植物生态学报 ›› 2012, Vol. 36 ›› Issue (12): 1268-1276.DOI: 10.3724/SP.J.1258.2012.01268
许月1,2, 杨晓东1,2, 谢一鸣1,2, 徐艺露1,2, ScottXCHANG3, 阎恩荣1,2,*()
收稿日期:
2012-06-19
接受日期:
2012-08-07
出版日期:
2012-06-19
发布日期:
2012-11-28
通讯作者:
阎恩荣
作者简介:
(E-mail: eryan@des.ecnu.edu.cn)
XU Yue1,2, YANG Xiao-Dong1,2, XIE Yi-Ming1,2, XU Yi-Lu1,2, Scott X CHANG3, YAN En-Rong1,2,*()
Received:
2012-06-19
Accepted:
2012-08-07
Online:
2012-06-19
Published:
2012-11-28
Contact:
YAN En-Rong
摘要:
枝条大小和数量关系反映了植物适应环境胁迫的构型和生物量分配策略。该研究以浙江天童木本植物为对象, 通过对小枝大小(横截面积)与数量(稠密度)关系的研究发现: 1)小枝稠密度与枝截面积显著负相关(斜率为-1.32, CI = -1.48- -1.17; p < 0.05); 2)在相同曝光度, 在II级曝光环境(植株40%-80%暴露在直射光中)中常绿植物比落叶植物单位小枝截面积的小枝稠密度高, 而在I级(植株<40%暴露在直射光中)和III级(>80%暴露在直射光中)曝光环境中, 小枝稠密度在两种生活型间无显著差异; 3)在不同曝光度下, 常绿植物单位枝条在I和II级比III级曝光水平具有更高的小枝稠密度; 但落叶植物单位枝条的小枝稠密度在3个曝光水平相同; 4)相同枝条大小下, 4 m以下灌木比4 m以上的亚乔木和乔木具有更高的小枝稠密度。总之, 天童地区木本植物的小枝“大小-数量”关系符合Corner法则(描述枝叶“大小-数量”关系的法则), 且在不同生活型间存在差异, 常绿植物相对于落叶植物, 灌木相对于乔木具有较高的小枝稠密度, 从而有利于它们适应光资源的限制。
许月, 杨晓东, 谢一鸣, 徐艺露, ScottXCHANG, 阎恩荣. 浙江天童木本植物小枝的“大小-数量”权衡. 植物生态学报, 2012, 36(12): 1268-1276. DOI: 10.3724/SP.J.1258.2012.01268
XU Yue, YANG Xiao-Dong, XIE Yi-Ming, XU Yi-Lu, Scott X CHANG, YAN En-Rong. Twig size-number trade-off among woody plants in Tiantong region, Zhejiang Province of China. Chinese Journal of Plant Ecology, 2012, 36(12): 1268-1276. DOI: 10.3724/SP.J.1258.2012.01268
图1 物种水平植物小枝稠密度与小枝横截面积间的回归关系(n = 76)。***, P < 0.001。
Fig. 1 Regression relationship between twig intensity and twig cross-sectional area across species (n = 76). ***, P < 0.001.
因子 Factor | 自由度 df | 小枝稠密度 Twig intensity | 小枝大小 Twig size | |||
---|---|---|---|---|---|---|
F | p | F | p | |||
生活型 Life form | 1 | 7.87 | < 0.010 | 71.96 | < 0.001 | |
曝光度 Light exposure | 2 | 11.90 | < 0.001 | 47.43 | < 0.001 | |
生活型×曝光度 Life form × light exposure | 2 | 0.08 | > 0.050 | 3.27 | < 0.050 |
表1 生活型与曝光度对植物小枝“大小-数量”的双因素方差分析结果
Table 1 Results of two-way ANOVA of life form and light exposure for plant twig “size-number”
因子 Factor | 自由度 df | 小枝稠密度 Twig intensity | 小枝大小 Twig size | |||
---|---|---|---|---|---|---|
F | p | F | p | |||
生活型 Life form | 1 | 7.87 | < 0.010 | 71.96 | < 0.001 | |
曝光度 Light exposure | 2 | 11.90 | < 0.001 | 47.43 | < 0.001 | |
生活型×曝光度 Life form × light exposure | 2 | 0.08 | > 0.050 | 3.27 | < 0.050 |
图2 相同曝光环境条件下常绿和落叶植物小枝稠密度与枝横截面积间的回归关系。A, I级曝光度。B, II级曝光度。C, III级曝光度。*, p < 0.05; ***, p < 0.001。
Fig. 2 Regression relationship between twig intensity and twig cross-sectional area for evergreen and deciduous species at the same level of light exposure. A, Level-I light exposure. B, Level-II light exposure. C, Level-III light exposure. *, p < 0.05; ***, p < 0.001.
图3 常绿(A)和落叶(B)植物分别在不同曝光水平下小枝稠密度与枝横截面积的回归关系。LE-I、LE-II、LE-III分别表示I级、II级和III级曝光度。***, p < 0.001。
Fig. 3 Regression relationship between twig intensity and twig cross-sectional area for each of evergreen (A) and deciduous (B) species at different level of light exposure. LE-I, LE-II and LE-III are three levels of light exposure. ***, p < 0.001.
因子 Factor | 自由度 df | 小枝稠密度 Twig intensity | 小枝大小 Twig size | |||
---|---|---|---|---|---|---|
F | p | F | p | |||
生长型 Growth form | 1 | 52.23 | < 0.001 | 270.50 | < 0.001 | |
曝光度 Light exposure | 2 | 1.89 | > 0.050 | 8.81 | > 0.050 | |
生长型×曝光度 Growth form × light exposure | 2 | 0.72 | > 0.050 | 8.72 | > 0.050 |
表2 生长型与曝光度对植物小枝“大小-数量”的双因素方差分析结果
Table 2 Results of two-way ANOVA of growth form and light exposure for plant twig “size-number”
因子 Factor | 自由度 df | 小枝稠密度 Twig intensity | 小枝大小 Twig size | |||
---|---|---|---|---|---|---|
F | p | F | p | |||
生长型 Growth form | 1 | 52.23 | < 0.001 | 270.50 | < 0.001 | |
曝光度 Light exposure | 2 | 1.89 | > 0.050 | 8.81 | > 0.050 | |
生长型×曝光度 Growth form × light exposure | 2 | 0.72 | > 0.050 | 8.72 | > 0.050 |
图4 乔灌木层植物小枝稠密度与枝横截面积间的回归关系。H1、H2和H3分别表示灌木、亚乔木和乔木层。***, p < 0.001。
Fig. 4 Regression relationship between twig intensity and twig cross-sectional area for plants living in shrub and tree layers. H1, H2 and H3 represent shrub, sub-tree and tree layer, respectively. ***, p < 0.001.
1 | Brouat C, Gibernau M, Amsellem L, McKey D ( 1998). Corner’s rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry. New Phytologist, 139, 459-470. |
2 | Chapin FS III ( 1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260. |
3 | Coomes DA, Grubb PJ ( 1998). A comparison of 12 tree species of Amazonian caatinga using growth rates in gaps and understorey, and allometric relationships. Functional Ecology, 12, 426-435. |
4 | Corner EJH ( 1949). The Durian theory or the origin of the modern tree. Annals of Botany, 13, 367-414. |
5 | Daviero V, Meyer-Berthaud B, Lecoustre R ( 2000). Computer simulation of sphenopsid architecture. I. Principles and methodology. Review of Palaeobotany and Palynology, 109, 121-134. |
6 | Enquist BJ, Niklas KJ ( 2001). Invariant scaling relations across tree-dominated communities. Nature, 410, 655-660. |
7 | Enquist BJ, Niklas KJ ( 2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520. |
8 | Falster DS, Warton DI, Wright IJ (2006). User’s Guide to SMATR: Standardised Major Axis Tests & Routines Version 2.0.http://www.bio.mq.edu.au/ecology/SMATR/ . Cited March 11, 2012. |
9 | Gautier H, Mech R, Prusinkiewicz P, Varlet-Grancher C ( 2000). 3D architectural modelling of aerial photomorphogenesis in white clover ( Trifolium repens L.) using 1-systems. Annals of Botany, 85, 359-370. |
10 | Givnish TJ ( 1988). Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology, 15, 63-92. |
11 | Hallé F, Oldeman RAA, Tomlinson PB ( 1978). Tropical Trees and Forests: an Architectural Analysis. Springer, Berlin. |
12 | Henriksson J ( 2001). Differential shading of branches or whole trees: survival, growth, and reproduction. Oecologia, 126, 482-486. |
13 | Jensen S, Bell S ( 2001). Seagrass growth and patch dynamics: cross-scale morphological plasticity. Plant Ecology, 155, 201-217. |
14 | King DA, Davies SJ, Nur Supardi MN, Tan S ( 2005). Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology, 19, 445-453. |
15 | King DA, Maindonald JH ( 1999). Tree architecture in relation to leaf dimensions and tree stature in temperate and tropical rain forests. Journal of Ecology, 87, 1012-1024. |
16 | Kleiman D, Aarssen LW ( 2007). The leaf size/number trade-off in trees. Journal of Ecology, 95, 376-382. |
17 | Kohyama T, Hotta M ( 1990). Significance of allometry in tropical saplings. Functional Ecology, 4, 515-521. |
18 | Li T, Deng JM, Wang GX, Cheng DL, Yu ZL ( 2009). Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats. Polish Journal of Ecology, 57, 659-667. |
19 | Marcuvitz S, Turkington R ( 2000). Differential effects of light quality, provided by different grass neighbours, on the growth and morphology of Trifolium repens L.(white clover). Oecologia, 125, 293-300. |
20 | Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ ( 2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896. |
21 | Normand F, Bissery C, Damour G, Lauri PÉ ( 2008). Hydraulic and mechanical stem properties affect leaf-stem allometry in mango cultivars. New Phytologist, 178, 590-602. |
22 | Pickett STA, Kempf JS ( 1980). Branching patterns in forest shrubs and understory trees in relation to habitat. New Phytologist, 86, 219-228. |
23 | Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra- Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ ( 2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920. |
24 | Poorter H, Nagel O ( 2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology, 27, 1191-1191. |
25 |
Preston KA, Ackerly DD ( 2003). Hydraulic architecture and the evolution of shoot allometry in contrasting climates. American Journal of Botany, 90, 1502-1512.
DOI URL |
26 |
Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD ( 1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955-1969.
DOI URL |
27 | Roderick ML ( 2000). On the measurement of growth with applications to the modelling and analysis of plant growth. Functional Ecology, 14, 244-251. |
28 | Sachs T ( 1981). The control of the patterned differentiation of vascular tissues. Advances in Botanical Research, 9, 151-262. |
29 | Sachs T, Novoplansky A, Cohen D ( 1993). Plants as competing populations of redundant organs. Plant, Cell & Environment, 16, 765-770. |
30 | Sakai S ( 1995). Evolutionarily stable growth of a sapling which waits for future gap formation under closed canopy. Evolutionary Ecology, 9, 444-452. |
31 | Song YC ( 宋永昌), Wang XR ( 王祥荣 ) (1995). Vegetation and Flora of Tiantong National Forest Park Zhejiang Provi- nce (浙江天童国家森林公园的植被和区系). Shanghai Scientific and Technical Document Publishing House, Shanghai. (in Chinese) |
32 | Sterck F, Martinéz-ramos M, Dyer-Leal G, Rodríguez- Velazquez J, Poorter L ( 2003). The consequences of crown traits for the growth and survival of tree saplings in a Mexican lowland rainforest. Functional Ecology, 17, 194-200. |
33 |
Sun SC, Jin DM, Shi PL ( 2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
DOI URL |
34 |
Sun SC, Niklas KJ, Fang F, Xiang S, Wu XW, Yang XC ( 2010). Is branching intensity interspecifically related to biomass allocation? A survey of 25 dicot shrub species from an open-growing dry valley. International Journal of Plant Sciences, 171, 615-625.
DOI URL |
35 | Takahashi K, Rustandi A ( 2006). Responses of crown development to canopy openings by saplings of eight tropical submontane forest tree species in Indonesia: a comparison with cool-temperate trees. Annals of Botany, 97, 559-569. |
36 | Takenaka A ( 2000). Shoot growth responses to light microenvironment and correlative inhibition in tree seedlings under a forest canopy. Tree Physiology, 20, 987-991. |
37 | Turner IM (2001). The Ecology of Trees in the Tropical Rain Forest. Cambridge University Press, Cambridge, UK. |
38 | Veres JS, Pickett STA ( 1982). Branching patterns of Lindera benzoin beneath gaps and closed canopies. New Phytologist, 91, 767-772. |
39 | Warton DI, Weber NC ( 2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174. |
40 | West GB, Brown JH, Enquist BJ ( 1999). A general model for the structure and allometry of plant vascular systems. Nature, 400, 664-667. |
41 | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ ( 2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159. |
42 | Westoby M, Wright IJ ( 2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628. |
43 | Whitney GG ( 1976). The bifurcation ratio as an indicator of adaptive strategy in woody plant species. Bulletin of the Torrey Botanical Club, 103, 67-72. |
44 | Wright IJ, Reich PB, Westoby M ( 2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
45 | Wright IJ, Westoby M, Reich PB ( 2002). Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 90, 534-543. |
46 | Xiang S, Wu N, Sun SC ( 2009). Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis. Trees-Structure and Function, 23, 637-647. |
47 | Yang DM ( 杨冬梅), Zhan F ( 占峰), Zhang HW ( 张宏伟 ) ( 2012). Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China. Chinese Journal of Plant Ecology (植物生态学报), 36, 281-291. (in Chinese with English abstract) |
[1] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[2] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[3] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[4] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[5] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[6] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[7] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[8] | 师斌, 窦建德, 黄维, 李小伟. 宁夏贺兰山斑子麻黄荒漠群落特征[J]. 植物生态学报, 2022, 46(3): 362-367. |
[9] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[10] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[11] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[12] | 朱华. 云南常绿阔叶林的植被地理研究[J]. 植物生态学报, 2021, 45(3): 224-241. |
[13] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[14] | 乔鲜果, 郭柯, 赵利清, 王孜, 刘长成. 中国长芒草群系的群落特征[J]. 植物生态学报, 2020, 44(9): 986-994. |
[15] | 刘凌, 樊英杰, 宋晓彤, 李敏, 邵小明, 王晓蕊. 色季拉山不同腐解等级华山松倒木上的苔藓植物组合[J]. 植物生态学报, 2020, 44(8): 842-853. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19