植物生态学报 ›› 2013, Vol. 37 ›› Issue (3): 230-238.DOI: 10.3724/SP.J.1258.2013.00023
刘骏, 杨清培*(), 宋庆妮, 余定坤, 杨光耀, 祁红艳, 施建敏
发布日期:
2014-02-12
通讯作者:
杨清培
作者简介:
E-mail: qingpeiyang@126.com基金资助:
LIU Jun, YANG Qing-Pei*(), SONG Qing-Ni, YU Ding-Kun, YANG Guang-Yao, QI Hong-Yan, SHI Jian-Min
Published:
2014-02-12
Contact:
YANG Qing-Pei
摘要:
为了探讨毛竹(Phyllostachys pubescens)种群向常绿阔叶林扩张的根系策略, 该文采用根钻法和内生长法, 在江西大岗山选取毛竹林与阔叶林的交错区——竹阔界面(bamboo-broad-leaved forest interface), 并垂直于界面连续设置毛竹林、毛竹与阔叶树的混交林(以下简称为竹阔混交林)、常绿阔叶林3种样地, 比较分析其细根的空间分布格局、比根长、根长密度、生长速率和周转率等指标。结果表明: 毛竹林细根生物量(1201.60 g·m-2) >竹阔混交林(601.18 g·m -2) >常绿阔叶林(204.88 g·m -2); 在毛竹与阔叶树竞争的混交林中, 毛竹细根分布趋向于上层土壤(与毛竹林细根相比), 且其比根长也显著增加, 平均增幅高达123.42%, 总根长密度比阔叶树大2.1倍; 同时, 毛竹细根生长速率和周转率均高于阔叶树。这些结果说明毛竹可通过广布、精准、灵活、快速等细根竞争策略, 提高资源获取能力, 实现种群扩张。
刘骏, 杨清培, 宋庆妮, 余定坤, 杨光耀, 祁红艳, 施建敏. 毛竹种群向常绿阔叶林扩张的细根策略. 植物生态学报, 2013, 37(3): 230-238. DOI: 10.3724/SP.J.1258.2013.00023
LIU Jun, YANG Qing-Pei, SONG Qing-Ni, YU Ding-Kun, YANG Guang-Yao, QI Hong-Yan, SHI Jian-Min. Strategy of fine root expansion of Phyllostachys pubescens population into evergreen broad- leaved forest. Chinese Journal of Plant Ecology, 2013, 37(3): 230-238. DOI: 10.3724/SP.J.1258.2013.00023
林分 Stand | 植物高度 Plant hight (m) | 胸径 DBH (cm) | 密度 Density (ind.·hm-2) |
---|---|---|---|
毛竹林 PPF | 13.83 ± 1.72 | 10.07 ± 1.76 | 5 100 |
竹阔混交林 BMF | 12.66 ± 1.53 | 9.45 ± 1.27 | 2 100 |
14.37 ± 2.72 | 16.30 ± 13.43 | 1 800 | |
常绿阔叶林 EBF | 14.95 ± 2.74 | 17.76 ± 9.35 | 1 078 |
表1 试验地竹阔界面3种林分特征(平均值±标准误差)
Table 1 Characteristics of three forest stands at bamboo-broad-leaved forest interface in experimental area (mean ± SE)
林分 Stand | 植物高度 Plant hight (m) | 胸径 DBH (cm) | 密度 Density (ind.·hm-2) |
---|---|---|---|
毛竹林 PPF | 13.83 ± 1.72 | 10.07 ± 1.76 | 5 100 |
竹阔混交林 BMF | 12.66 ± 1.53 | 9.45 ± 1.27 | 2 100 |
14.37 ± 2.72 | 16.30 ± 13.43 | 1 800 | |
常绿阔叶林 EBF | 14.95 ± 2.74 | 17.76 ± 9.35 | 1 078 |
因子 Factor | df | MS | F | p |
---|---|---|---|---|
林分 Stand | 2 | 11.139 | 165.811 | <0.001*** |
季节 Season | 3 | 0.009 | 0.141 | 0.935 |
土壤层次 Soil layer | 2 | 7.731 | 115.083 | <0.001*** |
林分×季节 Stand × season | 6 | 0.096 | 1.425 | 0.209 |
林分×土壤层次 Stand × soil layer | 4 | 0.156 | 2.315 | 0.060 |
季节×土壤层次 Season × soil layer 林分×季节×层次 Stand × season × soil layer 误差 Error | 6 12 144 | 0.072 0.033 0.067 | 1.077 0.496 | 0.379 0.915 |
表2 试验地竹阔界面不同林分细根生物量的方差分析
Table 2 Analysis of variance (ANOVA) of fine root biomass in different forest stands at bamboo-broad-leaved forest interface in experimental area
因子 Factor | df | MS | F | p |
---|---|---|---|---|
林分 Stand | 2 | 11.139 | 165.811 | <0.001*** |
季节 Season | 3 | 0.009 | 0.141 | 0.935 |
土壤层次 Soil layer | 2 | 7.731 | 115.083 | <0.001*** |
林分×季节 Stand × season | 6 | 0.096 | 1.425 | 0.209 |
林分×土壤层次 Stand × soil layer | 4 | 0.156 | 2.315 | 0.060 |
季节×土壤层次 Season × soil layer 林分×季节×层次 Stand × season × soil layer 误差 Error | 6 12 144 | 0.072 0.033 0.067 | 1.077 0.496 | 0.379 0.915 |
图1 试验地垂直于竹阔界面的3种林分3个土壤层次(0-20, 20-40, 40-60 cm)中细根生物量比较(平均值±标准误差)。不同字母表示同一土壤层次林分间细根生物量差异显著(p < 0.05, 最小显著差数法)。
Fig. 1 Comparison of fine root biomass in three soil layers (0-20, 20-40, 40-60 cm) of three forest stands perpendicular to bamboo-broad-leaved forest interface in experimental area (mean ± SE). Different letters indicate signi?cant difference among fine root biomass in the same soil layers at different forest stands (p < 0.05, least significant difference, LSD). BMF, bamboo and broad-leaved mixed forest; EBF, evergreen broad-leaved forest; PPF, Phyllostachys pubescens forest.
图2 试验地竹阔竞争引起毛竹(A)与阔叶树(B)细根生物量垂直空间分布格局变化(平均值±标准误差)。不同小写字母表示同一土层中毛竹或阔叶树在竞争前后细根生物量比例差异显著(p < 0.05, 方差分析)。
Fig. 2 Variation in vertical distribution pattern of fine root biomass of Phyllostachys pubescens (A) and broad-leaved trees (B) when they competed in experimental area (mean ± SE). Different lowercase letters indicate signi?cant difference of proportion of fine root biomass of Phyllostachys pubescens or broad-leaved trees at the same soil layer between pre- and in-competition periods (p < 0.05, analysis of variance).
图3 试验地竹阔竞争引起毛竹(A)与阔叶树(B)细根比根长变化(平均值±标准误差)。不同小写字母表示同一土层中毛竹或阔叶树在竞争前后细根比根长差异显著(p < 0.05, 方差分析)。
Fig. 3 Variation in specific root length (SRL) of Phyllostachys pubescens (A) and broad-leaved trees (B) when they competed in experimental area (mean ± SE). Different lowercase letters indicate signi?cant difference of SRL of P. pubescens or broad-leaved trees at the same soil layer between pre- and in-competition periods (p < 0.05, analysis of variance).
图4 试验地竹阔界面3种林分细根根长密度在不同土壤层次(0-20, 20-40, 40-60 cm)中的比较(平均值±标准误差)。不同字母表示同一土层中3种林分细根根长密度差异显著(p < 0.05, 最小显著差数法)。
Fig. 4 Comparison of root length density (RLD) in three soil layers (0-20, 20-40, 40-60 cm) of the three forest stands at bamboo-broad-leaved forest interface in the experimental area (mean ± SE). Different letters indicate signi?cant difference among fine root RLD in the same soil layer at different forest stands (p < 0.05, least significant difference, LSD). BMF, bamboo and broad-leaved mixed forest; EBF, evergreen broad-leaved forest; PPF, Phyllostachys pubescens forest.
图5 试验地竹阔混交林中毛竹、阔叶树细根根长密度比较(平均值±标准误差)。不同字母表示同一土层中毛竹与阔叶树细根根长密度差异显著(p < 0.05, 方差分析)。
Fig. 5 Comparison of root length density (RLD) of Phyll- ostachys pubescens and broad-leaved trees in bamboo and broad-leaved mixed forest in the experimental area (mean ± SE). Different letters indicate signi?cant difference of fine root RLD between P. pubescens and broad-leaved trees in the same soil layer (p < 0.05, analysis of variance). FBM, fine root of broad-leaved trees; FPM, fine root of P. pubescens.
图6 试验地毛竹和阔叶树细根年生长动态比较(平均值±标准误差)。
Fig. 6 Comparison of annual production dynamics of fine root between Phyllostachys pubescens and broad-leaved trees in experimental area (mean ± SE). FBM, fine root of broad- leaved trees; FPM, fine root of P. pubescens.
图7 试验地毛竹和阔叶树细根周转率比较(平均值±标准误差)。相同字母表示毛竹和阔叶树细根周转率差异不显著(p > 0.05, 方差分析)。
Fig. 7 Comparison of turnover rate of fine root between Phyllostachys pubescens and broad-leaved trees in experimental area (mean ± SE). Same letters indicate no signi?cant difference of turnover rate of fine root between P. pubescens and broad-leaved trees (p > 0.05, analysis of variance). EBF, evergreen broad-leaved forest; PPF, Phyllostachys pubescens forest.
[1] | Bauhus J, Messier C (1999). Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Canadian Journal of Forest Research, 29, 260-273. |
[2] | Bolte A, Villanueva I (2006). Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) European Journal of Forest Research, 125, 15-26. |
[3] | Brassard BW, Chen HYH, Bergeron Y, Paré D (2011). Differences in fine root productivity between mixed- and single-species stands. Functional Ecology, 25, 238-246. |
[4] |
Campbell BD, Grime JP, Mackey JML (1991). A trade-off between scale and precision in resource foraging. Oecologia, 87, 532-538.
URL PMID |
[5] | Casper BB, Jackson RB (1997). Plant competition underground. Annual Review of Ecology and Systematics, 28, 545-570. |
[6] | Chakraborty A, Li BL (2009). Plant-to-plant direct competition for belowground resource in an overlapping depletion zone. Journal of Arid Land, 1, 9-15. |
[7] | Curt T, Prévosto B (2003). Rooting strategy of naturally regenerated beech in silver birch and Scots pine woodlands. Plant and Soil, 255, 265-279. |
[8] | Davis JP, Haines B, Coleman D, Hendrick R (2004). Fine root dynamics along an elevational gradient in the southern Appalachian Mountains, USA. Forest Ecology and Management, 187, 19-34. |
[9] | Ding LX, Wang ZL, Zhou GM, Du QZ (2006). Monitoring Phyllostachys pubescens stands expansion in national nature reserve of Mount Tianmu by remote sensing. Journal of Zhejiang Forestry College, 23, 297-300. (in Chinese with English abstract) |
[ 丁丽霞, 王祖良, 周国模, 杜晴洲 (2006). 天目山国家级自然保护区毛竹林扩张遥感监测. 浙江林学院学报, 23, 297-300.] | |
[10] | Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-42. |
[11] | Einsmann JC, Jones RH, Mou P, Mitchell RJ (1999). Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. Journal of Ecology, 87, 609-619. |
[12] | Fransen B, Blijjenberg J, Kroon H (1999). Root morphological and physiological plasticity of perennial grass species and the exploitation of spatial and temporal heterogeneous nutrient patches. Plant and Soil, 211, 179-189. |
[13] | Fujii S, Kasuya N (2008). Fine root biomass and morphology of Pinus densiflora under competitive stress by Chamaecyparis obtusa. Journal of Forest Research, 13, 185-189. |
[14] |
Gersani M, Brown JS, O’Brien EE, Maina GM, Abramsky Z (2001). Tragedy of the commons as a result of root competition. Journal of Ecology, 89, 660-669.
DOI URL PMID |
[15] |
Heinsoo K, Merilo E, Petrovits M, Koppel A (2009). Fine root biomass and production in a Salix viminalis and Salix dasyclados plantation. Estonian Journal of Ecology, 58, 27-37.
DOI URL |
[16] |
Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24.
DOI URL |
[17] | Isagi Y, Torii A (1998). Range expansion and its mechanisms in a naturalized bamboo species, Phyllostachys pubescens, in Japan. Journal of Sustainable Forestry, 6, 127-141. |
[18] | Johnson HA, Biondini ME (2001). Root morphological plasticity and nitrogen uptake of 59 plant species from the Great Plains grasslands, U.S.A. Basic and Applied Ecology, 2, 127-143. |
[19] |
Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001). Advancing fine root research with minirhizotrons. Environmental and Experimental Botany, 45, 263-289.
URL PMID |
[20] | Kalliokoski T, Pennanen T, Nygren P, Sievänen R, Helmisaari HS (2010). Belowground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients. Plant and Soil, 330, 73-89. |
[21] | Kiyoshi O, Shigeyuki S, Hiroko F (1996). Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. Journal of Vegetation Science, 7, 723-728. |
[22] | Kroons H, Hutchings MJ (1995). Morphological plasticity in clonal plants: the foraging concept reconsidered. Journal of Ecology, 83, 143-152. |
[23] |
Lei PF, Scherer-Lorenzen M, Bauhus J (2012). The effect of tree species diversity on fine-root production in a young temperate forest. Oecologia, 169, 1105-1115.
DOI URL PMID |
[24] | Li WC, Sheng HY, Zhong ZK (2006). Importance of long-term location investigation for bamboo ecosystem. Scientia Silvae Sinicae, 42(8), 95-101. (in Chinese with English abstract) |
[ 李伟成, 盛海燕, 钟哲科 (2006). 竹林生态系统及其长期定位观测研究的重要性. 林业科学, 42(8), 95-101.] | |
[25] | Liu GH, Li HK (2002). Bamboo rhizome system of mixed forest of Sassafras tsumu and Phyllostachys pubesens. Chinese Journal of Applied Ecology, 13, 385-389. (in Chinese with English abstract) |
[ 刘桂华, 李宏开 (2002). 檫树毛竹混交林中毛竹鞭根的研究. 应用生态学报, 13, 385-389.] | |
[26] |
Livesley SJ, Gregory PJ, Buresh RJ (2000). Competition in tree row agroforestry systems. 1. Distribution and dynamics of fine root length and biomass. Plant and Soil, 227, 149-161.
DOI URL |
[27] | Mei L, Han YZ, Yu SQ, Shi JW, Wang ZQ (2006). Impact factors on fine roots seasonal dynamics in Fraxinus mandshurica plantation. Scientia Silvae Sinicae, 42(9), 7-12. (in Chinese with English abstract) |
[ 梅莉, 韩有志, 于水强, 史建伟, 王政权 (2006). 水曲柳人工林细根季节动态及其影响因素. 林业科学, 42(9), 7-12.] | |
[28] | Metcalfe DB, Meir P, Aragão LEOC, Costa ACL, Braga AP, Goncalves PHL, Junior JAS, Almeida SSA, Dawson LA, Malhi Y, Williams M (2008). The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil, 311, 189-199. |
[29] | Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007). Specific root length as an indicator of environmental change. Plant Biosystems, 141, 426-442. |
[30] | Palacio S, Montserrat-Martí G (2007). Above and belowground phenology of four Mediterranean sub-shrubs. Preliminary results on root-shoot competition. Journal of Arid Environments, 68, 522-533. |
[31] | Pei ZQ, Zhou Y, Zheng YR, Xiao CW (2011). Contribution of fine root turnover to the soil organic carbon cycling in a Reaumuria soongorica community in an arid ecosystem of Xinjiang Uygur Autonomous Region, China. Chinese Journal of Plant Ecology, 35, 1182-1191. (in Chinese with English abstract) |
[ 裴智琴, 周勇, 郑元润, 肖春旺 (2011). 干旱区琵琶柴群落细根周转对土壤有机碳循环的贡献. 植物生态学报, 35, 1182-1191.] | |
[32] | Persson HÅ (1983). The distribution and productivity of fine roots in boreal forests. Plant and Soil, 71, 87-101. |
[33] |
Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998). Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18, 665-670.
URL PMID |
[34] |
Schmid I, Kazda M (2002). Root distribution of Norway spruce in monospecific and mixed stands on different soils. Forest Ecology and Management, 159, 37-47.
DOI URL |
[35] | Shi JW, Wang MB, Chen JW, Cao JT (2011). The spatial distribution and seasonal dynamics of fine roots in a mature Caragana korshinskii plantation. Acta Ecologica Sinica, 31, 726-733. (in Chinese with English abstract) |
[ 史建伟, 王孟本, 陈建文, 曹建庭 (2011). 柠条细根的空间分布特征及其季节动态. 生态学报, 31, 726-733.] | |
[36] | Sobkowicz P (2005). Shoot and root competition between spring triticale and field beans during early growth. Acta Scientiarum Polonorum, Agricultura, 4, 117-126. |
[37] | Wang L, Zhong CG, Cai J, Jiang ZM, Zhang SX (2011). Spatial distribution and morphological variations of the fine roots in walnut-wheat intercropping agroforestry ecosystem. Journal of Northwest A & F University, 39, 64-70. (in Chinese with English abstract) |
[ 王来, 仲崇高, 蔡靖, 姜在民, 张硕新 (2011). 核桃-小麦复合系统中细根的分布及形态变异研究. 西北农林科技大学学报, 39, 64-70.] | |
[38] |
Wang QC, Cheng YH (2004). Response of fine roots to soil nutrient spatial heterogeneity. Chinese Journal of Applied Ecology, 15, 1063-1068. (in Chinese with English abstract)
URL PMID |
[ 王庆成, 程云环 (2004). 土壤养分空间异质性与植物根系的觅食反应. 应用生态学报, 15, 1063-1068.]
PMID |
|
[39] | Wen DZ, Wei P, Kong GH, Ye WH (1999). Production and turnover rate of fine roots in two lower subtropical forest sites at Dinghushan. Acta Phytoecologica Sinica, 23, 361-369. (in Chinese with English abstract) |
[ 温达志, 魏平, 孔国辉, 叶万辉 (1999). 鼎湖山南亚热带森林细根生产力与周转. 植物生态学报, 23, 361-369.] | |
[40] | Wijesinghe DK, John EA, Beurskens S, Hutchings MJ (2001). Root system size and precision in nutrient foraging: responses to spatial pattern of nutrient supply in six herbaceous species. Journal of Ecology, 89, 972-983. |
[41] | Xiong GH, Zhang CH, Lou ZH, Zhang ZZ, Hu QG (2007). Study on rhizome- culm system of Phyllostachys heterocycla—bamboo-tree. Jiangxi Forestry Science and Technology, (4), 21-26. (in Chinese with English abstract) |
[ 熊国辉, 张朝晖, 楼浙辉, 张振洲, 胡庆国 (2007). 毛竹林鞭竹系统——“竹树”研究. 江西林业科技, (4), 21-26.] | |
[42] | Yang QP, Wang B, Guo QR, Zhao GD, Fang K, Liu YQ (2011). Effects of Phyllostachys edulis expansion on carbon storage of evergreen broad-leaved forest in Dagangshan Mountain, Jiangxi. Acta Agriculturae Universitatis Jiangxiensis, 33, 529-536. (in Chinese with English abstract) |
[ 杨清培, 王兵, 郭起荣, 赵广东, 方楷, 刘苑秋 (2011). 大岗山毛竹扩张对常绿阔叶林生态系统碳储特征的影响. 江西农业大学学报, 33, 529-536.] | |
[43] | Yi TP, Shi JY, Ma LS, Wang HT, Yang L (2008). Chinese Bamboo Atlas. Science Press. Beijing. (in Chinese) |
[ 易同培, 史军义, 马丽莎, 王海涛, 杨林 (2008). 中国竹类图志 科学出版社, 北京.] | |
[44] | Zamora DS, Jose S, Nair PKR (2007). Morphological plasticity of cotton roots in response to interspecific competition with pecan in an alleycropping system in the southern United States. Agroforestry Systems, 69, 107-116. |
[45] | Zheng YS, Wang SF (2000). Study on bamboo underground structure of mixed forest of Chinese fir and bamboo. Scientia Silvae Sinicae, 36(6), 69-72. (in Chinese with English abstract) |
[ 郑郁善, 王舒凤 (2000). 杉木毛竹混交林的毛竹地下鞭根结构特征研究. 林业科学, 36(6), 69-72.] | |
[46] | Zhou ZC, Shangguan ZP (2006). Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr forest of the Loess Plateau of China. Plant and Soil, 291, 119-129. |
[1] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[2] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[3] | 朱华. 云南常绿阔叶林的植被地理研究[J]. 植物生态学报, 2021, 45(3): 224-241. |
[4] | 李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣. 云南普洱30 hm2季风常绿阔叶林动态监测样地群丛数量分类[J]. 植物生态学报, 2020, 44(3): 236-247. |
[5] | 王艳红, 李帅锋, 郎学东, 黄小波, 刘万德, 徐崇华, 苏建荣. 地形异质性对云南普洱季风常绿阔叶林物种多样性的影响[J]. 植物生态学报, 2020, 44(10): 1015-1027. |
[6] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[7] | 王雪, 陈光水, 闫晓俊, 陈廷廷, 姜琦, 陈宇辉, 范爱连, 贾林巧, 熊德成, 黄锦学. 亚热带常绿阔叶林89种木本植物一级根直径的变异[J]. 植物生态学报, 2019, 43(11): 969-978. |
[8] | 樊海东, 陈海燕, 吴雁南, 刘建峰, 徐德宇, 曹嘉瑜, 袁泉, 谭斌, 刘晓彤, 徐佳, 王国敏, 韩文娟, 刘立斌, 倪健. 金华北山南坡主要植被类型的群落特征[J]. 植物生态学报, 2019, 43(10): 921-928. |
[9] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608. |
[10] | 邹顺, 周国逸, 张倩媚, 徐姗, 熊鑫, 夏艳菊, 刘世忠, 孟泽, 褚国伟. 1992-2015年鼎湖山季风常绿阔叶林群落结构动态[J]. 植物生态学报, 2018, 42(4): 442-452. |
[11] | 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429. |
[12] | 王乔姝怡, 郑成洋, 张歆阳, 曾发旭, 邢娟. 氮添加对武夷山亚热带常绿阔叶林植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2016, 40(11): 1124-1135. |
[13] | 许洺山, 黄海侠, 史青茹, 杨晓东, 周刘丽, 赵延涛, 张晴晴, 阎恩荣. 浙东常绿阔叶林植物功能性状对土壤含水量变化的响应[J]. 植物生态学报, 2015, 39(9): 857-866. |
[14] | 周刘丽, 张晴晴, 赵延涛, 许洺山, 程浚洋, 朱丹妮, 宋彦君, 黄海侠, 史青茹, 阎恩荣. 浙江天童枫香树群落不同垂直层次物种间的联结性与相关性[J]. 植物生态学报, 2015, 39(12): 1136-1145. |
[15] | 刘万德, 苏建荣, 李帅锋, 郎学东, 张志钧, 黄小波. 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2015, 39(1): 52-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19