植物生态学报 ›› 2014, Vol. 38 ›› Issue (3): 219-230.DOI: 10.3724/SP.J.1258.2014.00019
所属专题: 生态系统碳水能量通量
• • 下一篇
李登秋1,*(), 周艳莲2,**, 居为民1, 王辉民3, 柳艺博1, 吴小翠1
收稿日期:
2013-11-04
接受日期:
2013-12-04
出版日期:
2014-11-04
发布日期:
2014-02-27
通讯作者:
李登秋,周艳莲
作者简介:
**E-mail: zhouyl@nju.edu.cn基金资助:
LI Deng-Qiu1,*(), ZHOU Yan-Lian2,**, JU Wei-Min1, WANG Hui-Min3, LIU Yi-Bo1, WU Xiao-Cui1
Received:
2013-11-04
Accepted:
2013-12-04
Online:
2014-11-04
Published:
2014-02-27
Contact:
LI Deng-Qiu,ZHOU Yan-Lian
摘要:
太阳辐射是陆地生态系统碳水循环的能量来源。太阳辐射的变化对植被吸收大气CO2具有重要影响。该文通过辐射观测数据建立散射辐射比例与晴空指数的关系, 结合生态过程模型(BEPS)和通量观测数据, 模拟分析了太阳辐射变化对千烟洲常绿针叶林总初级生产力(GPP)的影响。研究结果表明: 千烟洲森林生态系统的阴叶对年GPP总量的贡献达67%, 太阳辐射变化对阴叶光合作用的影响决定了冠层GPP的变化; 太阳辐射强度和分布的年际差异导致年GPP对太阳辐射变化的响应不同, 2003、2004和2005年太阳辐射分别变化-5.44%、-1.83%和6.26%, 可使千烟洲生态系统当年GPP总量达到最大值; 在季节上, 太阳辐射的增加会导致5-6月GPP上升, 7-9月GPP下降, 使年GPP变化程度降低; 在天尺度上, 晴空指数在0.43时, 太阳辐射变化对GPP的影响最小。
李登秋, 周艳莲, 居为民, 王辉民, 柳艺博, 吴小翠. 太阳辐射变化对亚热带人工常绿针叶林总初级生产力影响的模拟分析. 植物生态学报, 2014, 38(3): 219-230. DOI: 10.3724/SP.J.1258.2014.00019
LI Deng-Qiu, ZHOU Yan-Lian, JU Wei-Min, WANG Hui-Min, LIU Yi-Bo, WU Xiao-Cui. Modelling the effects of changes in solar radiation on gross primary production in subtropical evergreen needle-leaf plantations. Chinese Journal of Plant Ecology, 2014, 38(3): 219-230. DOI: 10.3724/SP.J.1258.2014.00019
图1 2003-2005年千烟洲人工林生态系统晴空指数与太阳辐射的季节变化。A、B和C分别为2003、2004和2005年。柱状图表示不同晴空指数区间(<0.25, 0.25-0.50, ≥0.50)在各月所占百分比; 空心圆表示各月平均太阳辐射。
Fig. 1 Seasonal variations in the clearness index and solar radiation in the Qianyanzhou plantation ecosystem from 2003 to 2005. A, B and C are 2003, 2004 and 2005, respectively. The bar represents the percentage of predefined intervals of clearness index (<0.25, 0.25-0.50, ≥0.50) in each month; the open circle represents the monthly average solar radiation.
年 Year | 观测总初级生产力 Observed GPP (g C·m-2·a-1) | 模拟总初级生产力 Simulated GPP (g C·m-2·a-1) | 阴叶总初级生产力 GPP in shaded leaves (g C·m-2·a-1) | 决定系数 Determination coefficient | 平均偏差 Mean bias error | 均方根误差 Error of mean square root |
---|---|---|---|---|---|---|
2003 | 1 650 | 1 695 | 1 138 | 0.85 | 0.12 | 1.01 |
2004 | 1 730 | 1 767 | 1 174 | 0.89 | 0.10 | 0.83 |
2005 | 1 609 | 1 718 | 1 157 | 0.87 | 0.30 | 1.02 |
2003-2005 | 1 663 | 1 727 | 1 156 | 0.86 | 0.13 | 0.94 |
表1 BEPS模型模拟的千烟洲通量塔观测站2003-2005年总初级生产力与观测数据的比较
Table 1 Comparisons between gross primary production (GPP) simulated by the BEPS model and observed at the Qianyanzhou eddy tower site during 2003-2005
年 Year | 观测总初级生产力 Observed GPP (g C·m-2·a-1) | 模拟总初级生产力 Simulated GPP (g C·m-2·a-1) | 阴叶总初级生产力 GPP in shaded leaves (g C·m-2·a-1) | 决定系数 Determination coefficient | 平均偏差 Mean bias error | 均方根误差 Error of mean square root |
---|---|---|---|---|---|---|
2003 | 1 650 | 1 695 | 1 138 | 0.85 | 0.12 | 1.01 |
2004 | 1 730 | 1 767 | 1 174 | 0.89 | 0.10 | 0.83 |
2005 | 1 609 | 1 718 | 1 157 | 0.87 | 0.30 | 1.02 |
2003-2005 | 1 663 | 1 727 | 1 156 | 0.86 | 0.13 | 0.94 |
图2 散射辐射比例与晴空指数的散点(圆圈)图和拟合曲线(实线)。R0, 大气层顶太阳辐射; Rd, 散射辐射; Rs, 太阳辐射。
Fig. 2 Scatterplot between diffuse radiation fraction and clearness index (circle), along with the fitted regression curve (solid line). R0, solar radiation at the top of the atmosphere; Rd, diffuse radiation; Rs, solar radiation.
图3 大气层顶太阳辐射(R0)为40 MJ·m-2·d-1时, 太阳辐射(Rs)、直接辐射(Rb)和散射辐射(Rd)随晴空指数(Rs/R0)的变化。
Fig. 3 Changes in solar radiation (Rs), direct radiation (Rb), and diffuse radiation (Rd) with clearness index (Rs/R0) when solar radiation at the top of the atmosphere (R0) is equal to 40 MJ·m-2·d-1.
图4 阴、阳叶吸收的光合有效辐射(APAR) (A)和总初级生产力(GPP)(B)随太阳辐射变化比例的变化。ΔAPARsh、ΔAPARsun、ΔGPPsh和ΔGPPsun分别为阴叶吸收的APAR、阳叶吸收的APAR、阴叶总初级生产力和阳叶总初级生产力的变化幅度。2003SH、2004SH和2005SH表示2003-2005年阴叶; 2003SUN、2004SUN和2005SUN表示2003-2005年阳叶。
Fig. 4 Variations in the photosynthetically active radiation (APAR) (A) and gross primary production (GPP) (B) with changes in solar radiation for shaded and sunlit leaves. ΔAPARsh, ΔAPARsun, ΔGPPsh and ΔGPPsun are the difference (in percentage) of APAR absorbed by the shaded leaves, APAR absorbed by the sunlit leaves, GPP in the shaded leaves, and GPP in the sunlit leaves. 2003SH, 2004SH and 2005SH represent shaded leaves in 2003-2005, respectively; 2003SUN, 2004SUN and 2005SUN represent sunlit leaves in 2003-2005, respectively.
图5 2003-2005年总初级生产力(GPP)与太阳辐射变化比例的关系。x, 太阳辐射变化比例; y, 年总初级生产力。
Fig. 5 Relationships between gross primary production (GPP) and changes in solar radiation in 2003, 2004, and 2005, respectively. x, changes in solar radiation; y, annual GPP.
图6 2003-2005年太阳辐射变化对各月总初级生产力(GPP)的影响。A、B、C为2003-2005年冠层的GPP。D、E、F为2003-2005年阴叶的GPP。G、H、I为2003-2005年阳叶的GPP。ΔGPP、ΔGPPsh和ΔGPPsun分别为冠层总初级生产力、阴叶总初级生产力和阳叶总初级生产力的变化。
Fig. 6 Impacts of changes in solar radiation on monthly gross primary production (GPP) during 2003-2005. A, B and C are the canopy GPP in 2003, 2004, and 2005, respectively. D, E and F are GPP of the shaded leaves in 2003, 2004, and 2005, respectively. G, H and I are GPP in the sunlit leaves in 2003, 2004, and 2005, respectively. ΔGPP, ΔGPPsh and ΔGPPsun are the differences in the canopy GPP, GPP in the shaded leaves, and GPP in the sunlit leaves, respectively.
图7 不同晴空指数下太阳辐射变化对冠层总初级生产力(GPP)、阴叶总初级生产力(GPPsh)和阳叶总初级生产力(GPPsun)的影响。A、B、C分别为冠层、阴叶和阳叶总初级生产力的变化百分比。D、E、F分别为冠层、阴叶和阳叶总初级生产力变化的差值。
Fig. 7 Impacts of changes in solar radiation on canopy gross primary production (GPP), GPP in the shaded leaves (GPPsh), and GPP in the sunlit leaves (GPPsun) in different clearness index intervals. A, B and C are the differences in the percentage for canopy GPP, GPP in the shaded leaves, and GPP in the sunlit leaves, respectively. D, E and F are the differences in canopy GPP, GPP in the shaded leaves, and GPP in the sunlit leaves, respectively.
年份 Year | 平均晴空指数 Mean clearness index | 晴空指数≤0.43 Clearness index ≤0.43 | ||||||
---|---|---|---|---|---|---|---|---|
1-12月 January to December | 4-6月 April to June | 7-9月 July to September | 1-12月 January to December | 4-6月 April to June | 7-9月 July to September | |||
2003 | 0.39 (0.21) | 0.35 (0.18) | 0.51 (0.16) | 45% | 55% | 23% | ||
2004 | 0.38 (0.20) | 0.38 (0.19) | 0.47 (0.16) | 50% | 53% | 35% | ||
2005 | 0.33 (0.21) | 0.34 (0.18) | 0.45 (0.18) | 60% | 60% | 38% | ||
平均值 Mean | 0.37 (0.21) | 0.36 (0.18) | 0.48 (0.17) | 52% | 56% | 32% |
表2 2003-2005年不同时期晴空指数分布
Table 2 Distribution of clearness index over different periods during 2003-2005
年份 Year | 平均晴空指数 Mean clearness index | 晴空指数≤0.43 Clearness index ≤0.43 | ||||||
---|---|---|---|---|---|---|---|---|
1-12月 January to December | 4-6月 April to June | 7-9月 July to September | 1-12月 January to December | 4-6月 April to June | 7-9月 July to September | |||
2003 | 0.39 (0.21) | 0.35 (0.18) | 0.51 (0.16) | 45% | 55% | 23% | ||
2004 | 0.38 (0.20) | 0.38 (0.19) | 0.47 (0.16) | 50% | 53% | 35% | ||
2005 | 0.33 (0.21) | 0.34 (0.18) | 0.45 (0.18) | 60% | 60% | 38% | ||
平均值 Mean | 0.37 (0.21) | 0.36 (0.18) | 0.48 (0.17) | 52% | 56% | 32% |
参数描述 Parameter description | 参数值 Parameter value | 来源 Source |
---|---|---|
比叶面积 Specific leaf area (m2·kg-1 C) | 15 | |
聚集度指数 Clumping index | 0.60 | |
冠层消光系数 Canopy extinction coefficient | -0.5 | |
最大冠层导度 Maximum canopy conductance (mm·s-1) | 1.6 | |
最大羧化速率 Maximum carboxylation rate (μmol CO2·m-2·s-1) | 20 | |
最大叶氮含量 Maximum leaf nitrogen concentration (%) | 1.5 | |
最大叶肉导度 Maximum mesophyll conductance (CO2 m·s-1) | 8.0e-04 | |
光合最低温度 Minimum temperature for photosynthesis (℃) | 0 | |
光合最适温度 Optimum temperature for photosynthesis (℃) | 28 | |
光合最高温度 Maximum temperature for photosynthesis (℃) | 37 | |
冠层对降雨的截留系数 Precipitation intercept rate (m·LAI-1·d-1) | 0.001 | |
气孔关闭时的叶水势 Leaf water potential at stomatal closure (MPa) | -2.1 | |
气孔开放时的叶水势 Leaf water potential at stomatal opening (MPa) | -1.0 | |
光补偿点 Light compensation point (kJ·m-2·d-1) | 432 |
附表1 BEPS模型模拟千烟洲生态系统总初级生产力关键参数
Appendix table 1 The key parameters used in the BEPS model in simulating gross primary production (GPP) of the Qianyanzhou ecosystem
参数描述 Parameter description | 参数值 Parameter value | 来源 Source |
---|---|---|
比叶面积 Specific leaf area (m2·kg-1 C) | 15 | |
聚集度指数 Clumping index | 0.60 | |
冠层消光系数 Canopy extinction coefficient | -0.5 | |
最大冠层导度 Maximum canopy conductance (mm·s-1) | 1.6 | |
最大羧化速率 Maximum carboxylation rate (μmol CO2·m-2·s-1) | 20 | |
最大叶氮含量 Maximum leaf nitrogen concentration (%) | 1.5 | |
最大叶肉导度 Maximum mesophyll conductance (CO2 m·s-1) | 8.0e-04 | |
光合最低温度 Minimum temperature for photosynthesis (℃) | 0 | |
光合最适温度 Optimum temperature for photosynthesis (℃) | 28 | |
光合最高温度 Maximum temperature for photosynthesis (℃) | 37 | |
冠层对降雨的截留系数 Precipitation intercept rate (m·LAI-1·d-1) | 0.001 | |
气孔关闭时的叶水势 Leaf water potential at stomatal closure (MPa) | -2.1 | |
气孔开放时的叶水势 Leaf water potential at stomatal opening (MPa) | -1.0 | |
光补偿点 Light compensation point (kJ·m-2·d-1) | 432 |
[1] | Alpert P, Kishcha P, Kaufman YJ, Schwarzbard R (2005). Global dimming or local dimming? Effect of urbanization on sunlight availability. Geophysical Research Letters, 32, L17802, doi: 10.1029/2005GL023320. |
[2] | Boland J, Scott L, Luther M (2001). Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics, 12, 103-116. |
[3] | Bonan GB (1995). Sensitivity of a GCM simulation to inclusion of inland water surfaces. Journal of Climate, 8, 2691-2704. |
[4] | Che H, Shi G, Zhang X, Arimoto R, Zhao J, Xu L, Wang B, Chen Z (2005). Analysis of 40 years of solar radiation data from China, 1961-2000. Geophysical Research Letters, 32, L06803, doi: 10.1029/2004GL022322. |
[5] | Chen JM, Cihlar J (1996). Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sensing of Environment, 55, 153-162. |
[6] | Chen JM, Liu J, Cihlar J, Goulden M (1999). Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological Modelling, 124, 99-119. |
[7] | Chen JM, Mo G, Pisek J, Liu J, Deng F, Ishizawa M, Chan D (2012). Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global Biogeochemical Cycles,, 26, GB1019, doi: 10.1029/2010GB-003996. |
[8] | Chen X, Chen J, An S, Ju W (2007). Effects of topography on simulated net primary productivity at landscape scale. Journal of Environmental Management, 85, 585-596. |
[9] | Erbs D, Klein S, Duffie J (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy, 28, 293-302. |
[10] | Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322. |
[11] | Feng X, Liu G, Chen JM, Chen M, Liu J, Ju WM, Sun R, Zhou W (2007). Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management, 85, 563-573. |
[12] | Gu LH, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002). Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research, 107, 4050, doi: 10.1029/2001JD001242. |
[13] | Gu LH, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003). Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science, 299, 2035-2038. |
[14] | Gu LH, Fuentes JD, Shugart HH, Staebler RM, Black TA (1999). Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: results from two North American deciduous forests. Journal of Geophysical Research, 104, 31421-31434. |
[15] | He HL, Zhang L, Li JH, Zhou YC, Ren XL, Yu GR (2012). E-Science system for carbon budget integration research of Chinese terrestrial ecosystem. Advances in Earth Science, 27, 246-254. (in Chinese with English abstract) |
[ 何洪林, 张黎, 黎建辉, 周园春, 任小丽, 于贵瑞 (2012). 中国陆地生态系统碳收支集成研究的e-Science系统构建, 地球科学进展, 27, 246-254.] | |
[16] | He MZ, Ju WM, Zhou YL, Chen JM, He HL, Wang SQ, Wang HM, Guan DX, Yan JH, Li YN, Hao YB, Zhao FH (2013). Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agricultural and Forest Meteorology, 173, 28-39. |
[17] | He XZ, Zhou T, Jia GS, Zhang ZY, Li XJ, Zhao C, Feng SH (2011). Modeled effects of changes in the amount and diffuse fraction of PAR on forest GPP. Journal of Natural Resources, 26, 619-633. (in Chinese with English abstract) |
[ 何学兆, 周涛, 贾根锁, 张自银, 李秀娟, 赵超, 冯胜辉 (2011). 光合有效辐射总量及其散射辐射比例变化对森林GPP影响的模拟. 自然资源学报, 7, 619-633.] | |
[18] | Ju W, Wang S, Yu G, Zhou Y, Wang H (2010). Modeling the impact of drought on canopy carbon and water fluxes for a subtropical evergreen coniferous plantation in southern China through parameter optimization using an ensemble Kalman filter. Biogeosciences, 7, 845-857. |
[19] | Knohl A, Baldocchi DD (2008). Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. Journal of Geophysical Research, 113, doi: 10.1029/2007 JG000663. |
[20] | Lauret P, Boland J, Ridley B (2010). Derivation of a solar diffuse fraction model in a Bayesian framework. Case Studies in Business, Industry and Government Statistics, 3, 108-122. |
[21] | Li XR, Liu QJ, Cai Z, Ma ZQ (2007). Specific leaf area and leaf area index of conifer plantations in Qianyanzhou Station of subtropical China. Journal of Plant Ecology (Chinese Version), 31, 93-101. (in Chinese with English abstract) |
[ 李轩然, 刘琪璟, 蔡哲, 马泽清 (2007). 千烟洲针叶林的比叶面积及叶面积指数. 植物生态学报, 31, 93-101.] | |
[22] | Liang F, Xia XA (2005). Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000. Annales Geophysicae, 23, 2425-2432. |
[23] | Liu BY, Jordan RC (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy, 4(3), 1-19. |
[24] | Liu YB (2013). The Spatial and Temporal Variations of Water Use Efficiency in China’s Terrestrial Ecosystems Simulated Using Remote Sensing and a Process-based Model. PhD dissertation, Nanjing University, Nanjing. 123. (in Chinese) |
[ 柳艺博 (2013). 基于遥感和过程模型的中国陆地生态系统水分利用效率时空变化特征研究. 博士学位论文, 南京大学, 南京. 123.] | |
[25] | Liu YB, Ju WM, Chen JM, Zhu GL, Xing BL, Zhu JF, He MZ (2012). Spatial and temporal variations of forest LAI in China during 2000-2010. Chinese Science Bulletin, 57, 2846-2856. |
[26] | Liu YF, Yu GR, Wen XF, Wang YH, Song X, Li J, Sun XM, Yang FT, Chen YR, Liu QJ (2006). Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem. Science in China Series D: Earth Science, 49, 99-109. (in Chinese) |
[ 刘允芬, 于贵瑞, 温学发, 王迎红, 宋霞, 李菊, 孙晓敏, 杨风亭, 陈永瑞, 刘琪璟 (2006). 千烟洲中亚热带人工林生态系统CO2通量的季节变异特征. 中国科学D辑, 36 99-109.] | |
[27] |
Lloyd J, Taylor J (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323.
DOI URL |
[28] | Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009). Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014-1017. |
[29] | Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
[30] | Reindl D, Beckman W, Duffie JA (1990). Diffuse fraction correlations. Solar Energy, 45, 1-7. |
[31] | Ren XL, He HL, Zhang L, Zhou L, Yu GR, Fan JW (2013). Spatiotemporal variability analysis of diffuse radiation in China during 1981-2010. Annales Geophysicae, 31, 277-289. |
[32] | Roderick ML, Farquhar GD, Berry SL, lan Noble R (2001). On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia, 129, 21-30. |
[33] | Running SW, Coughlan JC (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 42, 125-154. |
[34] | Shao ZY, Zhou T, Shi PJ, Gong DY (2009). Spatial-temporal characteristics of the influence atmospheric pollutant on surface solar radiation changes for Chinese key cities. Plateau Meteorology, 28, 1105-1114. (in Chinese with English abstract) |
[ 邵振艳, 周涛, 史培军, 龚道溢 (2009). 大气污染对中国重点城市地面总辐射影响的时空特征 高原气象,, 28, 1105-1114.] | |
[35] |
Sinclair T, Murphy C, Knoerr K (1976). Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. Journal of Applied Ecology, 13, 813-829.
DOI URL |
[36] | Sprintsin M, Chen JM, Desai A, Gough CM (2012). Evaluation of leaf-to-canopy up scaling methodologies against carbon flux data in North America. Journal of Geophysical Research, 117, doi: 10.1029/2010JG001407. |
[37] | Stanhill G, Cohen S (2001). Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology, 107, 255-278. |
[38] | Sun JS, Zhou GS (2010). Review of advances in measurements and effects of diffuse radiation on terrestrial ecosystem productivity. Chinese Journal of Plant Ecology, 34, 452-461. (in Chinese with English abstract) |
[ 孙敬松, 周广胜 (2010). 散射辐射测量及其对陆地生态系统生产力影响的研究进展. 植物生态学报, 34, 452-461.] | |
[39] | Wang P, Sun R, Hu J, Zhu Q, Zhou Y, Li L, Chen JM (2007). Measurements and simulation of forest leaf area index and net primary productivity in Northern China. Journal of Environmental Management, 85, 607-615. |
[40] | Wang SQ, Zhou L, Chen JM, Ju WM, Feng XF, Wu WX (2011). Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. Journal of Environmental Management, 92, 1651-1662. |
[41] | Wang SS, Gao RF, Wu GM (1991). Plant Physiology2nd edn. China Forestry Publishing House, Beijing. Beijing. (in Chinese) |
[ 王沙生, 高荣孚, 吴贯明 (1991). 植物生理学. 第二版. 中国林业出版社, 北京.] | |
[42] |
Wang YP, Leuning R (1998). A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: model description and comparison with a multi-layered model. Agricultural and Forest Meteorology, 91, 89-111.
DOI URL |
[43] |
Weiss A, Norman J (1985). Partitioning solar radiation into direct and diffuse, visible and near-infrared components. Agricultural and Forest Meteorology, 34, 205-213.
DOI URL |
[44] |
Wen XF, Wang HM, Wang JL, Yu GR, Sun XM (2010). Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003-2007. Biogeosciences, 7, 357-369.
DOI URL |
[45] |
Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005). From dimming to brightening: decadal changes in solar radiation at earth’s surface. Science, 308, 847-850.
DOI URL |
[46] |
Xu C, Liu M, An S, Chen JM, Yan P (2007). Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China. Journal of Environmental Management, 85, 597-606.
DOI URL |
[47] | Xuan SL, Shi CL, Jin ZQ, Cao HX, Wei XF, Wang JJ (2012). Variation of solar radiation over the middle and lower reaches of the Yangtze River and its influence on photosynthetically active radiation. Jiangsu Journal of Agriculture Science, 28, 1444-1450. (in Chinese with English abstract) |
[ 宣守丽, 石春林, 金之庆, 曹宏鑫, 魏秀芳, 王晶晶 (2012). 长江中下游地区太阳辐射变化及其对光合有效辐射的影响. 江苏农业学报, 28, 1444-1450.] | |
[48] | Yu GR, Song X, Wang QF, Liu YF, Guan DX, Yan JF, Sun XM, Zhang LM, Wen XF (2008). Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist, 177, 927-937. |
[49] | Yu GR, Wen XF, Li QK, Zhang LM, Ren CY, Liu YF, Guan DX (2004). Seasonal patterns and environmental control of ecosystem respiration in subtropical and temperate forests in China. Science in China Series D, 34(A02), 84-94. (in Chinese) |
[ 于贵瑞, 温学发, 李庆康, 张雷明, 任传友, 刘允芬, 关德新 (2004). 中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征. 中国科学D辑, 34(A02) 84-94.] | |
[50] | Zhang WJ, Wang HM, Yang FT, Yi YH, Wen XF, Sun XM, Yu GR, Wang YD, Ning JC (2011). Underestimated effects of low temperature during early growing season on carbon sequestration of a subtropical coniferous plantation. Biogeosciences, 8, 1667-1678. |
[51] | Zhou Y, Zhu Q, Chen JM, Wang YQ, Liu J, Sun R, Tang S (2007). Observation and simulation of net primary productivity in Qilian Mountain, western China. Journal of Environmental Management, 85, 574-584. |
[1] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[2] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[3] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[4] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[5] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[6] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[7] | 靳宇曦, 刘芳, 张军, 韩梦琪, 王忠武, 屈志强, 韩国栋. 不同载畜率处理下短花针茅荒漠草原生态系统净碳交换特征[J]. 植物生态学报, 2018, 42(3): 361-371. |
[8] | 张素彦, 蒋红志, 王扬, 张艳杰, 鲁顺保, 白永飞. 凋落物去除和添加处理对典型草原生态系统碳通量的影响[J]. 植物生态学报, 2018, 42(3): 349-360. |
[9] | 刘晓, 戚超, 闫艺兰, 袁国富. 不同生态系统水分利用效率指标在黄土高原半干旱草地应用的适宜性评价[J]. 植物生态学报, 2017, 41(5): 497-505. |
[10] | 王克清, 王鹤松, 孙建新. 遥感GPP模型在中国地区多站点的应用与比较[J]. 植物生态学报, 2017, 41(3): 337-347. |
[11] | 闫敏, 李增元, 田昕, 陈尔学, 谷成燕. 黑河上游植被总初级生产力遥感估算及其对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 1-12. |
[12] | 郝彦宾, 王艳芬, 崔骁勇. 干旱胁迫降低了内蒙古羊草草原的碳累积[J]. 植物生态学报, 2010, 34(8): 898-906. |
[13] | 吴力博, 古松, 赵亮, 徐世晓, 周华坤, 冯超, 徐维新, 李英年, 赵新全, 唐艳鸿. 三江源地区人工草地的生态系统CO2净交换、总初级生产力及其影响因子[J]. 植物生态学报, 2010, 34(7): 770-780. |
[14] | 孙敬松, 周广胜. 散射辐射测量及其对陆地生态系统生产力影响的研究进展[J]. 植物生态学报, 2010, 34(4): 452-461. |
[15] | 方精云, 柯金虎, 唐志尧, 陈安平. 生物生产力的“4P”概念、估算及其相互关系[J]. 植物生态学报, 2001, 25(4): 414-419. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19