植物生态学报 ›› 2014, Vol. 38 ›› Issue (8): 896-903.DOI: 10.3724/SP.J.1258.2014.00084
• 研究论文 • 上一篇
郭慧媛1, 马元丹2, 王丹2, 左照江2, 高岩2, 张汝民2, 王玉魁1,*()
收稿日期:
2014-04-01
接受日期:
2014-05-28
出版日期:
2014-04-01
发布日期:
2014-08-18
通讯作者:
王玉魁
作者简介:
* E-mail:wyukui@126.com基金资助:
GUO Hui-Yuan1, MA Yuan-Dan2, WANG Dan2, ZUO Zhao-Jiang2, GAO Yan2, ZHANG Ru-Min2, WANG Yu-Kui1,*()
Received:
2014-04-01
Accepted:
2014-05-28
Online:
2014-04-01
Published:
2014-08-18
Contact:
WANG Yu-Kui
摘要:
为了探讨酸雨胁迫与毛竹(Phyllostachys pubescens)绿叶挥发物(green leaf volatiles, GLVs)释放规律以及抗氧化酶活性的关系, 通过盆栽试验, 采用不同pH值(5.6、4.0、2.5)的模拟酸雨对毛竹三年生实生苗进行处理, 研究酸雨对毛竹叶片可溶性蛋白质含量、丙二醛(MDA)含量和抗氧化酶活性的影响, 并采用热脱附/气相色谱/质谱联用技术对毛竹释放的GLVs成分和含量进行分析。结果表明: 酸雨胁迫下毛竹叶片MDA含量明显增加, pH 2.5模拟酸雨胁迫处理45天毛竹叶片MDA含量与对照相比增加了43.0% (p < 0.01); pH 4.0处理MDA含量增加缓慢, 处理75天时MDA含量比对照增加了0.36倍(p < 0.01)。pH 4.0和pH 2.5模拟酸雨胁迫处理45天时, 毛竹叶片可溶性蛋白质含量极显著增加, 与对照相比分别增加了32.0%和65.0% (p < 0.01)。在酸雨胁迫下, 毛竹叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的响应时间存在一定差异, 表现为互相协调, pH 2.5模拟酸雨胁迫处理SOD活性和POD活性分别在45天和60天时达到最大值, 分别为对照的1.67倍和1.31倍(p < 0.01), 随后降低。pH 4.0和pH 2.5模拟酸雨胁迫处理, 毛竹叶片GLVs含量比对照分别增加26.4%和132.9% (p < 0.01), 新增GLVs为 (E)-2-辛烯醛、2-乙基己醛、(E)-2-己烯醛和(E)-2-壬烯醛。研究表明: 酸雨胁迫条件下, 毛竹可以通过调节保护酶活性、可溶性蛋白质含量和释放GLVs来提高适应环境的能力。
郭慧媛, 马元丹, 王丹, 左照江, 高岩, 张汝民, 王玉魁. 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响. 植物生态学报, 2014, 38(8): 896-903. DOI: 10.3724/SP.J.1258.2014.00084
GUO Hui-Yuan, MA Yuan-Dan, WANG Dan, ZUO Zhao-Jiang, GAO Yan, ZHANG Ru-Min, WANG Yu-Kui. Effects of simulated acid rain on the activity of antioxidant enzyme and the emission of induced green leaf volatiles in Phyllostachys pubescens. Chinese Journal of Plant Ecology, 2014, 38(8): 896-903. DOI: 10.3724/SP.J.1258.2014.00084
图1 不同处理毛竹叶片可溶性蛋白质含量的变化(平均值±标准误差)。
Fig. 1 Changes of soluble protein content in Phyllostachys pubescens under different treatments (mean ± SE). *, p < 0.05; **, p < 0.01.
图2 不同处理毛竹叶片丙二醛含量的变化(平均值±标准 误差)。
Fig. 2 Changes of malonaldehyde content in Phyllostachys pubescens under different treatments (mean ± SE). *, p < 0.05; **, p < 0.01.
图3 不同处理毛竹叶片抗氧化酶活性的变化(平均值±标准误差)。A, 超氧化物歧化酶。B, 过氧化物酶。C, 过氧化 氢酶。
Fig. 3 Changes of antioxidant enzyme activities in Phyllostachys pubescens under different treatments (mean ± SE). A, Superoxide dismutase (SOD). B, Peroxidase (POD). C, Catalase (CAT). *, p < 0.05; **, p < 0.01.
绿叶挥发物 Green leaf volatiles | 分子式 Chemical formula | 处理 Treatment | |||
---|---|---|---|---|---|
CK | pH 5.6 | pH 4.0 | pH 2.5 | ||
(E)-2-己烯醛 (E)-2-hexenal | C6H10O | - | - | - | 4.21 ± 0.65 |
(E)-3-己烯醇 (E)-3-hexen-1-ol | C6H12O | 5.91 ± 0.58 | 0.71 ± 0.03* | 4.95 ± 1.06 | 16.60 ± 0.98** |
庚醛 Heptanal | C7H14O | 0.55 ± 0.01 | - | - | 11.79 ± 1.06** |
2-乙基己醛 2-ethyl-hexanal | C8H16O | - | - | - | 0.78 ± 0.01 |
苯甲醛 Benzaldehyde | C7H6O | 1.18 ± 0.09 | 0.75 ± 0.01 | 0.77 ± 0.01 | 3.04 ± 0.03* |
辛醛 Octanal | C8H16O | 1.68 ± 0.18 | 3.02 ± 0.40* | 4.15 ± 0.52* | 6.73 ± 0.72** |
2-乙基-1-己醇 2-ethyl-1-hexanol | C8H18O | 33.21 ± 2.87 | 17.72 ± 1.22** | 32.39 ± 2.93 | 22.41 ± 2.19* |
(E)-2-辛烯醛 (E)-2-octenal | C8H14O | - | 0.39 ± 0.01 | 0.48 ± 0.01 | 1.07 ± 0.02 |
壬醛 Nonanal | C9H18O | 6.75 ± 0.89 | 6.74 ± 0.77 | 10.60 ± 0.16* | 17.94 ± 1.97** |
(E)-2-壬烯醛 (E)-2-nonenal | C9H16O | - | - | 0.43 ± 0.01 | 1.14 ± 0.02 |
3,7-二甲基-1-辛醇 3,7-dimethyl-1-octanol | C10H22O | 0.42 ± 0.01 | 0.32 ± 0.01* | 0.71 ± 0.04** | 7.28 ± 1.16** |
癸醛 Decanal | C10H20O | 6.95 ± 1.17 | 9.89 ± 0.97* | 15.10 ± 1.18** | 33.09 ± 1.91** |
十四烷醛 Tetradecanal | C14H28O | 0.98 ± 0.07 | 2.33 ± 0.07* | 3.28 ± 0.55** | 8.14 ± 1.01** |
表1 酸雨处理下毛竹绿叶挥发物释放量的变化(平均值±标准误差)
Table 1 Variations in the release of green leaf volatiles in acid rain damaged leaves of Phyllostachys pubescens (mean ± SE)
绿叶挥发物 Green leaf volatiles | 分子式 Chemical formula | 处理 Treatment | |||
---|---|---|---|---|---|
CK | pH 5.6 | pH 4.0 | pH 2.5 | ||
(E)-2-己烯醛 (E)-2-hexenal | C6H10O | - | - | - | 4.21 ± 0.65 |
(E)-3-己烯醇 (E)-3-hexen-1-ol | C6H12O | 5.91 ± 0.58 | 0.71 ± 0.03* | 4.95 ± 1.06 | 16.60 ± 0.98** |
庚醛 Heptanal | C7H14O | 0.55 ± 0.01 | - | - | 11.79 ± 1.06** |
2-乙基己醛 2-ethyl-hexanal | C8H16O | - | - | - | 0.78 ± 0.01 |
苯甲醛 Benzaldehyde | C7H6O | 1.18 ± 0.09 | 0.75 ± 0.01 | 0.77 ± 0.01 | 3.04 ± 0.03* |
辛醛 Octanal | C8H16O | 1.68 ± 0.18 | 3.02 ± 0.40* | 4.15 ± 0.52* | 6.73 ± 0.72** |
2-乙基-1-己醇 2-ethyl-1-hexanol | C8H18O | 33.21 ± 2.87 | 17.72 ± 1.22** | 32.39 ± 2.93 | 22.41 ± 2.19* |
(E)-2-辛烯醛 (E)-2-octenal | C8H14O | - | 0.39 ± 0.01 | 0.48 ± 0.01 | 1.07 ± 0.02 |
壬醛 Nonanal | C9H18O | 6.75 ± 0.89 | 6.74 ± 0.77 | 10.60 ± 0.16* | 17.94 ± 1.97** |
(E)-2-壬烯醛 (E)-2-nonenal | C9H16O | - | - | 0.43 ± 0.01 | 1.14 ± 0.02 |
3,7-二甲基-1-辛醇 3,7-dimethyl-1-octanol | C10H22O | 0.42 ± 0.01 | 0.32 ± 0.01* | 0.71 ± 0.04** | 7.28 ± 1.16** |
癸醛 Decanal | C10H20O | 6.95 ± 1.17 | 9.89 ± 0.97* | 15.10 ± 1.18** | 33.09 ± 1.91** |
十四烷醛 Tetradecanal | C14H28O | 0.98 ± 0.07 | 2.33 ± 0.07* | 3.28 ± 0.55** | 8.14 ± 1.01** |
[1] | Babu R, Madhavan M (2011). Impact of simulated acid rain of different pH on the seeds and seedlings of two commonly cultivated species of legumes in Kerala, India. Plant Archives, 11, 607-611. |
[2] |
Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
DOI URL PMID |
[3] | Brilli F, Ruuskanen TM, Schnitzhofer R, Müller M, Breiten- lechner M, Bittner V, Hansel A (2011). Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction “time-of-flight” mass spectrometry (PTR-TOF). PLoS ONE, 26, e20419. |
[4] | Chance B, Maehly AC (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-775. |
[5] | Chen J, Wang WH, Liu TW, Wu FH, Zheng HL (2013). Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain. Plant Physiology and Biochemistry, 64, 41-51. |
[6] | Chen ST, Shen XS, Hu ZH, Chen HS, Shi YS, Liu Y (2012). Effects of simulated acid rain on soil CO2 emission in a secondary forest in subtropical China. Geoderma, 189- 190, 65-71. |
[7] | Chen SX, Chen Q, Wang CY, Hao LN, Fang YL (2012). Progress in research on the metabolic regulation and mo- lecular mechanism of green leave volatiles (GLVs). Scientia Agricultura Sinica, 45, 1545-1557. (in Chinese with English abstract) |
[ 陈书霞, 陈巧, 王聪颖, 郝丽宁, 房玉林 (2012). 绿叶挥发物代谢调控及分子机理研究进展. 中国农业科学, 45, 1545-1557.] | |
[8] | Chen W, He BH, Xu J, Xia Q (2008). Influence of acid rain on diversity and structure of bryophytes under the Pinus massoniana wood. Journal of Southwest China Normal University, 33(2), 78-82. (in Chinese with English abstract) |
[ 陈威, 何丙辉, 徐健, 夏钦 (2008). 酸雨对马尾松林下苔藓植物的影响. 西南师范大学学报(自然科学版), 33(2), 78-82.] | |
[9] | Copolovici L, Kännaste A, Remmel T, Niinemets Ü (2014). Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environmental and Experimental Botany, 100, 55-63. |
[10] | Cuculovic AA, Pavlovic MS, Savovic JJ, Veselinovic DS (2014). Desorption of metals from Cetraria islandica(L.) Ach. lichen using solutions simulating acid rain. Archives of Biological Sciences, 66, 273-284. |
[11] | Egigu MC, Ibrahim MA, Riikonen J, Yahya A, Holopainen T, Julkunen-Tiitto R, Holopainen JK (2014). Effects of rising temperature on secondary compounds of yeheb (Cordeauxia edulis Hemsley). American Journal of Plant Sciences, 5, 517-527. |
[12] | Feng LL, Yao FF, Wang XH, Yang QS, Yang HB, Ding HM (2011). Effects of simulated acid rain with lower S/N ratio on gas exchange and membrane of three domiant species in subtropical forests. Acta Ecologica Sinica, 31, 1911-1917. (in Chinese with English abstract) |
[ 冯丽丽, 姚芳芳, 王希华, 杨庆松, 杨海波, 丁慧明 (2011). 低硫氮比酸雨对亚热带典型树种气体交换和质膜的影响. 生态学报, 31, 1911-1917.] | |
[13] | Gao Y, Jin YJ, Li HD, Chen HJ (2005). Volatile organic compounds and their roles in bacteriostasis in five conifer species. Journal of Integrative Plant Biology, 47, 499-507. |
[14] |
Giannopolitis CN, Ries SK (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309-314.
DOI URL PMID |
[15] |
Hatanaka A (1993). The biogeneration of green odour by green leaves. Phytochemistry, 34, 1201-1218.
DOI URL |
[16] | Hu ZH, Shen YB, Wang NN, Wang JF, Zhou YC, Zhang ZY (2009). Activities of POD, PPO and PAL in Poplar (Populus simonii × P. pyramidalis ‘Opera 8277’) leaves exposed to different volatiles. Scientia Silvae Sinicae, 45(10), 44-48. (in Chinese with English abstract) |
[ 胡增辉, 沈应柏, 王宁宁, 王金凤, 周艳超, 张志毅 (2009). 不同挥发物诱导的合作杨叶片中POD, PPO及PAL活性变化. 林业科学, 45(10), 44-48.] | |
[17] | Kacharava N, Chkhubianishvili E, Badridze G, Chanishvili S, Mazanishvili L (2013). Antioxidant response of some Georgian wheat species to simulated acid rain. Australian Journal of Crop Science, 7, 770-776. |
[18] | Kännaste A, Copolovici L, Pazouki L, Suhhorutšenko M, Niinemets Ü (2013). Highly variable chemical signatures over short spatial distances among Scots pine (Pinus sylvestris) populations. Tree Physiology, 33, 374-387. |
[19] | Kask K, Knnaste A, Niinemets Ü (2013). Emission of volatile organic compounds as a signal of plant stress. Scientific Bulletin of ESCORENA, 8, 79-92. |
[20] |
Kováčik J, Klejdus B, Bačkor M, Štork F, Hedbavny J (2011). Physiological responses of root-less epiphytic plants to acid rain. Ecotoxicology, 20, 348-357.
URL PMID |
[21] |
Liu EU, Liu CP (2011). Effects of simulated acid rain on the antioxidative system in Cinnamomum philippinense seedlings. Water, Air, Soil Pollution, 215, 127-135.
DOI URL |
[22] |
Liu F, Zuo ZJ, Xu GP, Wu XB, Zheng J, Gao RF, Zhang RM, Gao Y (2012). Physiological responses to drought stress and the emission of induced volatile organic compounds in Rosmarinus officinalis. Chinese Journal of Plant Ecology, 37, 454-463. (in Chinese with English abstract)
DOI URL |
[ 刘芳, 左照江, 许改平, 吴兴波, 郑洁, 高荣孚, 高岩 (2013). 迷迭香对干旱胁迫的生理响应及其诱导挥发性有机化合物的释放. 植物生态学报, 37, 454-463.] | |
[23] | Liu JF, Wang MY, Yang C, Zhu AJ (2013). Effects of exoge- nous nitric oxide on physiological characteristics of longan (Dimocarpus longana) seedlings under acid rain stress. Chinese Journal of Applied Ecology, 24, 2235-2240. (in Chinese with English abstract) |
[ 刘建福, 王明元, 杨晨, 朱爱军 (2013). 外源NO对酸雨胁迫下龙眼幼苗生理特性的影响. 应用生态学报, 24, 2235-2240.] | |
[24] | Long Y, Liu Y, Zhong ZC (2009). Effects of UV-B irradiation and acid rain on photosynthetic rate and antioxidant en- zyme activities of maize seedlings. Acta Ecologica Sinica, 29, 4956-4966. (in Chinese with English abstract) |
[ 龙云, 刘芸, 钟章成 (2009). 酸雨和UV-B对玉米幼苗光合速率和抗氧化酶活性的影响. 生态学报, 29, 4956-4966.] | |
[25] |
Loreto F, Schnitzler JP (2010). Abiotic stresses and induced BVOCs. Trends in Plant Science, 15(3), 154-166.
DOI URL |
[26] |
Malakoff D (2010). Taking the sting out of acid rain. Science, 330, 910-911.
URL PMID |
[27] |
Morfopoulos C, Prentice IC, Keenan TF, Friedlingstein P, Medlyn BE, Peñuelas J, Possell M (2013). A unifying conceptual model for the environmental responses of isoprene emissions from plants. Annals of Botany, 112, 1223-1238.
URL PMID |
[28] |
Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M (2010). The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences, 7, 2203-2223.
DOI URL |
[29] |
Reis S, Grennfelt P, Klimont Z, Amann M, ApSimon H, Hettelingh JP, Holland M, LeGall AC, Maas R, Posch M, Spranger T, Sutton MA, Williams M (2012). From acid rain to climate change. Science, 338, 1153-1154.
URL PMID |
[30] | Sant’Anna-Santos BF, da Silva LC, Azevedo AA, de Araújo JM, Alves EF, da Silva EAM, Aguiar R (2006). Effects of simulated acid rain on the foliar micromorphology and anatomy of tree tropical species. Environmental and Experimental Botany, 58, 158-168. |
[31] | Shi YJ, Liu EB, Zhou GM, Shen ZM, Yu SH (2013). Bamboo shoot growth model based on the stochastic process and its application. Scientia Silvae Sinicae, 49(9), 89-93. (in Chinese with English abstract) |
[ 施拥军, 刘恩斌, 周国模, 沈振明, 俞淑红 (2013). 基于随机过程的毛竹笋期生长模型构建及应用. 林业科学, 49(9), 89-93.] | |
[32] | Shui DJ, Shi Y, Cao LL, Yang T, Wang BL (2012). Effects of exogenous SA pretreatment on thermotolerance and photosynthesis in Pakchoi under high temperature stress. Plant Physiology Journal, 48, 386-392. (in Chinese with English abstract) |
[ 水德聚, 石瑜, 曹亮亮, 杨涛, 汪炳良 (2012). 外源水杨酸预处理对高温胁迫下白菜耐热性和光合特性的影响. 植物生理学报, 48, 386-392.] | |
[33] | Shukla JB, Sundar S, Naresh R (2013). Modeling and analysis of the acid rain formation due to precipitation and its effect on plant species. Natural Resource Modeling, 26, 53-65. |
[34] | Song LY, Ke ZH, Sun LL, Peng CL (2013). Effect of simulated acid rain on gas exchanges of three Compositae invasive plants. Bulletin of Botany, 48, 160-167. (in Chinese with English abstract) |
[ 宋莉英, 柯展鸿, 孙兰兰, 彭长连 (2013). 模拟酸雨对3种菊科入侵植物光合特性的影响. 植物学报, 48, 160-167.] | |
[35] | Sun HF, Li ZY, Wu B, Qin XM (2013). Review of recent advances on the production and eco-physiological roles of green leaf volatiles. Chinese Journal of Plant Ecology, 37, 268-275. (in Chinese with English abstract) |
[ 孙海峰, 李震宇, 武滨, 秦雪梅 (2013). 绿叶挥发物产生特征及其生态生理作用研究进展. 植物生态学报, 37, 268-275.] | |
[36] | Sun YM, Ma L, Li CZ (2012). Comparison on the damage mechanism of cell membrane and its protective systems in Picea asperata leaves under different acid stress types. Scientia Silvae Sinicae, 48(6), 56-62. (in Chinese with English abstract) |
[ 孙业民, 马兰, 李朝周 (2012). 不同类型酸胁迫对云杉叶细胞膜及其保护系统损伤机制的比较. 林业科学, 48(6), 56-62.] | |
[37] | Wang LH, Li X, Liu W, Gan YM (2013). A study on resistance and purifying ability of SO2 on four warm-season turfgrasses. Acta Prataculturae Sinica, 22, 225-233. (in Chinese with English abstract) |
[ 王丽华, 李西, 刘尉, 干友民 (2013). 四种暖季型草坪草对SO2的抗性及净化能力的比较. 草业学报, 22, 225-233.] | |
[38] | Wang Q, Jin ZX, Peng LQ (2013). Effects of simulated acid rain on the ecophysiological characteristics of Lindera aggregate. Journal of Zhejiang University, 40, 447-455. (in Chinese with English abstract) |
[ 王强, 金则新, 彭礼琼 (2013). 模拟酸雨对乌药幼苗生理生态特性的影响. 浙江大学学报, 40, 447-455.] | |
[39] | Wang R, Rehman SU, Liang X, Song Y, Su Y, Baerson SR, Zeng R (2012). Effects of simulated acid rain on the allelopathic potential of invasive weed Wedelia trilobata. Allelopathy Journal, 30, 23-32. |
[40] |
Yi HS, Yang JW, Ghim SY, Ryu CM (2011). A cry for help from leaf to root: above ground insect feeding leads to the recruitment of rhizosphere microbes for plant self-protec-tion against diverse attacks. Plant Signaling & Behavior, 6, 1192-1194.
URL PMID |
[41] | Zhang J, Kirkham MB (1994). Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant & Cell Physiology, 35, 785-791. |
[42] | Zhang XM, Chai FH, Wang SL, Sun XZ, Han M (2010). Research progress of acid rain precipitation in China. Research of Environment Sciences, 23, 527-532. (in Chinese with English abstract) |
[ 张新民, 柴发合, 王淑兰, 孙新章, 韩梅 (2010). 中国酸雨研究现状. 环境科学研究, 23, 527-532.] | |
[43] | Zhao D, Pan YZ, Deng SH, Shang H, Wang F, Chen R (2010). Effects of simulated acid rain on physiological and ecological characteristics of Camellia sasanqua. Scientia Agricultura Sinica, 43, 3191-3198. (in Chinese with English abstract) |
[ 赵栋, 潘远智, 邓仕槐, 尚鹤, 王芳, 陈睿 (2010). 模拟酸雨对茶梅生理生态特性的影响. 中国农业科学, 43, 3191-3198.] | |
[44] | Zhou S, Lin FP, Wang YK, Shen YB, Zhang RM, Gao RF, Gao Y (2012). Effects of mechanical damage of leaves on volatile organic compounds and chlorophyll fluorescence parameters in seedlings of Cinnamomum camphora. Chinese Journal of Plant Ecology, 36, 671-680. (in Chinese with English abstract) |
[ 周帅, 林富平, 王玉魁, 沈应柏, 张汝民, 高荣孚, 高岩 (2012). 樟树幼苗机械损伤叶片对挥发性有机化合物及叶绿素荧光参数的影响. 植物生态学报, 36, 671-680.] | |
[45] | Zhu QG, Jin AW, Wang YK, Qiu YH, Li XT, Zhang SH (2013). Biomass allocation of branches and leaves in Phyllostachys heterocycla ‘Pubescens’ under different management modes: allometric scaling analysis. Chinese Journal of Plant Ecology, 37, 811-819. (in Chinese with English abstract) |
[ 朱强根, 金爱武, 王意锟, 邱永华, 李雪涛, 张四海 (2013). 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析. 植物生态学报, 37, 811-819.] | |
[46] | Zuo ZJ, Zhang RM, Wang Y, Hou P, Wen GS, Gao Y (2010). Analysis of main volatile organic compounds and study of aboveground structures in Artemisia frigid. Chinese Journal of Plant Ecology, 34, 462-468. (in Chinese with English abstract) |
[ 左照江, 张汝民, 王勇, 侯平, 温国胜, 高岩 (2010). 冷蒿挥发性有机化合物主要成分分析及其地上部分结构研究. 植物生态学报, 34, 462-468.] |
[1] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[2] | 许红梅, 李进, 张元明. 水分条件对人工培养齿肋赤藓光化学效率及生理特性的影响[J]. 植物生态学报, 2017, 41(8): 882-893. |
[3] | 赵睿宇, 李正才, 王斌, 葛晓改, 戴云喜, 赵志霞, 张雨洁. 毛竹林地表覆盖年限对土壤有机碳的影响[J]. 植物生态学报, 2017, 41(4): 418-429. |
[4] | 刘盟盟, 贾丽, 程路芸, 张洪芹, 臧晓琳, 宝音陶格涛, 张汝民, 高岩. 冷蒿酚酸及其抗氧化防御酶活性对机械损伤的响应[J]. 植物生态学报, 2017, 41(2): 219-230. |
[5] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[6] | 陈永刚, 汤孟平, 杨春菊, 马天午, 王礼. 天然毛竹林竞争空间关系分析[J]. 植物生态学报, 2015, 39(7): 726-735. |
[7] | 尹本丰, 张元明. 冻融过程对荒漠区不同微生境下齿肋赤藓渗透调节物含量和抗氧化酶活力的影响[J]. 植物生态学报, 2015, 39(5): 517-529. |
[8] | 潘璐, 牟溥, 白尚斌, 古牧. 毛竹林扩张对周边森林群落菌根系统的影响[J]. 植物生态学报, 2015, 39(4): 371-382. |
[9] | 王意锟, 金爱武, 朱强根, 邱永华, 季新良, 张四海. 施肥对毛竹种群不同年龄分株间胸径大小关系的影响[J]. 植物生态学报, 2014, 38(3): 289-297. |
[10] | 刘骏,杨清培,余定坤,宋庆妮,赵广东,王兵. 细根对竹林-阔叶林界面两侧土壤养分异质性形成的贡献[J]. 植物生态学报, 2013, 37(8): 739-749. |
[11] | 金佳鑫,江洪,彭威,张林静,卢学鹤,徐建辉,张秀英,王颖. 基于物种分布模型评价土壤因子对我国毛竹潜在分布的影响[J]. 植物生态学报, 2013, 37(7): 631-640. |
[12] | 陈坚,李妮亚,刘强,钟才荣,黄敏,曾佳. NaCl处理下两种引进红树的光合及抗氧化防御能力[J]. 植物生态学报, 2013, 37(5): 443-453. |
[13] | 刘骏, 杨清培, 宋庆妮, 余定坤, 杨光耀, 祁红艳, 施建敏. 毛竹种群向常绿阔叶林扩张的细根策略[J]. 植物生态学报, 2013, 37(3): 230-238. |
[14] | 孙海峰, 李震宇, 武滨, 秦雪梅. 绿叶挥发物产生特征及其生态生理作用研究进展[J]. 植物生态学报, 2013, 37(3): 268-275. |
[15] | 王星星, 刘琳, 张洁, 王玉魁, 温国胜, 高荣孚, 高岩, 张汝民. 毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化[J]. 植物生态学报, 2012, 36(5): 456-462. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3774
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1534
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La