植物生态学报 ›› 2010, Vol. 34 ›› Issue (2): 160-169.DOI: 10.3773/j.issn.1005-264x.2010.02.007
所属专题: 稳定同位素生态学
收稿日期:
2009-01-21
接受日期:
2009-05-06
出版日期:
2010-01-21
发布日期:
2010-02-01
通讯作者:
黄建辉
作者简介:
* E-mail: jhhuang@ibcas.ac.cn
WU Tian-Xiang1,2, HUANG Jian-Hui1,*()
Received:
2009-01-21
Accepted:
2009-05-06
Online:
2010-01-21
Published:
2010-02-01
Contact:
HUANG Jian-Hui
摘要:
植物和土壤中的15N自然丰度值(δ15N)是评价生态系统N循环的一个重要指标, 而放牧是草原生态系统的主要土地利用方式, 对草原生态系统的N循环过程的改变起着重要作用。该研究测定了内蒙古锡林河流域放牧和围封条件下草原群落主要优势植物和土壤的δ15N值, 探讨放牧对草原N循环的影响。研究中所测定的8种植物叶片δ15N变化很大(-4.04‰-4.34‰), 但与植物功能型有一定的相关性。放牧显著降低了大针茅(Stipa grandis)、杂类草和小半灌木木地肤(Kochia prostrata)的δ15N值。具有潜在共生固氮能力的豆科植物δ15N偏低负值(-4.04‰ - -1.90‰), 但在放牧和围封条件下无显著差异; 而被认为具有联合固氮能力的羊草(Leymus chinensis), 放牧后δ15N显著增加, 一定程度上表明了豆科植物和羊草生物固氮能力的存在。所有植物中, 除无菌根侵染的木地肤外, 其他有丛枝菌根真菌侵染记录的物种δ15N值较低, 通常接近0或为负值, 说明在N限制的内蒙古草原, 菌根转运N可能也是一种重要的N源途径。放牧显著降低了0-20 cm土壤δ15N值, 这也与过去的研究结果不同。δ15N的测定为生态系统提供了一个整合时空N循环过程的综合指标, 反映出放牧改变了草原生态系统的N循环。
吴田乡, 黄建辉. 放牧对内蒙古典型草原生态系统植物及土壤δ15N的影响. 植物生态学报, 2010, 34(2): 160-169. DOI: 10.3773/j.issn.1005-264x.2010.02.007
WU Tian-Xiang, HUANG Jian-Hui. Effects of grazing on the δ 15N values of foliage and soil in a typical steppe ecosystem in Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34(2): 160-169. DOI: 10.3773/j.issn.1005-264x.2010.02.007
土地利用 Land use | 土层深度 Soil depth (cm) | 土壤含水量 Soil moisture (%) | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
围封 | 0-10 | 2.02 | 6.78 | 16.01 | 0.92 | 0.21 | 2.15 | 0.57 |
Fenced | 10-20 | 1.72 | 6.72 | 10.11 | 0.50 | 0.14 | 2.19 | 0.76 |
放牧 | 0-10 | 1.06 | 6.89 | 9.20 | 0.56 | 0.14 | 7.31 | 1.68 |
Grazed | 10-20 | 1.48 | 6.62 | 9.28 | 0.55 | 0.14 | 7.22 | 1.91 |
表1 围封和放牧样地中土壤的理化性质
Table 1 Soil physiochemical properties in fenced and grazed plots
土地利用 Land use | 土层深度 Soil depth (cm) | 土壤含水量 Soil moisture (%) | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
围封 | 0-10 | 2.02 | 6.78 | 16.01 | 0.92 | 0.21 | 2.15 | 0.57 |
Fenced | 10-20 | 1.72 | 6.72 | 10.11 | 0.50 | 0.14 | 2.19 | 0.76 |
放牧 | 0-10 | 1.06 | 6.89 | 9.20 | 0.56 | 0.14 | 7.31 | 1.68 |
Grazed | 10-20 | 1.48 | 6.62 | 9.28 | 0.55 | 0.14 | 7.22 | 1.91 |
图1 放牧和围封下小叶锦鸡儿和木地肤根际土壤的δ15N (平均值±标准误差)。 a、b, 表示在p < 0.05水平上差异显著。
Fig. 1 δ15N of rhizosphere soils of Caragana microphylla and Kochia prostrata in fenced and grazed plots (mean ± SE). a, b represent significant difference at p < 0.05.
图2 放牧和围封条件下各类植物叶片的δ15N值(平均值 ± 标准误差)。 Asga., 乳白花黄芪; Cami., 小叶锦鸡儿; Heal., 阿尔泰狗娃花; Kopr., 木地肤; Lech., 羊草; Meru., 扁蓿豆; Poac., 星毛委陵菜; Stgr., 大针茅; *, p < 0.05, **, p < 0.01, ***, p < 0.001; ns表示差异不显著
Fig. 2 Foliar 15N natural abundance of plant species in fenced and grazed plots (mean ± SE). Asga., Astragalus galactites; Cami., Caragana microphylla; Heal., Heteropappus altaicus; Kopr., Kochia prostrata; Lech., Leymus chinensis; Meru., Melilotoides ruthenica; Poac., Potentilla acaulis; Stgr., Stipa grandis; *, p < 0.05, **, p < 0.01, ***, p < 0.001; ns denotes no significant difference
图3 植物叶片的δ15N和氮含量(%)的关系。 A, 豆科植物; B, 所有非豆科植物; C, 非豆科植物(不包括小半灌木木地肤); Rf2和Rg2分别表示围封和放牧条件下的R2值。
Fig. 3 Relationship between foliar δ15N and N concentration (%). A, legumes; B, all non-legumes; C, non-legumes except semi-shrub; Rf2, Rg2 represent R2 values under fenced and grazed conditions, respectively.
物种 Species | 土地利用 Land use | 密度 Density (plant·m-2) | 频度 Frequency (%) | 高度 Height (cm) |
---|---|---|---|---|
扁蓿豆 Melilotoides ruthenica | 围封 Fenced | 0.05 | 5 | 5.00 |
放牧 Grazed | 1.50 | 60 | 8.05 | |
小叶锦鸡儿 Caragana microphylla | 围封 Fenced | 0.95 | 40 | 22.42 |
放牧 Grazed | 1.15 | 35 | 15.76 | |
乳白花黄芪 Astragalus galactites | 放牧 Grazed | 1.10 | 55 | 3.93 |
表2 放牧和围封条件下豆科植物的分布情况
Table 2 Distribution of legumes in grazed and fenced plots
物种 Species | 土地利用 Land use | 密度 Density (plant·m-2) | 频度 Frequency (%) | 高度 Height (cm) |
---|---|---|---|---|
扁蓿豆 Melilotoides ruthenica | 围封 Fenced | 0.05 | 5 | 5.00 |
放牧 Grazed | 1.50 | 60 | 8.05 | |
小叶锦鸡儿 Caragana microphylla | 围封 Fenced | 0.95 | 40 | 22.42 |
放牧 Grazed | 1.15 | 35 | 15.76 | |
乳白花黄芪 Astragalus galactites | 放牧 Grazed | 1.10 | 55 | 3.93 |
[1] | Abbadie L, Mariotti A, Menaut JC (1992). Independence of savanna grasses from soil organic matter for their nitrogen supply. Ecology, 73, 608-613. |
[2] | Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003). Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles, 17, 1031, doi: 10.1029/2002GB001903. |
[3] | Austin AT, Sala OE (1999). Foliar δ15N is negatively correlated with rainfall along the IGBP transect in Australia. Australian Journal of Soil Research, 26, 293-295. |
[4] | Bao YY (包玉英), Yan W (闫伟) (2004). Arbuscular mycorrhizae and their structural types on common plants in grasslands of mid-western Inner Mongolia. Biodiversity Science (生物多样性), 12, 501-508. (in Chinese with English abstract) |
[5] |
Bai Y, Han X, Wu J, Chen Z, Li L (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL PMID |
[6] | Ben-David M, Bowyer RT, Duffy LK, Roby DD, Schell DM (1998). Social behavior and ecosystem processes: river otter latrines and nutrient dynamics of terrestrial vegetation. Ecology, 79, 2567-2571. |
[7] | Boddey RM, Peoples MB, Palmer B, Dart PJ (2000). Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycling in Agroecosystems, 57, 235-270. |
[8] | Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systmatics, 33, 507-559. |
[9] | Eom AH, Wilson GWT, Hartnett DC (2001). Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia, 93, 233-242. |
[10] |
Evans RD (2001). Physiological mechanisms influencing plant nitrogen isotope composition. Trends in Plant Science, 6, 121-126.
DOI URL PMID |
[11] | Evans RD (2007). Soil nitrogen isotope composition. In: Michener R, Lajtha K eds. Stable Isotopes in Ecology and Environmental Science. Blackwell Publishing, Malden, USA. 83-98. |
[12] | Evans RD, Belnap J (1999). Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology, 80, 150-160. |
[13] | Frank DA, Evans RD (1997). Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology, 78, 2238-2248. |
[14] | Frank DA, Evans RD, Tracy BF (2004). The role of ammonia volatilization in controlling the natural 15N abundance of a grazed grassland. Biogeochemistry, 68, 169-178. |
[15] | Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H (2008). Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 307, 41-50. |
[16] | Gao YZ (高英志), Han XG (韩兴国), Wang SP (汪诗平) (2004a). The effects of grazing on grassland soils. Acta Ecologica Sinica (生态学报), 24, 790-797. (in Chinese with English abstract) |
[17] | Gao YZ (高英志), Wang SP (汪诗平), Han XG (韩兴国), Chen QS (陈全胜), Wang YF (王艳芬), Zhou ZY (周志勇), Zhang SM (张淑敏), Yang J (杨晶) (2004b). Soil nitrogen regime and the relationship between aboveground green phytobiomass and soil nitrogen fractions at different stocking rates in the Xilin River Basin, Inner Mongolia. Acta Phytoecologica Sinica (植物生态学报), 28, 285-293. (in Chinese with English abstract) |
[18] |
Garten CT (1993). Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch Watershed. Ecology, 74, 2098-2113.
DOI URL |
[19] | Guan XQ (关秀清), Du QY (杜千有), Wang JW (王继伟) (1989). Determination of the seasonal changes of the biological nitrogen-fixation activity of different plants in the Xilingoule grassland, Inner Mongolia. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 13, 387-391. (in Chinese with English abstract) |
[20] | Guan XQ (关秀清), Du QY (杜千有), Yu JZ (于井朝) (1997). Isolation and characteristics of N2-fixers from rhizosphere of plant Leymus chinensis in rangeland of Inner Mongolia. Acta Agrestia Sinica (草地学报), 5, 101-107. (in Chinese with English abstract) |
[21] | Högberg P (1997). 15N natural abundance in soil-plant systems. New Phytologist, 137, 179-203. |
[22] | Harris WN, Moretto AS, Distel RA, Boutton TW, Bóo RM (2007). Fire and grazing in grasslands of the Argentine Caldenal: effects on plant and soil carbon and nitrogen. Acta Oecologica, 32, 207-214. |
[23] |
Hobbie EA, Macko SA, Williams M (2000). Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia, 122, 273-283.
DOI URL PMID |
[24] |
Huygens D, Denef K, Vandeweyer R, Godoy R, Cleemput OV, Boeckx P (2008). Do nitrogen isotope patterns reflect microbial colonization of soil organic matter fractions? Biology and Fertility of Soils, 44, 955-964.
DOI URL |
[25] |
Kahmen A, Wanek W, Buchmann N (2008). Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia, 156, 861-870.
DOI URL PMID |
[26] | Kitayama K, Iwamoto K (2001). Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo. Plant and Soil, 229, 203-212. |
[27] | Ledgard S, Freney J, Simpson JR (1984). Variations in natural enrichment of 15N in the profiles of some Australian pasture soils. Australian Journal of Soil Research, 22, 155-164. |
[28] | Li XZ (李香真), Chen ZZ (陈佐忠) (1998). Influences of stocking rates on C, N, P contents in plant-soil systems. Acta Agrestia Sinica (草地学报), 6, 90-98. (in Chinese with English abstract) |
[29] | Ma CL (马昌燐), Yao YY (姚允寅), Chen M (陈明), Liu XL (刘晓兰), Liu ZY (刘泽银), Wang ZD (王志东), Hou JQ (侯景琴), Luo YY (骆永云), He FR (何凤茹) (1989). Application of 15N natural abundance method for assessing N2 fixation of nodulated crops. Journal of Nuclear Agricultural Sciences (核农学报), 3, 65-74. (in Chinese) |
[30] |
Miller AE, Bowman WD (2002). Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition by nitrogen form? Oecologia, 130, 609-616.
URL PMID |
[31] | Nadelhoffer KJ, Fry B (1994). Nitrogen isotope studies in forest ecosystems. In: Lajtha K, Michener R eds. Stable Isotopes in Ecology. Blackwell, Oxford, UK. 22-44. |
[32] |
Nadelhoffer KJ, Shaver G, Fry B, Giblin A, Johnson L, McKane R (1996). 15N natural abundances and N use by tundra plants. Oecologia, 107, 386-394.
URL PMID |
[33] |
Ometto JPHB, Ehleringer JR, Domingues TF, Berry JA, Ishida FY, Mazzi E, Higuchi N, Flangan LB, Nardoto GB, Martinelli LA (2006). The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry, 79, 251-274.
DOI URL |
[34] | Pardo LH, Hemond HF, Montoya JP, Fahey TJ, Siccama TG (2002). Response of the natural abundance of 15N in forest soils and foliage to high nitrate loss following clear-cutting. Canadian Journal of Forest Reseach, 32, 1126-1136. |
[35] | Pardo LH, Hemond HF, Montoya JP, Pett-Ridge J (2007). Natural abundance 15N in soil and litter across a nitrate-output gradient in New Hampshire. Forest Ecology and Management, 251, 217-230. |
[36] | Pardo LH, Templer PH, Goodale CL, Duke S, Groffman PM, Adams MB, Boeckx P, Boggs J, Campbell J, Colman B, Compton J, Emmett B, Gudersen P, Kjønaas J, Lovett G, Mack M, Magill A, Mbila M, Mitchell MJ, McGee G, McNulty S, Nadelhoffer K, Ollinger S, Ross D, Rueth H, Rustad L, Schaberg P, Schiff S, Schleppi P, Spoelstra J, Wessel W (2006). Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry, 80, 143-171. |
[37] | Pastor J, Dewey B, Naiman RJ, McInnes PF, Cohen Y (1993). Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology, 74, 467-480. |
[38] |
Robinson D (2001). δ15N as an integrator of the nitrogen cycle. Trends in Ecology and Evolution, 16, 153-162.
DOI URL PMID |
[39] | Sah SP, Rita H, Ilvesniemi H (2006). 15N natural abundance of foliage and soil across boreal forests of Finland. Biogeochemistry, 80, 277-288. |
[40] |
Schmidt S, Stewart GR (2003). 15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia, 134, 569-577.
URL PMID |
[41] | Schulze ED, Williams RJ, Farquhar GD, Schulze W, Langridge J, Miller JM, Walker BH (1998). Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Australian Journal of Plant Physiology, 25, 413-425. |
[42] |
Schulze ED, Chapin FS, Gebauer G (1994). Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia, 100, 406-412.
DOI URL PMID |
[43] | Shearer G, Kohl DH (1986). N2-fixation in field settings: estimations based on natural 15N abundance. Australian Journal of Plant Physiology, 13, 699-756. |
[44] | Shi WQ (石伟琦), Wang GA (王国安), Li XL (李晓林) (2008). Effects of arbuscular mycorrhizal fungi on gas exchange and stable isotope ratio of δ13C, δ15N of Leymus chinensis plant. Journal of Nuclear Agricultural Sciences (核农学报), 22, 353-358. (in Chinese with English abstract) |
[45] | Sirotnak JM, Huntly NJ (2000). Direct and indirect effects of herbivoreson nitrogen dynamics: voles in riparian areas. Ecology, 81, 78-87. |
[46] |
Sprent JI, Geoghegan IE, Whitty PW (1996). Natural abundance of 15N and 13C in nodulated legumes and other plants in the cerrado and neighbouring regions of Brazil. Oecologia, 105, 440-446.
DOI URL PMID |
[47] |
Su YY, Guo LD (2007). Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza, 17, 689-693.
DOI URL PMID |
[48] | Swap RJ, Aranibar JN, Dowty PR, Gilhooly WP, Macko SA (2004). Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Global Change Biology, 10, 350-358. |
[49] |
Templer PH, Arthur MA, Lovett GM, Weathers KC (2007). Plant and soil natural abundance 15N: indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia, 153, 399-406.
DOI URL PMID |
[50] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[51] |
Vitousek PM, Shearer G, Kohl DH (1989). Foliar 15N natural abundance in Hawaiian rainforest: patterns and possible mechanisms. Oecologia, 78, 383-388.
DOI URL PMID |
[52] | Wang FJ (王芳玖) (1985). Primary investigation on the root nodulation of wild legume plants. In: Inner Mongolia Grassland Ecosystem Research Station, Chinese Academy of Sciences ed. Research on Grassland Ecosystem No.5 (草原生态系统研究第五集), Inner Mongolia Grassland Ecosystem Research Station (inside materials), Inner Mongolia 124-134. (in Chinese) |
[53] | Wang YF (王艳芬), Wang SP (汪诗平) (1999). Influence of different stocking rates on belowground biomass in Inner Mongolia steppe. Acta Agrestia Sinica (草地学报), 7, 198-203. (in Chinese with English abstract) |
[54] | Xu YQ, Wan SQ, Cheng WX, Lin LH (2008). Impacts of grazing intensity on denitrification and N2O production in a semi-arid grassland ecosystem. Biogeochemistry, 88, 103-115. |
[55] | Xu YQ (徐雨晴) (2007). Effect of Grazing on N Distribution and Transformation in the Soil-Plant System in a Typical Temperate Steppe (家畜放牧对典型草原土壤-植被系统氮素转化的影响). PhD Dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[56] |
Zacheis A, Ruess RW, Hupp JW (2002). Nitrogen dynamics in an Alaskan salt marsh following spring use by geese. Oecologia, 130, 600-608.
DOI URL PMID |
[57] | Zhou LS, Huang JH, Lv FM, Han XG (2009). Effects of prescribed burning and seasonal and interannual climate variation on nitrogen mineralization in a typical steppe in Inner Mongolia. Soil Biology and Biochemistry, 41, 796-803. |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[7] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[8] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[9] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[10] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[11] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[12] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[13] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[14] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[15] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19