植物生态学报 ›› 2009, Vol. 33 ›› Issue (5): 950-957.DOI: 10.3773/j.issn.1005-264x.2009.05.014
国红1,*(), 雷相东1, VeroniqueLetort2, 陆元昌1, PhilippedeReffye2
收稿日期:
2008-10-22
修回日期:
2009-05-15
出版日期:
2009-10-22
发布日期:
2009-09-30
通讯作者:
国红
作者简介:
*(hongguo@caf.ac.cn)基金资助:
GUO Hong1,*(), LEI Xiang-Dong1, Veronique Letort2, LU Yuan-Chang1, Philippe de Reffye2
Received:
2008-10-22
Revised:
2009-05-15
Online:
2009-10-22
Published:
2009-09-30
Contact:
GUO Hong
摘要:
植物结构-功能模型(Functional-structural models, FSMs)将结构模型与过程模型结合起来, 用以描述环境机制驱动的植物生长, 输出植物的三维结构。GreenLab是一个近年来不断发展着的基于源-汇关系的通用植物结构-功能模型, 它多应用于农作物, 在树木方面的应用还很少。该文以幼龄油松(Pinus tabulaeformis)为研究对象, 首次将GreenLab模型应用到虚拟树木生长的研究中。采用破坏性取样, 实测了9株油松幼树的形态结构、拓扑结构和器官生物量信息, 根据拓扑编码体系组织数据。模型的直接参数是通过实测数据获得的, 隐含参数是利用非线性最小二乘法拟合反求获得的。对模型的假设进行了验证, 并对模型的模拟效果进行了评估, 结果表明: 节间总鲜质量、树木叶总鲜质量、节间鲜质量、节间长度观测值和模型模拟值建立的回归方程的决定系数在0.78~0.91之间, 因此该模型较真实地反映了油松的结构和生长过程。提出的树木结构和生物量测量及编码方法, 可作为针叶树建立结构-功能模型的参照。
国红, 雷相东, VeroniqueLetort, 陆元昌, PhilippedeReffye. 基于GreenLab的油松结构-功能模型. 植物生态学报, 2009, 33(5): 950-957. DOI: 10.3773/j.issn.1005-264x.2009.05.014
GUO Hong, LEI Xiang-Dong, Veronique Letort, LU Yuan-Chang, Philippe de Reffye. A FUNCTIONAL-STRUCTURAL MODEL GREENLAB FOR PINUS TABULAEFORMIS. Chinese Journal of Plant Ecology, 2009, 33(5): 950-957. DOI: 10.3773/j.issn.1005-264x.2009.05.014
图1 5年生油松拓扑结构首先, 确定树干的分枝级别(Branching order) (Godin et al., 1999)为0, 则主干上的侧枝的分枝级别为1, 成为一级枝, 而侧枝的分枝被称为二级枝, 依次类推。把不同级别的分枝表示为不同的生理年龄, 设树干的生理年龄为1, 一级枝的生理年龄为2, 依次类推。由于1~5年生幼树分枝级别最多为三级枝, 因此, 生理年龄最大为4。
Fig. 1 Topological structure for 5-year-old Pinus tabulaeformis
参数 Parameter | PA 1 | PA 2 | PA 3 | PA 4 |
---|---|---|---|---|
Pe | 0.65 | 0.25 | 0.08 | 0.03 |
Pa | 1.00 | 0.95 | 0.18 | 0.10 |
T | 3 a | |||
SLW | 0.08 g·cm-2 | |||
be | 47.75 | 134.33 | 270.93 | 190.71 |
β | -0.06 | 0.06 | -0.12 | 0.50 |
Sp | 0.13 m2 | |||
r | 0.48 |
表1 油松幼树模型参数表
Table 1 Parameters for Pinus tabulaeformis saplings
参数 Parameter | PA 1 | PA 2 | PA 3 | PA 4 |
---|---|---|---|---|
Pe | 0.65 | 0.25 | 0.08 | 0.03 |
Pa | 1.00 | 0.95 | 0.18 | 0.10 |
T | 3 a | |||
SLW | 0.08 g·cm-2 | |||
be | 47.75 | 134.33 | 270.93 | 190.71 |
β | -0.06 | 0.06 | -0.12 | 0.50 |
Sp | 0.13 m2 | |||
r | 0.48 |
[1] |
Caraglio Y, Barthelemy D (2007). Plant morphology and architecture: a dynamic, multilevel and comprehensive approach of plant form and ontogeny. Annals of Botany, 99, 375-407.
DOI URL PMID |
[2] |
Cournède PH, Kang MZ, Rostand-Mathieu A, Yan HP, Hu BG, de Reffye Ph (2006). Structural factorization of plants to compute their functional and architectural growth. Simulation, 82, 427-438.
DOI URL |
[3] |
de Reffye Ph, Blaise F (1999). Calibration of a hydraulic architecture-based growth model of cotton plants. Agronomie, 19, 265-280.
DOI URL |
[4] | Dong QX, Wang YM, Barczi JF, de Reffye Ph, Hou JL (2003). Tomato growth modeling based on interaction of its structure-function. In: Hu BG, Jaeger M eds. Plant Growth Modeling and Applications: 2003′ International Symposium on Plant Growth Modeling, Simulation, Visualization and Their Applications. Tsinghua University Press-Springer,Beijing, 250-262. |
[5] |
Godin C, Costes E, Sinoquet H (1999). A method for describing plant architecture which integrates topology and geometry. Annals of Botany, 84, 343-357.
DOI URL |
[6] |
Guo Y, Ma YT, Zhan ZG, Li BG, Dingkuhn M, Luquet D, de Reffye Ph (2006). Parameters optimization and field validation of the functional-structural model Greenlab for maize. Annals of Botany, 97, 217-230.
DOI URL PMID |
[7] | Halle F, Oldeman RAA, Tomlinson PB (1978). Tropical Trees and Forests: an Architectural Analysis. Springer-Verlag, Berlin. |
[8] | Hu BG, de Reffye Ph, Zhao X, Yan HP, Kang MZ (2003). GreenLab: a new methodology towards plant functional-structure model—structural aspect. In: Hu BG, Jaeger M eds. Plant Growth Modeling and Applications: 2003′ International Symposium on Plant Growth Modeling, Simulation, Visualization and Their Applications. Tsinghua University Press-Springer,Beijing, 21-35. |
[9] | Kang MZ (康孟珍) (2003). Functional and Structural Stochastic Plant Modeling Based on Substructures (基于子结构的植物功能结构随机模型). PhD disserta- tion, Institute of Automation, Chinese Academy of Sciences,Beijing, 21. (in Chinese) |
[10] | Le Dizè S, Cruiziat P, Lacointe A, Sinoquet H, Le Roux X, Balandier PH, Jacquet P (1997). A model for simulating structure-function relationships in walnut tree growth processes. Silva Fennica, 31, 313-328. |
[11] |
Lei XD (雷相东), Chang M (常敏), Lu YC (陆元昌), Zhao TZ (赵天忠) (2006). A review on growth modeling and visualization for virtual trees. Scientia Silvae Sinicae (林业科学), 42(11), 123-131. (in Chinese with English abstract)
DOI URL |
[12] | Ma YT (马韫韬), Guo Y (郭焱), Zhan ZG (展志岗), Li BG (李保国), de Reffye Ph(2006). Evaluation of the plant growth model l GREENLAB-Maize. Acta Agronomica Sinica (作物学报), 32, 956-963. (in Chinese with English abstract) |
[13] |
Perttunen J, Nikinmaa E, Lechowicz MJ, Sievänen R, Messierk C (2001). Application of the functional- structural tree model LIGNUM to sugar maple saplings (Acer saccharum Marsh) growing in forest gaps. Annals of Botany, 88, 471-481.
DOI URL |
[14] | Perttunen J, Sievänen R (2005). Incorporating Lindenmayer systems for architectural development in a functional-structural tree model. Ecological Modelling, 181, 479-491. |
[15] |
Perttunen J, Sievänen R, Nikinmaa E (1998). LIGNUM: a model combining the structure and the functioning of trees. Ecological Modelling, 108, 189-198.
DOI URL |
[16] |
Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Saarenmaa H, Väkevä J (1996). LIGNUM: a tree model based on simple structural units. Annals of Botany, 77, 87-98.
DOI URL |
[17] |
Rauscher HM, Isebrands JG, Host GE, Dickson RE, Dickmann DR, Crow TR, Michael DA (1990). ECOPHYS: an ecophysiological growth process model for juvenile poplar. Tree Physiology, 7, 255-281.
DOI URL PMID |
[18] | Room PM, Maillette L, Hanan JS (1994). Module and metamer dynamics and virtual plants. Advances in Ecological Research, 25, 105-157. |
[19] |
Sievänen R, Nikinmaa E, Nygren P, Ozier-Lafontaine H, Perttunen J, Hakula H (2000). Components of functional-structural tree models. Annals of Forest Science, 57, 399-412
DOI URL |
[20] | Song YH (宋有洪), Guo Y (郭焱), Li BG (李保国), de Reffye Ph (2003). Virtual maize model II. Plant morphological constructing based on organ biomass accumulation. Acta Ecologica Sinica (生态学报), 23, 2579-2586. (in Chinese with English abstract) |
[21] |
Yan HP, Kang MZ, de Reffye Ph, Dingkuhn M (2004). A dynamic, architectural plant model simulating resource-dependent growth. Annals of Botany, 93, 591-602.
DOI URL PMID |
[22] | Yang D (杨东), Yang XQ (杨秀琴) (2004). Studies on biomass and productivity of Pinus tabulaeformis plantation in the Wufengshang of Wudu, Gansu Province. Journal of Northwest Normal University (Natural Science) (西北师范大学学报(自然科学版)), 40, 70-73. (in Chinese with English abstract) |
[23] | Zhan ZG (展志岗), Wang YM (王一鸣), de Reffye Ph, Hu BG (胡包刚) (2001). Morphological architecture- based growth model of winter wheat. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 17, 6-10. (in Chinese with English abstract) |
[24] | Zhan ZG, de Reffye Ph, Houllier F, Hu BG (2003). Fitting a structural functional model with plant architectural data. In: Hu BG, Jaeger M eds. Plant Growth Modeling and Applications: 2003′ International Symposium on Plant Growth Modeling, Simulation, Visualization and Their Applications. Tsinghua University Press- Springer,Beijing, 236-249. |
[1] | 肖迪, 王晓洁, 张凯, 何念鹏, 侯继华. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响[J]. 植物生态学报, 2016, 40(7): 686-701. |
[2] | 张维康, 李贺, 王国宏. 北京西北部山地两个垂直样带内主要植被类型的群落特征[J]. 植物生态学报, 2013, 37(6): 566-570. |
[3] | 梁冬, 毛建丰, 赵伟, 周先清, 袁虎威, 王黎明, 邢芳倩, 王晓茹, 李悦. 高山松及其亲本种群在油松生境下的苗期性状[J]. 植物生态学报, 2013, 37(2): 150-163. |
[4] | 李善家, 张有福, 陈拓. 西北油松叶片δ13C特征与环境因子和叶片矿质元素的关系[J]. 植物生态学报, 2011, 35(6): 596-604. |
[5] | 国红, 雷相东, Veronique LETORT, 陆元昌. 基于GreenLab原理构建油松成年树的结构-功能 模型[J]. 植物生态学报, 2011, 35(4): 422-430. |
[6] | 高利霞, 毕润成, 闫明. 山西霍山油松林的物种多度分布格局[J]. 植物生态学报, 2011, 35(12): 1256-1270. |
[7] | 王华, 欧阳志云, 郑华, 王效科, 倪永明, 任玉芬. 北京绿化树种油松、雪松和刺槐树干液流的空间变异特征[J]. 植物生态学报, 2010, 34(8): 924-937. |
[8] | 刘莹, 王国梁, 刘国彬, 曲秋玲, 袁子成. 不同分类系统下油松幼苗根系特征的差异与联系[J]. 植物生态学报, 2010, 34(12): 1386-1393. |
[9] | 张冬梅, 孙佩光, 沈熙环, 茹广欣. 油松种子园自由授粉与控制授粉种子父本分析[J]. 植物生态学报, 2009, 33(2): 302-310. |
[10] | 杨小林, 张希明, 李义玲, 李绍才, 孙海龙. 塔克拉玛干沙漠腹地3种植物根系构型 及其生境适应策略[J]. 植物生态学报, 2008, 32(6): 1268-1276. |
[11] | 何亚平, 费世民, 蒋俊明, 陈秀明, 张旭东, 何飞. 不同龄级划分方法对种群存活分析的影响——以水灾迹地油松和华山松种群生存分析为例[J]. 植物生态学报, 2008, 32(2): 448-455. |
[12] | 费世民, 何亚平, 陈秀明, 蒋俊明, 郭志华. 秦岭水灾迹地油松和华山松更新种群数量特征[J]. 植物生态学报, 2008, 32(1): 95-105. |
[13] | 黄艺, 彭博, 李婷, 梁振春. 外生菌根真菌对重金属铜镉污染土壤中油松生长和元素积累分布的影响[J]. 植物生态学报, 2007, 31(5): 923-929. |
[14] | 王华田, 马履一, 徐军亮. 油松人工林SPAC水势梯度时空变化规律及其对边材液流传输的影响[J]. 植物生态学报, 2004, 28(5): 637-643. |
[15] | 张冬梅, 李悦, 沈熙环, 周世良, 张春晓. 去劣疏伐对油松种子园交配系统及遗传多样性影响的研究[J]. 植物生态学报, 2001, 25(4): 483-487. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19