植物生态学报 ›› 2013, Vol. 37 ›› Issue (1): 45-51.DOI: 10.3724/SP.J.1258.2013.00005
荐圣淇1, 赵传燕1,*(), 方书敏1,2, 余凯3, 马文瑛1
收稿日期:
2012-10-22
接受日期:
2012-12-10
出版日期:
2013-10-22
发布日期:
2013-01-15
通讯作者:
赵传燕
作者简介:
*(E-mail:nanzhr@lzb.ac.cn)基金资助:
JIAN Sheng-Qi1, ZHAO Chuan-Yan1,*(), FANG Shu-Min1,2, YU Kai3, MA Wen-Ying1
Received:
2012-10-22
Accepted:
2012-12-10
Online:
2013-10-22
Published:
2013-01-15
Contact:
ZHAO Chuan-Yan
摘要:
2011年5-10月, 以黄土高原人工造林主要灌木树种柠条(Caragana korshinskii)和沙棘(Hippophae rhamnoides)为研究对象, 通过测定冠层截留数据与冠层各组分持水能力, 采用Pereira回归分析法和直接测量法, 对柠条与沙棘的冠层持水能力进行了研究。结果表明: 受不同因素的影响, 两种方法测定的冠层持水能力有一定差异。回归分析法主要受植株叶面积指数(LAI)季节性变化与穿透雨观测方法的影响, 得到的柠条与沙棘冠层最大持水能力分别为0.68 mm和0.72 mm; 而直接测量法主要受冠层结构特征影响, 得到的柠条与沙棘冠层最大持水能力分别为0.73 mm和0.76 mm。直接测量法得到的柠条各组分最大持水量依次为枝(0.31 mm) >叶(0.27 mm) >树干(0.15 mm), 沙棘为树干(0.33 mm) >枝(0.29 mm) >叶(0.14 mm)。
荐圣淇, 赵传燕, 方书敏, 余凯, 马文瑛. 黄土高原丘陵沟壑区柠条与沙棘冠层的持水能力. 植物生态学报, 2013, 37(1): 45-51. DOI: 10.3724/SP.J.1258.2013.00005
JIAN Sheng-Qi, ZHAO Chuan-Yan, FANG Shu-Min, YU Kai, MA Wen-Ying. Water storage capacity of the canopy dominated by Caragana korshinskii and Hippophae rhamnoides in hilly and gully region on the Loess Plateau of Northwest China. Chinese Journal of Plant Ecology, 2013, 37(1): 45-51. DOI: 10.3724/SP.J.1258.2013.00005
图4 柠条和沙棘叶、枝、干持水能力箱线图, 显示平均值(虚线)、标准偏差、上四分位数、中位数、下四分位数和异常值。a, 柠条; b, 沙棘; 1, 叶; 2, 枝; 3, 干。
Fig. 4 Box-and-whisker diagrams of the water storage capacity of leaf, branch, trunk for Caragana korshinskii and Hippophae rhamnoides, showing the mean value (the dotted line), standard deviation 25th, 50th, 75th and abnormal value percentiles. a, Caragana korshinskii; b, Hippophae rhamnoides; 1, leaf; 2, branch; 3, trunk.
图5 柠条和沙棘枝干持水量与冠层小枝和叶片生物量占枝干总生物量比率的关系。A, 柠条。B, 沙棘。
Fig. 5 Relationships between water storage volume of branches and the biomass ratio of leaf and branch/trunk for Caragana korshinskii and Hippophae rhamnoides. A, Caragana korshinskii. B, Hippophae rhamnoides.
[1] | Aston AR (1979). Rainfall interception by eight small trees. Journal of Hydrology, 42, 383-396. |
[2] | Bouten W, Swart PJF, de Water E (1991). Microwave transmission, a new tool in forest hydrological research. Journal of Hydrology, 124, 119-130. |
[3] | Calder IR, Wright IR (1986). Gamma ray attenuation studies of interception from Sitka spruce: some evidence for an additional transport mechanism. Water Resources Research, 22, 409-417. |
[4] | Chason JW, Baldocchi DD, Huston MA (1991). A comparison of direct and indirect methods for estimating forest canopy leaf area. Agricultural and Forest Meteorology, 57, 107-128. |
[5] | Dunkerley DL (2008). Intra-storm evaporation as a component of canopy interception loss in dryland shrubs: observations from Fowlers Gap, Australia. Hydrological Processes, 22, 1985-1995. |
[6] | Dunkerley DL, Booth TL (1999). Plant canopy interception of rainfall and its significance in a banded landscape, arid western New South Wales, Australia. Water Resources Research, 35, 1581-1586. |
[7] | Garcia-Estringana P, Alonso-Blázquez N, Alegre J (2010). Water storage capacity, stemflow and water funneling in Mediterranean shrubs. Journal of Hydrology, 389, 363-372. |
[8] |
Gash JHC (1979). An analytical model of rainfall interception by forests. Quarterly Journal of the Royal Meteorological Society, 105, 43-55.
DOI URL |
[9] | Horton RE (1919). Rainfall interception. Monthly Weather Review, 47, 603-623. |
[10] | Keim RF, Skaugset AE, Weiler M (2006). Storage of water on vegetation under simulated rainfall of varying intensity. Advance in Water Resource, 29, 974-986. |
[11] | Li CW, Liu SR, Sun PS, Zhang YD, Ge JP (2005). Modeling canopy rainfall interception in the upper watershed of the Minjiang River. Acta Phytoecologica Sinica, 29, 60-67. (in Chinese with English abstract) |
[ 李崇巍, 刘世荣, 孙鹏森, 张远东, 葛剑平 (2005). 岷江上游植被冠层降水截留的空间模拟. 植物生态学报, 29, 60-67.] | |
[12] | Li ZX, Ouyang ZY, Zheng H, Liu XL, Su YM (2006). Comparison of rainfall redistribution in two ecosystems in Minjiang upper catchments, China. Journal of Plant Ecology (Chinese Version), 30, 723-731. (in Chinese with English abstract) |
[ 李振新, 欧阳志云, 郑华, 刘兴良, 宿以明 (2006). 岷江上游两种生态系统降雨分配的比较. 植物生态学报, 30, 723-731.] | |
[13] | Llorens P, Gallart F (2000). A simplified method for forest water storage capacity measurement. Journal of Hydrology, 240, 131-144. |
[14] |
Llorens P, Domingo F (2007). Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal of Hydrology, 335, 37-54.
DOI URL |
[15] | Maidment DR, Koch M (1993). Handbook of Hydrology. McGraw-Hill, New York. |
[16] |
Peng HH, Zhao CY, Xu ZL, Peng SZ, Wang Y (2011). Water storage capacity of Qinghai spruce (Picea crassifolia) forest canopy in Qilian Mountains. Chinese Journal of Applied Ecology, 22, 2233-2239. (in Chinese with English abstract)
URL PMID |
[ 彭焕华, 赵传燕, 许仲林, 彭守璋, 王瑶 (2011). 祁连山青海云杉冠层持水能力. 应用生态学报, 22, 2233-2239.]
PMID |
|
[17] | Pereira FL, Gash JHC, David JS, David TS, Monteiro PR, Valente F (2009). Modelling interception loss from evergreen oak Mediterranean savannas: application of a tree-based modelling approach. Agricultural and Forest Meteorology, 149, 680-688. |
[18] | Rutter AJ, Kershaw KA, Robins PC, Morton AJ (1972). A predictive model of rainfall interception in forests. I. Derivation of the model from observations in a plantation of Corsican pine. Agricultural Meteorology, 9, 367-384. |
[19] | Wan SQ, Chen LZ (1999). Canopy distribution of precipitation in warm temperate deciduous broad-leaved forests. Acta Phytoecologica Sinica, 23, 557-561. (in Chinese with English abstract) |
[ 万师强, 陈灵芝 (1999). 暖温带落叶阔叶林冠层对降雨的分配作用. 植物生态学报, 23, 557-561.] | |
[20] | Wang XP, Li XR, Zhang JG, Zhang ZS, Berndtsson R (2005). Measurement of rainfall interception by xerophytic shrubs in re-vegetated sand dunes. Journal of the International of Hydrology Science, 50, 897-910. |
[21] | Wang XP, Zhang YF, Hu H, Pan YX, Berndtsson R (2012). Canopy storage capacity of xerophytic shrubs in Northwestern China. Journal of Hydrology, 454-456, 152-159. |
[22] | Xue L, He YJ, Qu M, Wu M, Xu Y (2005). Water holding characteristics of litter in plantations in South China. Acta Phytoecologica Sinica, 29, 415-421. (in Chinese with English abstract) |
[ 薛立, 何跃君, 屈明, 吴敏, 徐燕(2005). 华南典型人工林凋落物的持水特性. 植物生态学报, 29, 415-421.] | |
[23] | Zhang X, Xue JH, Haibara K, Xu XT, Tian Y, Toda H, Liu YH (2007). Nutrient dynamics and hydrological process of karst forests in mountainous area of central Guizhou Province, China. Journal of Plant Ecology (Chinese Version), 31, 757-768. (in Chinese with English abstract) |
[ 张喜, 薛建辉, 生原喜久雄, 许笑天, 田野, 户田诰夫, 刘延惠 (2007). 黔中山地喀斯特森林的水文学过程和养分动态. 植物生态学报, 31, 757-768.] |
[1] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[2] | 王秀英, 陈奇, 杜华礼, 张睿, 马红璐. 基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究[J]. 植物生态学报, 2023, 47(7): 912-921. |
[3] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[4] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[5] | 张雪, 韩凤朋, 肖波, 沈思铭. 黄土高原生物结皮对地表粗糙度和灌草植物种子二次扩散的影响[J]. 植物生态学报, 2023, 47(12): 1668-1683. |
[6] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[7] | 冯印成, 王云琦, 王玉杰, 王凯, 王松年, 王杰帅. 重庆缙云山针阔混交林水汽通量特征及其影响因子[J]. 植物生态学报, 2022, 46(8): 890-903. |
[8] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[9] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[10] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[11] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[12] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[13] | 李鑫豪, 田文东, 李润东, 靳川, 蒋燕, 郝少荣, 贾昕, 田赟, 查天山. 北京松山落叶阔叶林生态系统水热通量对环境因子的响应[J]. 植物生态学报, 2021, 45(11): 1191-1202. |
[14] | 乔鲜果, 郭柯, 赵利清, 王孜, 刘长成. 中国长芒草群系的群落特征[J]. 植物生态学报, 2020, 44(9): 986-994. |
[15] | 李旭华, 孙建新. Biome-BGC模型模拟阔叶红松林碳水通量的参数敏感性检验和不确定性分析[J]. 植物生态学报, 2018, 42(12): 1131-1144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19