植物生态学报 ›› 2015, Vol. 39 ›› Issue (3): 264-274.DOI: 10.17521/cjpe.2015.0026
所属专题: 生态遥感及应用
收稿日期:
2014-05-04
接受日期:
2014-12-17
出版日期:
2015-03-01
发布日期:
2015-03-17
通讯作者:
张弛
作者简介:
# 共同第一作者
基金资助:
MA Yong-Gang1,2,3, ZHANG Chi1,*(), CHEN Xi1
Received:
2014-05-04
Accepted:
2014-12-17
Online:
2015-03-01
Published:
2015-03-17
Contact:
Chi ZHANG
About author:
# Co-first authors
摘要:
植被物候模型是生态系统模型的重要组成部分, 其精度对准确地模拟陆面和大气之间的能量和物质交换具有重要意义。利用遥感获取空间物候信息并与气候数据进行耦合分析是在中亚干旱区等地面物候观测数据缺乏的地区构建物候模型的重要方法。为减小混合植被像元和气候数据资料的内在误差及二者在空间尺度的不匹配对物候模型构建产生的影响, 该研究提出一种在气象站点周围选取满足规定规则集的“代表植被类型像元”作为样本点的选择方法, 以代表植被类型像元的遥感物候数据和气象站点数据为基础, 结合经典物候模型和改进物候模型, 在粒子群优化算法支持下, 分别以独立的拟合与评价样本数据, 完成了荒漠草原植被与落叶阔叶林的模型拟合与评价。研究发现中亚干旱区荒漠草原植被的最优模型为温度-降水修正模型, 落叶阔叶林的最优模型为替代模型。通过此方法模型总体精度在8-10 d左右。结果表明此方法在气候数据和植物物候空间匹配方面有改进, 有助于提高物候模型精度。
马勇刚, 张弛, 陈曦. 利用遥感数据优化物候模型时样本选择的新方法. 植物生态学报, 2015, 39(3): 264-274. DOI: 10.17521/cjpe.2015.0026
MA Yong-Gang,ZHANG Chi,CHEN Xi. A new method of sample selections for optimizing phenology model based remote sensing data. Chinese Journal of Plant Ecology, 2015, 39(3): 264-274. DOI: 10.17521/cjpe.2015.0026
模型 Model | 参数T0 Parameter T0 | 拟合程度 Fitting result | 精度评价 Accuracy assessment | ||||||
---|---|---|---|---|---|---|---|---|---|
固定型/游动型 Fixed or moved (mobile) | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | |||
Chuine模型 Chuine model | 游动 Moved | 70 | 11.18 | 0.55 | 79 | 15.42 | 0.10 | ||
固定 Fixed | 11.94 | 0.51 | 18.25 | 0.15 | |||||
SW模型 SW model | 游动 Moved | 10.75 | 0.57 | 9.68 | 0.55 | ||||
固定 Fixed | 13.24 | 0.42 | 16.27 | 0.61 | |||||
Seq模型 Seq model | 游动 Moved | 14.01 | 0.37 | 18.31 | 0.12 | ||||
固定 Fixed | 14.02 | 0.37 | 12.06 | 0.69 | |||||
Par模型 Par model | 游动 Moved | 9.38 | 0.61 | 10.72 | 0.69 | ||||
固定 Fixed | 19.36 | - | - | - | |||||
Al模型 Al model | 游动 Moved | 9.20 | 0.74 | 19.6 | 0.37 | ||||
固定 Fixed | - | 0.20 | - | - | |||||
Al-P模型 Al-P model | 游动 Moved | 6.60 | 0.68 | 16.57 | 0.51 | ||||
固定 Fixed | 12.40 | 0.37 | - | 0.12 | |||||
T-P修正模型 Modified T-P model | 游动 Moved | 7.70 | 0.83 | 9.87 | 0.70 | ||||
固定 Fixed | 10.25 | 0.77 | 14.19 | 0.64 | |||||
Chuine-P模型 Chuine-P model | 游动 Moved | 12.32 | 0.39 | 14.13 | 0.27 | ||||
固定 Fixed | 15.25 | 0.33 | 16.93 | - | |||||
T-D模型 T-D model | 游动 Moved | 9.79 | 0.67 | 11.77 | 0.66 | ||||
固定 Fixed | 10.64 | 0.68 | 15.18 | 0.68 | |||||
T-P-D1模型 T-P-D1 model | 游动 Moved | 7.78 | 0.69 | 10.01 | 0.48 | ||||
固定 Fixed | 8.60 | 0.77 | 11.34 | 0.71 | |||||
T-P-D2模型 T-P-D2 model | 游动 Moved | 8.00 | 0.47 | 17.21 | 0.47 | ||||
固定 Fixed | 10.54 | 0.64 | 14.50 | 0.41 |
表1 荒漠草原植被生长季开始期物候模型的拟合与评价结果
Table 1 Results of the start of season (SOS) model fitting and assessment for desert steppe vegetation
模型 Model | 参数T0 Parameter T0 | 拟合程度 Fitting result | 精度评价 Accuracy assessment | ||||||
---|---|---|---|---|---|---|---|---|---|
固定型/游动型 Fixed or moved (mobile) | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | |||
Chuine模型 Chuine model | 游动 Moved | 70 | 11.18 | 0.55 | 79 | 15.42 | 0.10 | ||
固定 Fixed | 11.94 | 0.51 | 18.25 | 0.15 | |||||
SW模型 SW model | 游动 Moved | 10.75 | 0.57 | 9.68 | 0.55 | ||||
固定 Fixed | 13.24 | 0.42 | 16.27 | 0.61 | |||||
Seq模型 Seq model | 游动 Moved | 14.01 | 0.37 | 18.31 | 0.12 | ||||
固定 Fixed | 14.02 | 0.37 | 12.06 | 0.69 | |||||
Par模型 Par model | 游动 Moved | 9.38 | 0.61 | 10.72 | 0.69 | ||||
固定 Fixed | 19.36 | - | - | - | |||||
Al模型 Al model | 游动 Moved | 9.20 | 0.74 | 19.6 | 0.37 | ||||
固定 Fixed | - | 0.20 | - | - | |||||
Al-P模型 Al-P model | 游动 Moved | 6.60 | 0.68 | 16.57 | 0.51 | ||||
固定 Fixed | 12.40 | 0.37 | - | 0.12 | |||||
T-P修正模型 Modified T-P model | 游动 Moved | 7.70 | 0.83 | 9.87 | 0.70 | ||||
固定 Fixed | 10.25 | 0.77 | 14.19 | 0.64 | |||||
Chuine-P模型 Chuine-P model | 游动 Moved | 12.32 | 0.39 | 14.13 | 0.27 | ||||
固定 Fixed | 15.25 | 0.33 | 16.93 | - | |||||
T-D模型 T-D model | 游动 Moved | 9.79 | 0.67 | 11.77 | 0.66 | ||||
固定 Fixed | 10.64 | 0.68 | 15.18 | 0.68 | |||||
T-P-D1模型 T-P-D1 model | 游动 Moved | 7.78 | 0.69 | 10.01 | 0.48 | ||||
固定 Fixed | 8.60 | 0.77 | 11.34 | 0.71 | |||||
T-P-D2模型 T-P-D2 model | 游动 Moved | 8.00 | 0.47 | 17.21 | 0.47 | ||||
固定 Fixed | 10.54 | 0.64 | 14.50 | 0.41 |
图4 荒漠草原植被与落叶阔叶林评价最优模型评价结果散点图。A, 荒漠草原植被的T-P修正模型。B, 落叶阔叶林的替代模型。
Fig. 4 Scatter plots for desert steppe vegetation and delicious broadleaf forest assessment. A, Modified T-P model for desert grassland vegetation. B, Al model for deciduous broadleaved forest. RMSE, root mean square error.
模型名称 Model name | 参数 T0 Parameter T0 | 拟合程度 Fitting result | 精度评价 Accuracy assessment | ||||||
---|---|---|---|---|---|---|---|---|---|
固定型/游动型 Fixed or moved | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | |||
Chuine模型 Chuine model | 游动 Moved | 15 | 9.70 | 0.71 | 18 | 18.30 | 0.46 | ||
固定 Fixed | 11.70 | 0.42 | 16.20 | 0.41 | |||||
SW模型 SW model | 游动 Moved | 12.80 | 0.22 | 13.95 | 0.56 | ||||
固定 Fixed | 13.25 | 0.13 | 13.73 | 0.51 | |||||
Seq模型 Seq model | 游动 Moved | 12.60 | 0.31 | 17.50 | 0.21 | ||||
固定 Fixed | 12.56 | 0.31 | 15.88 | 0.59 | |||||
Par模型 Par model | 游动 Moved | 11.90 | 0.40 | 12.80 | 0.57 | ||||
固定 Fixed | 11.90 | 0.44 | 12.63 | 0.58 | |||||
Al模型 Al model | 游动 Moved | 8.00 | 0.82 | 12.10 | 0.63 | ||||
固定 Fixed | 14.29 | 0.62 | - | 0.29 | |||||
Al-P模型 Al-P model | 游动 Moved | - | - | ||||||
固定 Fixed | - | - | |||||||
T-P修正模型 Modified T-P model | 游动 Moved | - | 0.44 | - | - | ||||
固定 Fixed | - | 0.10 | - | - | |||||
Chuine-P模型 Chuine-P model | 游动 Moved | - | - | ||||||
固定 Fixed | - | - | |||||||
T-D模型 T-D model | 游动 Moved | 12.66 | 0.34 | 17.75 | 0.33 | ||||
固定 Fixed | 13.10 | - | 19.32 | - | |||||
T-P-D1模型 T-P-D1 model | 游动 Moved | - | 0.44 | - | - | ||||
固定 Fixed | - | - | - | - | |||||
T-P-D2模型 T-P-D2 model | 游动 Moved | - | 0.22 | - | - | ||||
固定 Fixed | - | - | - |
表2 阔叶林生长季开始期物候模型的拟合与评价结果
Table 2 Results of the start of the season (SOS) model fitting and assessment for board-leaved forest
模型名称 Model name | 参数 T0 Parameter T0 | 拟合程度 Fitting result | 精度评价 Accuracy assessment | ||||||
---|---|---|---|---|---|---|---|---|---|
固定型/游动型 Fixed or moved | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | |||
Chuine模型 Chuine model | 游动 Moved | 15 | 9.70 | 0.71 | 18 | 18.30 | 0.46 | ||
固定 Fixed | 11.70 | 0.42 | 16.20 | 0.41 | |||||
SW模型 SW model | 游动 Moved | 12.80 | 0.22 | 13.95 | 0.56 | ||||
固定 Fixed | 13.25 | 0.13 | 13.73 | 0.51 | |||||
Seq模型 Seq model | 游动 Moved | 12.60 | 0.31 | 17.50 | 0.21 | ||||
固定 Fixed | 12.56 | 0.31 | 15.88 | 0.59 | |||||
Par模型 Par model | 游动 Moved | 11.90 | 0.40 | 12.80 | 0.57 | ||||
固定 Fixed | 11.90 | 0.44 | 12.63 | 0.58 | |||||
Al模型 Al model | 游动 Moved | 8.00 | 0.82 | 12.10 | 0.63 | ||||
固定 Fixed | 14.29 | 0.62 | - | 0.29 | |||||
Al-P模型 Al-P model | 游动 Moved | - | - | ||||||
固定 Fixed | - | - | |||||||
T-P修正模型 Modified T-P model | 游动 Moved | - | 0.44 | - | - | ||||
固定 Fixed | - | 0.10 | - | - | |||||
Chuine-P模型 Chuine-P model | 游动 Moved | - | - | ||||||
固定 Fixed | - | - | |||||||
T-D模型 T-D model | 游动 Moved | 12.66 | 0.34 | 17.75 | 0.33 | ||||
固定 Fixed | 13.10 | - | 19.32 | - | |||||
T-P-D1模型 T-P-D1 model | 游动 Moved | - | 0.44 | - | - | ||||
固定 Fixed | - | - | - | - | |||||
T-P-D2模型 T-P-D2 model | 游动 Moved | - | 0.22 | - | - | ||||
固定 Fixed | - | - | - |
1 | Ahl DE, Gower ST, Burrows SN, Shabanov NV, Myneni RB, Knyazikhin Y (2006). Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS.Remote Sensing of Environment, 104, 88-95. |
2 | Archibald S, Scholes RJ (2007). Leaf green-up in a semi-arid African savanna-separating tree and grass responses to environmental cues.Journal of Vegetation Science, 18, 583-594. |
3 | Augustine DJ (2010). Spatial versus temporal variation in precipitation in a semiarid ecosystem.Landscape Ecology, 25, 913-925. |
4 | Botta A, Viovy N, Ciais P, Friedlingstein P, Monfray P (2000). A global prognostic scheme of leaf onset using satellite data.Global Change Biology, 6, 709-725. |
5 | Cannell MGR, Smith RI (1983). Thermal time, chill days and prediction of budburst in Picea sitchensis.Journal of Applied Ecology, 20, 951-963. |
6 | Chuine I (2000). A unified model for budburst of trees.Journal of Theoretical Biology, 207, 337-347. |
7 | Chuine I, Cour P, Rousseau DD (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing.Plant, Cell & Environment, 21, 455-466. |
8 | Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007). Shifting plant phenology in response to global change.Trends in Ecology & Evolution, 22, 357-365. |
9 | de Beurs KM, Henebry GM (2004). Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan.Remote Sensing of Environment, 89, 497-509. |
10 | Delbart N, Kergoat L, le Toan T, Lhermitte J, Picard G (2005). Determination of phenological dates in boreal regions using normalized difference water index.Remote Sensing of Environment, 97, 26-38. |
11 | Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics.Global Biogeochemical Cycles, 10, 603-628. |
12 | Friend AD, Stevens AK, Knox RG, Cannell MGR (1997). A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0).Ecological Modelling, 95, 249-287. |
13 | Hänninen H (1990). Modelling bud dormancy release in trees from cool and temperate regions.Acta Forestalia Fennica, 213, 1-47. |
14 | Haxeltine A, Prentice IC (1996). BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types.Global Biogeochemical Cycles, 10, 693-709. |
15 | Howell SEL, Brown LC, Kang KK, Duguay CR (2009). Variability in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuikSCAT: 2000-2006.Remote Sensing of Environment, 113, 816-834. |
16 | Hu ZY, Zhang C, Hu Q, Tian HQ (2014). Temperature changes in Central Asia from 1979-2011 based on multiple datasets.Journal of Climate, 27, 1143-1167. |
17 | Hudson Dunn A, de Beurs KM (2011). Land surface phenology of North American mountain environments using moderate resolution imaging spectroradiometer data.Remote Sensing of Environment, 115, 1220-1233. |
18 | Hufkens K, Friedl M, Sonnentag O, Braswell BH, Milliman T, Richardson AD (2012). Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology.Remote Sensing of Environment, 117, 307-321. |
19 | Jiang Z, Huete A, Didan K, Miura T (2008). Development of a two-band enhanced vegetation index without a blue band.Remote Sensing of Environment, 112, 3833-3845. |
20 | Kariyeva J, van Leeuwen WJD, Woodhouse CA (2012). Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981-2008).Frontiers of Earth Science, 6, 206-225. |
21 | Koltunov A, Ustin SL, Asner GP, Fung I (2009). Selective logging changes forest phenology in the Brazilian Amazon: Evidence from MODIS image time series analysis.Remote Sensing of Environment, 113, 2431-2440. |
22 | Kramer K (1994). Selecting a model to predict the onset of growth of Fagus sylvatica.Journal of Applied Ecology, 31, 172-181. |
23 | Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice CI (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, GB1015. |
24 | Levis S, Bonan G, Vertenstein M, Oleson K (2004). The Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User’s Guide. NCAR Technical Note. . Cited: May 2014. |
25 | Li RP, Zhou GS (2012). A temperature-precipitation based leafing model and its application in Northeast China.PLoS ONE, 7, e33192. |
26 | Linkosalo T, Lappalainen HK, Hari P (2008). A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations.Tree Physiology, 28, 1873-1882. |
27 | Ma YG, Zhang C, Tiyip T (2014). Spatial-temporal change of vegetation phenology in arid zone of Central Asia and Xinjiang, China.Advances in Climate Change Research, 10, 95-102. (in Chinese with English abstract) |
[马勇刚, 张弛, 塔西甫拉提·特依拜 (2004). 中亚及中国新疆干旱区植被物候时空变化. 气候变化研究进展, 10, 95-102.] | |
28 | Randerson JT, Hoffman FM, Thornton PE, Mahowald NM, Lindsay K, Lee YH, Nevison CD, Doney SC, Bonan G, Stöckli R, Covey C, Running SW, Fung IY (2009). Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models.Global Change Biology, 15, 2462-2484. |
29 | Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen GS, Chen JM, Ciais P, Davis KJ, Desai AR, Dietze MC, Dragoni D, Garrity SR, Gough CM, Grant R, Hollinger DY, Margolis HA, McCaughey H, Migliavacca M, Monson RK, Munger JW, Poulter B, Raczka BM, Ricciuto DM, Sahoo AK, Schaefer K, Tian H, Vargas R, Verbeeck H, Xiao JF, Xue YK (2012). Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis.Global Change Biology, 18, 566-584. |
30 | Rocha AV, Shaver GR (2009). Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes.Agricultural and Forest Meteorology, 149, 1560-1563. |
31 | Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H (2005). A crop phenology detection method using time-series MODIS data.Remote Sensing of Environment, 96, 366-374. |
32 | Sarvas R (1972). Investigations on the annual cycle of development of forest trees: active period.Communicationes Instituti Forestalls Fenniae, 76, 1-110. |
33 | Sato H, Itoh A, Kohyama T (2007). SEIB-DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach.Ecological Modelling, 200, 279-307. |
34 | Shu SJ, Wang Y, Chu HY (2009). Spatial distribution of temperature in China: Geographic and orographic influences. Journal of Nanjing University (Natural Science), 45, 334-342. (in Chinese with English abstract) |
[舒守娟, 王元, 储惠云 (2009). 地理和地形影响下我国区域的气温空间分布. 南京大学学报(自然科学版), 45, 334-342.] | |
35 | Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model.Global Change Biology, 9, 161-185. |
36 | White MA, Thornton PE, Running SW (1997). A continental phenology model for monitoring vegetation responses to interannual climatic variability.Global Biogeochemical Cycles, 11, 217-234. |
37 | Wright CK, de Beurs KM, Akhmadieva ZK, Groisman PY, Henebry GM (2009). Reanalysis data underestimate significant changes in growing season weather in Kazakhstan.Environmental Research Letters, 4, doi:10.1088/1748-9326/4/4/045020. |
38 | Wu YF, Li MS, Song JQ (2008). Advance in vegetation phenology monitoring based on remote sensing.Journal of Meteorology and Environment, 24(3), 51-58. (in Chinese with English abstract) |
[武永峰, 李茂松, 宋吉青 (2008). 植物物候遥感监测研究进展. 气象与环境学报, 24(3), 51-58.] | |
39 | Yang S, Sun GJ, He WY, Zhao H, Li FM, Xiong YC (2011). Correlation of topographic factors with precipitation and surface temperature in arid and cold region of Northwest China: A case study in Gansu Province.Acta Ecologica Sinica, 31, 2414-2420. (in Chinese with English abstract) |
[杨森, 孙国钧, 何文莹, 赵鸿, 李凤民, 熊友才 (2011). 西北旱寒区地理、地形因素与降雨量及平均温度的相关性——以甘肃省为例. 生态学报, 31, 2414-2420.] | |
40 | Yang X, Mustard JF, Tang JW, Xu H (2012). Regional-scale phenology modeling based on meteorological records and remote sensing observations.Journal of Geophysical Research, 117, doi: 10.1029/2012JG001977. |
41 | Zhang XY, Friedl MA, Schaaf CB (2009). Sensitivity of vegetation phenology detection to the temporal resolution of satellite data.International Journal of Remote Sensing, 30, 2061-2074. |
42 | Zhao H, Yang ZW, Di LP, Pei ZY (2012). Evaluation of temporal resolution effect in remote sensing based crop phenology detection studies. In: Li D, Chen Y eds. Computer and Computing Technologies in Agriculture V. Springer, Berlin. 135-150. |
[1] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[4] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[5] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[6] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[7] | 姜艳, 陈兴芳, 杨旭杰. 基于Landsat影像的武汉东湖30年来水生植物动态变化[J]. 植物生态学报, 2022, 46(12): 1551-1561. |
[8] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[9] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[10] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[11] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[12] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
[13] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[14] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[15] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19