning in Fraxinus mandshrica seedlings. Acta Phytoecologica Sinica (植物生态学报), 27, 771-779. (in Chinese with English abstract) |
[38] |
Wu FZ, Bao WK, Li FL, Wu N (2008). Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environmental and Experimental Botany, 63, 248-255.
DOI URL |
[39] | Wu FZ (吴福忠), Bao WK (包维楷), Wu N (吴宁) (2008). Growth, accumulation and partitioning of biomass, C, N of Sophora davidii seedlings in response to N supply in dry valley of upper Minjiang River. Acta Ecologica Sinica (生态学报), 28, 3817-3824. (in Chinese with English abstract) |
[40] |
Xu ZZ, Zhou GS, Wang YH (2007). Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia. Plant and Soil, 301, 87-97.
DOI URL |
[41] | Yuan XM (袁新民), Wang ZQ (王周琼) (1997). Studies on the NO3--N in the environment and soil. Arid Zone Research (干旱区研究), 14, 52-55. (in Chinese with English abstract) |
[42] |
Zavaleta ES, Shaw MR, Chiariello NR, Mooney HA, Field CB (2003). Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proceedings of the National Academy of Sciences of the United States of America, 100, 7650-7654.
DOI URL PMID |
[43] | Zhang LY (张立运), Chen CD (陈昌笃) (2002). On the general characteristics of plant diversity of Gurbantunggut sandy desert. Acta Ecologica Sinica (生态学报), 22, 1923-1932. (in Chinese with English abstract) |
[44] |
Zhang Y, Zheng LX, Liu XJ, Jickells T, Cape JN, Goulding K, Fangmeier A, Zhang FS (2008). Evidence for organic N deposition and its anthropogenic sources in China. Atmospheric Environment, 42, 1035-1041.
DOI URL |
[45] |
Zhao DL, Reddy KR, Kakani VG, Reddy VR (2005). Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of Sorghum. European Journal of Agronomy, 22, 391-403.
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[10] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[11] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[12] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[13] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[14] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[15] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19