植物生态学报 ›› 2010, Vol. 34 ›› Issue (8): 898-906.DOI: 10.3773/j.issn.1005-264x.2010.08.002
所属专题: 全球变化与生态系统
收稿日期:
2009-11-18
接受日期:
2009-11-18
出版日期:
2010-11-18
发布日期:
2010-09-28
通讯作者:
王艳芬
作者简介:
* E-mail: yfwang@gucas.ac.cn
HAO Yan-Bin, WANG Yan-Fen*(), CUI Xiao-Yong
Received:
2009-11-18
Accepted:
2009-11-18
Online:
2010-11-18
Published:
2010-09-28
Contact:
WANG Yan-Fen
摘要:
采用涡度相关法, 分析了2004年(平水年)和2005-2006年(干旱年)生长季内蒙古锡林河流域羊草(Leymus chinensis)草原的净生态系统碳交换(net ecosystem exchange, NEE)、总初级生产力(gross primary productivity, GPP)和生态系统呼吸(ecosystem respiration, Re)的季节和年度变化。结果表明: 平水年羊草草原的日最大GPP和Re分别为4.89和1.99 g C·m-2·d-1, 而干旱年GPP和Re分别为1.53-3.01和1.38-1.77 g C·m-2·d-1。与平水年相比, 干旱年日最大GPP、Re分别下降了38%-68%和11%-12%。平水年羊草草原累积的GPP、Re分别为294和180 g C·m-2, 而在干旱年分别为102-123 g C·m-2和132-158 g C·m-2。和平水年相比, 干旱年的GPP、Re分别下降了58%-65%和12%-27%。用Van’t Hoff模型模拟的8个窄土壤含水量(θ)跨度生态系统呼吸(Re)对土壤温度(Ts)的敏感程度表明: 曲线斜率在θ = 0.16-0.17 m3·m-3范围内达到最大, 高于或者低于这个阈值, Re对Ts的敏感度降低。干旱胁迫降低了生态系统生产力和生态系统呼吸量。与平水年相比, 干旱年的GPP比Re下降的幅度更大, 干旱胁迫降低了内蒙古羊草草原的碳累积, 使生态系统由碳汇变为碳源。
郝彦宾, 王艳芬, 崔骁勇. 干旱胁迫降低了内蒙古羊草草原的碳累积. 植物生态学报, 2010, 34(8): 898-906. DOI: 10.3773/j.issn.1005-264x.2010.08.002
HAO Yan-Bin, WANG Yan-Fen, CUI Xiao-Yong. Drought stress reduces the carbon accumulation of the Leymus chinensis steppe in Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34(8): 898-906. DOI: 10.3773/j.issn.1005-264x.2010.08.002
图1 内蒙古羊草草原2004-2006年生长季降雨量、土壤含水量(土壤0-20 cm深处) (A)、空气温度和土壤温度(0-5 cm深处) (B)的变化。
Fig. 1 Variations of precipitation, soil water content (0-20 cm depth) (A), air temperature and soil temperature (0-5 cm depth) (B) during 2004-2006 growth seasons over Leymus chinensis steppe of Inner Mongolia.
年份 Year | 5月 May | 6月 Jun. | 7月 Jul. | 8月 Aug. | 9月 Sept. | 5-9月 May-Sept. | |
---|---|---|---|---|---|---|---|
2004 | 降雨量 Precipitation (mm) | 20.0 | 75.0 | 60.5 | 120.8 | 58.5 | 334.8 |
空气温度 Air temperature (℃) | 11.0 ± 4.6 | 17.5 ± 3.0 | 18.0 ± 3.3 | 15.5 ± 3.3 | 11.2 ± 4.2 | 14.7 ± 4.8 | |
土壤温度 Soil temperature (℃) | 13.5 ± 3.1 | 20.3 ± 3.3 | 21.2 ± 3.1 | 18.1 ± 2.6 | 13.0 ± 3.0 | 17.2 ± 4.5 | |
2005 | 降雨量 Precipitation (mm) | 14.6 | 38.3 | 46.1 | 24.6 | 2.4 | 126.0 |
空气温度 Air temperature (℃) | 10.2 ± 4.7 | 17.3 ± 3.2 | 19.5 ± 3.2 | 18.3 ± 3.3 | 12.4 ± 4.0 | 15.5 ± 5.2 | |
土壤温度 Soil temperature (℃) | 12.6 ± 3.4 | 19.3 ± 3.0 | 21.1 ± 2.9 | 20.1 ± 2.6 | 15.8 ± 2.7 | 17.8 ± 4.3 | |
2006 | 降雨量 Precipitation (mm) | 15.0 | 76.0 | 122.9 | 21.9 | 39.0 | 274.8 |
空气温度 Air temperature (℃) | 11.9 ± 4.0 | 16.1 ± 3.4 | 18.6 ± 2.2 | 19.3 ± 2.1 | 11.3 ± 4.8 | 15.5 ± 4.8 | |
土壤温度 Soil temperature (℃) | 14.1 ± 3.0 | 18.9 ± 3.5 | 22.2 ± 1.4 | 21.8 ± 1.9 | 12.4 ± 3.7 | 18.0 ± 4.8 |
表1 内蒙古羊草草原2004-2006年生长季(5-9月)的月降水量、平均空气温度和5 cm深度土壤温度(平均值±标准偏差)
Table 1 Monthly total precipitation, average air temperature and 0-5 cm depth soil temperature during 2004-2006 growth seasons over the Leymus chinensis steppe of Inner Mongolia (mean ± SD)
年份 Year | 5月 May | 6月 Jun. | 7月 Jul. | 8月 Aug. | 9月 Sept. | 5-9月 May-Sept. | |
---|---|---|---|---|---|---|---|
2004 | 降雨量 Precipitation (mm) | 20.0 | 75.0 | 60.5 | 120.8 | 58.5 | 334.8 |
空气温度 Air temperature (℃) | 11.0 ± 4.6 | 17.5 ± 3.0 | 18.0 ± 3.3 | 15.5 ± 3.3 | 11.2 ± 4.2 | 14.7 ± 4.8 | |
土壤温度 Soil temperature (℃) | 13.5 ± 3.1 | 20.3 ± 3.3 | 21.2 ± 3.1 | 18.1 ± 2.6 | 13.0 ± 3.0 | 17.2 ± 4.5 | |
2005 | 降雨量 Precipitation (mm) | 14.6 | 38.3 | 46.1 | 24.6 | 2.4 | 126.0 |
空气温度 Air temperature (℃) | 10.2 ± 4.7 | 17.3 ± 3.2 | 19.5 ± 3.2 | 18.3 ± 3.3 | 12.4 ± 4.0 | 15.5 ± 5.2 | |
土壤温度 Soil temperature (℃) | 12.6 ± 3.4 | 19.3 ± 3.0 | 21.1 ± 2.9 | 20.1 ± 2.6 | 15.8 ± 2.7 | 17.8 ± 4.3 | |
2006 | 降雨量 Precipitation (mm) | 15.0 | 76.0 | 122.9 | 21.9 | 39.0 | 274.8 |
空气温度 Air temperature (℃) | 11.9 ± 4.0 | 16.1 ± 3.4 | 18.6 ± 2.2 | 19.3 ± 2.1 | 11.3 ± 4.8 | 15.5 ± 4.8 | |
土壤温度 Soil temperature (℃) | 14.1 ± 3.0 | 18.9 ± 3.5 | 22.2 ± 1.4 | 21.8 ± 1.9 | 12.4 ± 3.7 | 18.0 ± 4.8 |
图2 内蒙古羊草草原2004-2006年生长季总初级生产力(GPP)和生态系统呼吸(Re)的季节变化。
Fig. 2 Seasonal variations of gross primary productivity (GPP) and ecosystem respiration (Re) during 2004-2006 growth seasons over the Leymus chinensis steppe of Inner Mongolia.
图3 内蒙古羊草草原2004-2006年生长季白天(光合有效辐射(PAR) > 0)和夜间(PAR = 0)以及积分的日净生态系统交换的季节变化。
Fig. 3 Seasonal variations of daytime (photosynthetic active radiation (PAR) > 0), nighttime (PAR = 0) and diurnal integrated net ecosystem during 2004-2006 growth seasons over the Leymus chinensis steppe of Inner Mongolia.
图4 不同土壤含水量时土壤温度(5 cm深度)对生态系统呼吸的影响。
Fig. 4 Effects of soil temperature at a 5-cm depth on ecosystem respiration (Re ) as influenced by different soil water content at a 20 cm-depth.
图5 土壤含水量(20 cm深度)和总初级生产力对Van’t Hoff模型参数Q10和R10的影响。
Fig. 5 Effects of soil water content and gross primary productivity (GPP) at a 20 cm-soil depth (θ) on the Q10 and R10 parameters in Van’t Hoff model.
土壤含水量 Soil water content (m3·m-3) | R10 | Q10 | R2 | 平均土壤温度 Average soil temperature Ts (℃) | p |
---|---|---|---|---|---|
> 0.2 | 1.09 ± 0.19 | 1.57 ± 0.36 | 0.25 | 17.14 | 0.08 |
0.19-0.18 | 0.66 ± 0.11 | 2.19 ± 0.46 | 0.41 | 16.60 | 0.04 |
0.17-0.16 | 0.54 ± 0.04 | 2.48 ± 0.22 | 0.72 | 14.02 | 0.04 |
0.15-0.14 | 0.68 ± 0.06 | 1.67 ± 0.21 | 0.10 | 15.64 | 0.07 |
0.13-0.12 | 0.68 ± 0.04 | 1.65 ± 0.09 | 0.40 | 18.82 | 0.04 |
0.11-0.10 | 0.40 ± 0.04 | 2.45 ± 0.23 | 0.63 | 18.57 | 0.04 |
0.09-0.08 | 0.37 ± 0.03 | 1.87 ± 0.14 | 0.57 | 16.53 | 0.10 |
< 0.07 | 0.30 ± 0.04 | 1.56 ± 0.21 | 0.32 | 18.24 | 0.10 |
表2 内蒙古羊草草原土壤含水量(0.2 m深度)对Van’t Hoff模型参数R10和Q10的影响
Table 2 Effects of soil water content at the 0.2 m depth (θ) on the parameters in the Van’t Hoff model over the Leymus chinensis steppe of Inner Mongolia
土壤含水量 Soil water content (m3·m-3) | R10 | Q10 | R2 | 平均土壤温度 Average soil temperature Ts (℃) | p |
---|---|---|---|---|---|
> 0.2 | 1.09 ± 0.19 | 1.57 ± 0.36 | 0.25 | 17.14 | 0.08 |
0.19-0.18 | 0.66 ± 0.11 | 2.19 ± 0.46 | 0.41 | 16.60 | 0.04 |
0.17-0.16 | 0.54 ± 0.04 | 2.48 ± 0.22 | 0.72 | 14.02 | 0.04 |
0.15-0.14 | 0.68 ± 0.06 | 1.67 ± 0.21 | 0.10 | 15.64 | 0.07 |
0.13-0.12 | 0.68 ± 0.04 | 1.65 ± 0.09 | 0.40 | 18.82 | 0.04 |
0.11-0.10 | 0.40 ± 0.04 | 2.45 ± 0.23 | 0.63 | 18.57 | 0.04 |
0.09-0.08 | 0.37 ± 0.03 | 1.87 ± 0.14 | 0.57 | 16.53 | 0.10 |
< 0.07 | 0.30 ± 0.04 | 1.56 ± 0.21 | 0.32 | 18.24 | 0.10 |
年份 Year | 日平均GPP Daily average GPP | 日最大GPP Daily maximal GPP | 日平均Re Daily average Re | 日最大Re Daily maximal Re | 日平均NEE Daily average NEE | 累积的NEE Accumulated NEE | 累积的GPP Accumulated GPP | 累积的Re Accumulated Re |
---|---|---|---|---|---|---|---|---|
2004 | 1.91 ± 0.40 | 4.89 | 1.17 ± 0.36 | 1.99 | -0.04 ± 0.86 | -114 | 294 | 180 |
2005 | 0.65 ± 0.26 | 1.53 | 0.85 ± 0.31 | 1.38 | 0.51 ± 0.26 | 30 | 102 | 132 |
2006 | 0.81 ± 0.23 | 3.01 | 1.04 ± 0.37 | 1.77 | 0.70 ± 0.28 | 35 | 123 | 158 |
表3 内蒙古羊草草原日平均总初级生产力(GPP, g C·m-2·d-1), 日最大总初级生产力(g C·m-2·d-1)和生态系统呼吸(Re, g C·m-2·d-1), 累积的年净生态系统碳交换(NEE, g C·m-2·a-1)、GPP和Re的变化(平均值±标准偏差)
Table 3 Variations of daily average gross primary productivity (GPP, g C·m-2·d-1), daily maximal GPP (g C·m-2·d-1), ecosystem respiration (Re, g C·m-2·d-1), accumulated NEE (g C·m-2·a-1), GPP and Re (mean ± SD)
年份 Year | 日平均GPP Daily average GPP | 日最大GPP Daily maximal GPP | 日平均Re Daily average Re | 日最大Re Daily maximal Re | 日平均NEE Daily average NEE | 累积的NEE Accumulated NEE | 累积的GPP Accumulated GPP | 累积的Re Accumulated Re |
---|---|---|---|---|---|---|---|---|
2004 | 1.91 ± 0.40 | 4.89 | 1.17 ± 0.36 | 1.99 | -0.04 ± 0.86 | -114 | 294 | 180 |
2005 | 0.65 ± 0.26 | 1.53 | 0.85 ± 0.31 | 1.38 | 0.51 ± 0.26 | 30 | 102 | 132 |
2006 | 0.81 ± 0.23 | 3.01 | 1.04 ± 0.37 | 1.77 | 0.70 ± 0.28 | 35 | 123 | 158 |
[1] |
Atkin OK, Tjoelker MG (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8, 343-351.
DOI URL PMID |
[2] | Baldocchi DD (2003). Assessing ecosystem carbon balance: problems and prospects of the eddy covariance technique. Global Change Biology, 9, 478-492. |
[3] | Bhupinderpal-Singh, Nordgren A, Ottossonlofvenius M, Hogberg MN, Mellander PE, Hogberg P (2003). Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observation beyond the first year. Plant, Cell & Environment, 26, 1287-1296. |
[4] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
URL PMID |
[5] |
Curiel Yuste J, Janssens IA, Carrara A, Meiresonne L, Ceulemans R (2003). Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiology, 23, 1263-1270.
URL PMID |
[6] | Davidson EA, Delc E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[7] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074.
URL PMID |
[8] | Falge E, Baldocchi DD, Richard O, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107, 43-69. |
[9] | Falge E, Pilegaard K, Aubinet M, Bernhofer C, Clement R, Granier A, Kowalski AS, Moors EJ, Pileqarrd K, Rannik U, Rebmann C (2003). A model-based study of carbon fluxes at ten European forest sites. In: Valentinin R ed. Ecological Studies Vol.163, Fluxes of Carbon, Water and Energy of European Forest. Springer-Verlag, Berlin.. |
[10] | Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996). Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 2, 169-182. |
[11] | Granier A, Reichstein M, Breda N, Janssens IA, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143, 123-145. |
[12] | Hartely IP, Armstrong AF, Murthy R, Barron-Gafford G, Ineson P, Atkin OK (2006). The dependence of respiration on photosynthetic substrate supply and temperature: integrating leaf, soil and ecosystem measurements. Global Change Biology, 12, 1954-1968. |
[13] |
Högberg P, Nordgren A, Buchmann N, Taylor AF, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792.
URL PMID |
[14] | Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate Change 2001: The Scientific Basis: Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[15] | Hao Y, Wang Y, Mei XR, Huang X, Cui XY, Zhou XQ, Niu HS (2008). CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Acta Oecologia, 32, 133-143. |
[16] | Huang XZ (黄祥忠), Hao YB (郝彦宾), Wang YF (王艳芬), Zhou XQ (周小奇), Han X (韩喜), He JJ (贺俊杰) (2006). Impact of extreme drought on the ecosystem exchange from Leymus chinensis steppe in Xilin River Basin, China. Journal of Plant Ecology (Chinese Version) (植物生态学报) 30, 894-900. (in Chinese with English abstract) |
[17] | Ilstedt U, Nordgren A, Malmer A (2001). Optimum soil water for soil respiration before and after amendment with glucose in humid tropical acrisols and a boreal mor layer. Soil Biology and Biochemistry, 32, 1591-1599. |
[18] | IPCC (Intergovernmental Panel on Climate Change) (2007). Fourth Assessment Report of Working Group III: Summary for Policymakers. Cambridge University Press, Cambridge, UK. |
[19] | Kljun N, Black TA, Griffis TJ, Barr AG, Gaumont-Guay D, Barr AG, Gaumont-Guay D, Morgenstern K, McCaughey JH, Nesic Z (2006). Response of net ecosystem productivity of three boreal forest stands to drought. Ecosystems, 9, 1128-1144. |
[20] | Krishnan P, Black TA, Grant NJ, Barr AG, Hogg TH, Jassal RS, Morgenstern K (2006). Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agricultural and Forest Meteorology, 139, 208-223. |
[21] | Kutsch LW, Staack A, Wötzel J, Middelhoff U, Kappen L (2001). Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150, 157-168. |
[22] | Liu X, Wan S, Su B, Hui D, Luo Y (2002). Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil, 240, 213-233. |
[23] |
Luo Y, Wan S, Hui D, Wallace L (2001). Acclimatization of soil respiration to warming in a tallgrass prairie. Nature, 413, 622-625.
URL PMID |
[24] | Mikan CJ, Schimel JP, Doyle AP (2002). Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology and Biochemistry, 34, 1785-1795. |
[25] | Palmroth S, Maier CA, McCarthy HR, Oishi AC, Kim HS, Johnsen KH, Katul GG, Oren R (2005). Contrasting responses to drought of forest floor CO2 efflux in a Loblolly pine plantation and a nearby Oak-Hickory forest. Global Change Biology, 11, 421-434. |
[26] | Rachhpal SJ, Black TA, Michael DN, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Global Change Biology, 14, 1-14. |
[27] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
DOI URL PMID |
[28] | Reichstein M, Tenhunen JD, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2003). Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean sites: revision of current hypothesis? Global Change Biology, 8, 999-1017. |
[29] | Savage KE, Davidson EA (2001). Interannual variation of soil respiration in two New England forests. Global Biogeochemical Cycles, 15, 337-350. |
[30] | Thierron V, Laudelout H (1996). Contribution of root respiration to total soil CO2 efflux from the soil of a deciduous forest. Canadian Journal of Forest Research, 26, 1142-1148. |
[31] | Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327-339. |
[32] | Van’t Hoff JH (1898). Lectures on Theoretical and Physical Chemistry. Part I. Chemical Dynamics. Edward Arnold, London. |
[33] | Wang WQ (王维强), Ge QS (葛全胜) (1993). Greenhouse effect’s impact on China’s social economic development. Science and Technology Review (科技导报), (3), 59-61. (in Chinese) |
[34] | Xu L, Baldocchi DD (2004). Seasonal variation in carbon dioxide exchange over Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 1232, 79-96. |
[35] | Xu M, Qi Y (2001). Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles, 15, 687-697. |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[5] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[6] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[7] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[8] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[9] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[10] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[11] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[12] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[13] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[14] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[15] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19