植物生态学报 ›› 2006, Vol. 30 ›› Issue (4): 666-674.DOI: 10.17521/cjpe.2006.0087
黄娟1(), 吴彤1, 孔国辉1,*(
), 陈志东2, 张进忠3
收稿日期:
2005-09-21
接受日期:
2006-03-05
出版日期:
2006-09-21
发布日期:
2006-07-30
通讯作者:
孔国辉
作者简介:
*E-mail:Kongh@scbg.ac.cn基金资助:
HUANG Juan1(), WU Tong1, KONG Guo-Hui1,*(
), CHEN Zhi-Dong2, ZHANG Jin-Zhong3
Received:
2005-09-21
Accepted:
2006-03-05
Online:
2006-09-21
Published:
2006-07-30
Contact:
KONG Guo-Hui
摘要:
研究了引种在油页岩工业废渣地12种木本植物冬、夏季光合作用特征,根据此评价引种植物的光合作用效率,测定的主要参数包括净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)。结果表明:1) 冬、夏季各项测定指标差异很大,Pn、Tr、Gs均是夏季高于冬季,而且,夏季平均Pn、Tr和Gs值要比冬季均值分别高60.9%、77.7%和85.7%,但水分利用效率(WUE)却是冬季高于夏季26.8%~77.2%。2) Pn日变化节律冬、夏季有异,夏季较多的种出现“双峰型”,而冬季较多出现“单峰型”。但也有例外,樟树(Cinnamomum camphora)冬、夏季均出现“单峰”;油榄仁(Terminalia bellirica)、红胶木(Tristania conferta)和柚木(Tectona grandis)冬、夏季均出现“双峰”;海南蒲桃(Syzygium cumini)则冬季为“双峰”,夏季为“单峰”。3) 若某一植物种在冬、夏季都表现出有较高的Pn日均值,相对于另一种植物其中有一季有较高的Pn,说明前者更适应当地环境生长。据此,以冬、夏季Pn日均值的平均值高低排序,评价参试植物在当地自然光照条件下的光合作用效率高低,树种的排序为:大叶相思(Acacia auriculiformis)、油榄仁、铁刀木(Cassia siamea)、云南石梓(Gmelina arborea)、柚木、红胶木、樟树、海南红豆(Ormosia pinnata)、铁冬青(Ilex rotunda)、海南蒲桃、双翼豆(Peltophorum ptetocarpum)和海南翅萍婆(Pterygota alata)。
黄娟, 吴彤, 孔国辉, 陈志东, 张进忠. 油页岩废渣地12种木本植物光合作用的季节变化. 植物生态学报, 2006, 30(4): 666-674. DOI: 10.17521/cjpe.2006.0087
HUANG Juan, WU Tong, KONG Guo-Hui, CHEN Zhi-Dong, ZHANG Jin-Zhong. SEASONAL CHANGES OF PHOTOSYNTHETIC CHARACTERISTICS IN 12 TREE SPECIES INTRODUCED ONTO OIL SHALE WASTE. Chinese Journal of Plant Ecology, 2006, 30(4): 666-674. DOI: 10.17521/cjpe.2006.0087
图1 环境因子光合有效辐射、气温及相对湿度的日变化 ── 2004年8月中旬 The middle of August, 2004 ┈┈ 2003年12月底 The end of December, 2003
Fig.1 Diurnal variation of environmental factors, such as photosynthetically active radiation (PAR), air temperature (T), and relative humidity (RH)
环境参数 Variables | 夏季(8月中旬) Summer (Middle of August) | 冬季(12月下旬) Winter (End of December) |
---|---|---|
光合有效辐射均值 Mean of phobosynthetically active radiation (PAR) (μmol·m-2·s-1) | 1 202 | 697 |
最大光合有效辐射Maximum PAR (μmol·m-2·s-1) | 1 966 | 1 224 |
气温Air temperature (℃) | 35.60+3.29 | 25.65+4.65 |
最高气温 Maximum air temperature (℃) | 39.76 | 30.68 |
空气相对湿度 Relative humidity (%) | 55.45 | 34.49 |
土壤含水量 Soil water content (%) (Mean±SD) | 25.78±0.70 | 16.55±3.98 |
表1 油页岩废渣试验地环境参数
Table 1 Environmental variables on oil shale waste dump
环境参数 Variables | 夏季(8月中旬) Summer (Middle of August) | 冬季(12月下旬) Winter (End of December) |
---|---|---|
光合有效辐射均值 Mean of phobosynthetically active radiation (PAR) (μmol·m-2·s-1) | 1 202 | 697 |
最大光合有效辐射Maximum PAR (μmol·m-2·s-1) | 1 966 | 1 224 |
气温Air temperature (℃) | 35.60+3.29 | 25.65+4.65 |
最高气温 Maximum air temperature (℃) | 39.76 | 30.68 |
空气相对湿度 Relative humidity (%) | 55.45 | 34.49 |
土壤含水量 Soil water content (%) (Mean±SD) | 25.78±0.70 | 16.55±3.98 |
图2 试验地雨季和旱季土壤含水量的日变化 A 雨季(2004年8月18日)含水量 Soil moisture content in rain season (August 18th, 2004) B 旱季(2004年12月27日)含水量 Soil moisture content in dry season (December 27th, 2004) 2.3 12种引种植物气体交换日变化节律
Fig.2 Diurnal variation of soil moisture content in trial place
图3 12种木本植物的净光合速率、气孔导度、蒸腾速率和水分利用效率的日变化曲线 ── 2004年8月中旬 The middle of August, 2004 ┈┈ 2003年12月底 The end of December, 2003
Fig.3 The curves of diurnal viariation of net photosynthetic rate (Pn), stomatal conductance(Gs), transpiration rate (Tr),and water utilitization efficiency (WUE) of 12 species trees
图4 植物冬夏季净光合速率、水分利用效率及蒸腾速率的均值 1 大叶相思 Acacia auriculiformis 2 油榄仁 Terminalia bellirica 3 铁刀木 Cassia siamea 4 云南石梓 Gmelina arborea 5 柚木 Tectona grandis 6 红胶木 Tristania conferta 7 樟树 Cinnamomum camphora 8 海南红豆 Ormosia pinnata 9 铁冬青 Ilex rotunda 10 海南蒲桃 Syzygium cumini 11 双翼豆 Peltophorum ptetocarpum 12 海南翅萍婆 Pterygota alata
Fig.4 The mean values of net photosynthetic rate (Pn), water use efficiency (WUE), and transporation rate (Tr) of plants in winter and summer
植物种类 Species | 净光合速率 Pn (μmol·m-2·s-1) | 水分利用效率 WUE (μmol·mol-1) | 蒸腾速率 Tr (mol·m-2·s-1) | |||||
---|---|---|---|---|---|---|---|---|
夏季Summer | 冬季Winter | 夏季Summer | 冬季Winter | 夏季Summer | 冬季Winter | |||
大叶相思Acacia auriculiformis | 16.45±5.25 | 7.58±2.67 | 2.71±0.59 | 8.42±4.18 | 6.33±2.47 | 1.33±1.04 | ||
油榄仁Terminalia bellirica | 15.50±3.87 | 4.45±1.53 | 3.60±1.05 | 2.78±1.25 | 4.87±2.08 | 1.99±1.13 | ||
铁刀木Cassia siamea | 12.86±4.38 | 5.89±2.23 | 3.10±0.66 | 4.70±2.19 | 4.55±2.11 | 1.41±0.59 | ||
云南石梓Gmelina arborea | 12.64±2.95 | 6.46±1.32 | 2.65±1.13 | 9.84±4.89 | 5.84±2.75 | 0.92±0.61 | ||
柚木Tectona grandis | 12.19±4.00 | 4.51±0.91 | 2.31±0.61 | 4.41±1.03 | 5.88±2.87 | 1.07±0.26 | ||
红胶木Tristania conferta | 11.40±3.40 | 3.40±1.35 | 2.48±0.53 | 6.31±3.16 | 4.80±1.68 | 0.58±0.22 | ||
樟树Cinnamomum camphora | 11.28±4.16 | 2.18±0.84 | 2.79±0.79 | 5.47±3.51 | 4.52±2.21 | 0.46±0.18 | ||
海南红豆Ormosia pinnata | 10.23±1.85 | 2.07±1.18 | 3.32±0.46 | 6.52±2.51 | 3.15±0.80 | 0.40±0.28 | ||
铁冬青Ilex rotunda | 10.05±3.56 | 4.66±1.12 | 1.98±0.63 | 3.35±1.09 | 5.72±2.40 | 1.46±0.42 | ||
海南蒲桃Syzygium cumini | 9.49±3.34 | 5.20±1.92 | 2.85±1.55 | 5.38±3.25 | 4.05±1.84 | 1.15±0.50 | ||
双翼豆Peltophorum ptetocarpum | 9.20±3.25 | 4.70±2.05 | 2.31±0.79 | 3.38±0.52 | 4.67±2.16 | 1.45±0.68 | ||
海南翅苹婆Pterygota alata | 8.45±1.82 | 3.49±1.16 | 2.98±2.82 | 4.36±2.06 | 4.38±2.23 | 0.90±0.36 |
表2 被试植物在不同季节的净光合速率、水分利用效率及蒸腾速率的日平均值(平均值±标准偏差)
Table 2 Diurnal average valuse of net photosynthetic rate (Pn)、water utilization efficiency (WUE) and transpiration rate (Tr) of plants tested in different seasons (mean±SD)
植物种类 Species | 净光合速率 Pn (μmol·m-2·s-1) | 水分利用效率 WUE (μmol·mol-1) | 蒸腾速率 Tr (mol·m-2·s-1) | |||||
---|---|---|---|---|---|---|---|---|
夏季Summer | 冬季Winter | 夏季Summer | 冬季Winter | 夏季Summer | 冬季Winter | |||
大叶相思Acacia auriculiformis | 16.45±5.25 | 7.58±2.67 | 2.71±0.59 | 8.42±4.18 | 6.33±2.47 | 1.33±1.04 | ||
油榄仁Terminalia bellirica | 15.50±3.87 | 4.45±1.53 | 3.60±1.05 | 2.78±1.25 | 4.87±2.08 | 1.99±1.13 | ||
铁刀木Cassia siamea | 12.86±4.38 | 5.89±2.23 | 3.10±0.66 | 4.70±2.19 | 4.55±2.11 | 1.41±0.59 | ||
云南石梓Gmelina arborea | 12.64±2.95 | 6.46±1.32 | 2.65±1.13 | 9.84±4.89 | 5.84±2.75 | 0.92±0.61 | ||
柚木Tectona grandis | 12.19±4.00 | 4.51±0.91 | 2.31±0.61 | 4.41±1.03 | 5.88±2.87 | 1.07±0.26 | ||
红胶木Tristania conferta | 11.40±3.40 | 3.40±1.35 | 2.48±0.53 | 6.31±3.16 | 4.80±1.68 | 0.58±0.22 | ||
樟树Cinnamomum camphora | 11.28±4.16 | 2.18±0.84 | 2.79±0.79 | 5.47±3.51 | 4.52±2.21 | 0.46±0.18 | ||
海南红豆Ormosia pinnata | 10.23±1.85 | 2.07±1.18 | 3.32±0.46 | 6.52±2.51 | 3.15±0.80 | 0.40±0.28 | ||
铁冬青Ilex rotunda | 10.05±3.56 | 4.66±1.12 | 1.98±0.63 | 3.35±1.09 | 5.72±2.40 | 1.46±0.42 | ||
海南蒲桃Syzygium cumini | 9.49±3.34 | 5.20±1.92 | 2.85±1.55 | 5.38±3.25 | 4.05±1.84 | 1.15±0.50 | ||
双翼豆Peltophorum ptetocarpum | 9.20±3.25 | 4.70±2.05 | 2.31±0.79 | 3.38±0.52 | 4.67±2.16 | 1.45±0.68 | ||
海南翅苹婆Pterygota alata | 8.45±1.82 | 3.49±1.16 | 2.98±2.82 | 4.36±2.06 | 4.38±2.23 | 0.90±0.36 |
[1] | Chen CJ( 陈存及), Chen HF( 陈伙法) (2000). Broadleaved Tree Species Planting(阔叶树种栽培). Chinese Forestry Publishing House, Beijing, 315. (in Chinese) |
[2] | Guo YL( 郭耀纶), Fan KX( 范开翔), Huang CW( 黄慈薇), Li YP( 李彦屏), Wu HL( 吴惠纶), Cai RF( 蔡瑞芬) (2004). Gas exchange potential in sun-exposed leaves of 30 broadleaf tree species in Taiwan. Taiwan Scientia Silvae Sinicae(台湾林业科学), 19, 375-386. (in Chinese with English abstract) |
[3] | Jha AK (1992). Evaluation of coal mine spoil as a medium for plant growth in a dry tropical environment. Indian Forester, 118, 909-916. |
[4] | Kabir ME, Webb E (2005). Productivity and suitability analysis of social forestry woodlot species in Dhaka Forest Division, Bangladesh. Forest Ecology and Management, 212, 243-252. |
[5] | Kuang TY( 匡廷云) (2004). Photosynthetic Effeciency of Crops and Its Regulations(作物光能利用效率与调控). Shandong Science and Technology Press, Jinan, 306-311.(in Chinese) |
[6] | Kumar S, Bisht NS, Bao RN (1995). Afforestation of lateratic pans of Goa-a case study. Indian Forester, 121, 176-178. |
[7] | Krause GH, Koroleva OY, Dalling W, Winter K(2001). Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps. Plant, Cell and Environment, 24, 1345-1352. |
[8] | Liu SZ( 刘世忠), Xia HP( 夏汉平), Kong GH( 孔国辉), Deng ZP( 邓钊平), Ke HH( 柯宏华), Li LH( 李丽华), Tan P( 谭鹏) (2002). The soil and vegetation of oil shale waste dump in Maoming city, Guangdong Province. Ecologic Science(生态科学), 21, 25-28. (in Chinese with English abstract) |
[9] | Liu WB( 刘文彬), Guan J( 管杰) (1995). A physio-ecological study on three typical plants in the restoration process of a degraded ecosystem. Proceedings of the First National Symposium on the Conservation and Sustainable Use of Biodiversity(首届全国生物多样性保护与持续利用研讨会论文集). Chinese Scientific and Technology Press, Beijing. (in Chinese with English abstract) |
[10] | Pan RC( 潘瑞炽), Dong YD( 董愚得) (1984). Plant Physiology(植物生理学) 2nd edn. Higher Education Press, Beijing, 73-111. (in Chinese) |
[11] | Reith PB, Ellsworth DS, Uhl C(1995). Leaf carbon and nutrient assimilation and conservation in species of differing status in an oligotropic Amazonian forest. Functional Ecology, 9, 65-76. |
[12] | Schulze ED, Hall AE (1982). Stamatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Physiological Plant EcologyⅡ. Encycle Plant Physiol(NS) Vol 1 Spring-Verblag, Berlin Heideberg, 181-230. |
[13] | Singh AN, Singh JS (1999). Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. Forest Ecology and Management, 119, 195-207. |
[14] | Song SQ( 宋书巧), Zhou YZ( 周永章) (2001). Mining wasteland and its ecological restoration and reconstruction. Conservation and Utilization of Mineral Resources(矿业保护与重建), 5, 43-49. (in Chinese with English abstract) |
[15] | Vera NE, Finegan B, Newton AC(1999). The photosynthetic characteristics of sapling of eight canopy tree species in a disturbed neotropical rain forest. Photosynthetica, 36, 407-422. |
[16] | Xia HP( 夏汉平), Huang J( 黄娟), Kong GH( 孔国辉)(2004). Ecological restoration of oil shale waste dumps. Acta Ecologica Sinica(生态学报), 24, 2887-2893. (in Chinese with English abstract) |
[17] | Xia HP( 夏汉平), Kong GH( 孔国辉), Ao HX( 敖惠修), Liu SZ( 刘世忠) (2000). Comparison of four herbaceous plants in Pb and Cd uptake from oil shale waste residual derived soil. Rural Eco-Environment(农村生态环境), 16(4), 28-32. (in Chinese with English abstract) |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[3] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[4] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[5] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[6] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[7] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[8] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[9] | 程汉亭, 李勤奋, 刘景坤, 严廷良, 张俏燕, 王进闯. 橡胶林下益智光合特性的季节动态变化[J]. 植物生态学报, 2018, 42(5): 585-594. |
[10] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[11] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[12] | 刘晓, 戚超, 闫艺兰, 袁国富. 不同生态系统水分利用效率指标在黄土高原半干旱草地应用的适宜性评价[J]. 植物生态学报, 2017, 41(5): 497-505. |
[13] | 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518. |
[14] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
[15] | 范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉. 最优气孔行为理论和气孔导度模拟[J]. 植物生态学报, 2016, 40(6): 631-642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19