植物生态学报 ›› 2016, Vol. 40 ›› Issue (10): 1064-1076.DOI: 10.17521/cjpe.2015.0412
辜翔1, 张仕吉2, 项文化1,3,4, 李雷达1, 刘兆丹1, 孙伟军1, 方晰1,3,4,,A;*()
出版日期:
2016-10-10
发布日期:
2016-11-02
通讯作者:
方晰
基金资助:
Xiang GU1, Shi-Ji ZHANG2, Wen-Hua XIANG1,3,4, Lei-Da LI1, Zhao-Dan LIU1, Wei-Jun SUN1, Xi FANG1,3,4,*()
Online:
2016-10-10
Published:
2016-11-02
Contact:
Xi FANG
摘要:
2011年12月至2012年9月, 在湘中丘陵区杉木(Cunninghamia lanceolata)人工林、马尾松(Pinus massoniana)-石栎(Lithocarpus glaber)针阔混交林、南酸枣(Choerospondias axillaries)落叶阔叶林、石栎(Lithocarpus glaber)-青冈(Cyclobalanopsis glauca)常绿阔叶林1 hm2的长期定位观测样地, 采集0-15 cm、15-30 cm土层土壤样品, 测定土壤微生物生物量碳(MBC)、可矿化有机碳(MOC)、易氧化有机碳(ROC)、水溶性有机碳(DOC)含量, 分析4种森林土壤MBC、MOC、ROC、DOC含量的季节变化特征, 为揭示天然林保护与恢复对土壤有机碳(SOC)库的影响机理过程提供基础数据。结果表明: 森林土壤MBC、MOC、ROC、DOC含量具有明显的季节动态, 且不同森林同一土壤活性有机碳组分的季节变化节律基本一致, MBC、MOC、ROC含量表现为夏、秋季较高, 春、冬季较低; DOC含量表现为春、夏、冬季较高, 秋季最低; 同一森林不同土壤活性有机碳组分含量的季节变化节律不同; 土壤MBC、MOC、ROC、DOC含量与土壤自然含水率、SOC、全N、水解N、全P (除杉木人工林土壤MBC、MOC、ROC外)、速效P含量显著或极显著正相关, 与土壤pH值、全K、速效K含量相关性不显著, 表明不同森林类型外源碳库投入和土壤理化性质的差异是导致不同森林类型土壤活性有机碳含量差异显著的主要原因, 该区域森林土壤活性有机碳各组分含量的季节变化与各森林类型组成树种生长节律及其土壤水分含量和SOC、N、P的可利用性, 以及土壤活性有机碳各组分的来源有关, 森林土壤MBC、MOC、ROC、DOC含量可作为衡量森林土壤C、N、P动态变化的敏感性指标。
辜翔, 张仕吉, 项文化, 李雷达, 刘兆丹, 孙伟军, 方晰. 中亚热带4种森林类型土壤活性有机碳的季节动态特征. 植物生态学报, 2016, 40(10): 1064-1076. DOI: 10.17521/cjpe.2015.0412
Xiang GU, Shi-Ji ZHANG, Wen-Hua XIANG, Lei-Da LI, Zhao-Dan LIU, Wei-Jun SUN, Xi FANG. Seasonal dynamics of active soil organic carbon in four subtropical forests in Southern China. Chinese Journal of Plant Ecology, 2016, 40(10): 1064-1076. DOI: 10.17521/cjpe.2015.0412
森林类型Forest types | 土层 Soil layer (cm) | 含水量 Moisture content (%) | pH | 有机碳 Soil organic carbon (g·kg-1) | 全N Total N (g·kg-1) | 水解N Hydrolysis N (mg·kg-1) | 全P Total P (g·kg-1) | 速效P Available P (mg·kg-1) | 全K Total K (g·kg-1) | 速效K Available K (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
CL | 0-15 | 26.62 ± 5.63 | 4.57 ± 0.20 | 19.72 ± 3.61 | 1.12 ± 0.23 | 58.21 ± 10.16 | 0.21 ± 0.05 | 1.96 ± 0.49 | 4.98 ± 1.41 | 52.55 ± 10.67 |
15-30 | 26.16 ± 3.37 | 4.65 ± 0.34 | 15.00 ± 3.22 | 0.96 ± 0.22 | 44.46 ± 6.20 | 0.20 ± 0.04 | 1.35 ± 0.37 | 5.08 ± 1.53 | 42.13 ± 7.63 | |
PM | 0-15 | 20.27 ± 4.35 | 4.55 ± 0.20 | 23.57 ± 6.82 | 1.37 ± 0.29 | 54.39 ± 14.03 | 0.25 ± 0.06 | 2.43 ± 0.55 | 5.82 ± 1.23 | 53.01 ± 10.65 |
15-30 | 18.33 ± 3.18 | 4.62 ± 0.18 | 17.76 ± 4.19 | 1.02 ± 0.22 | 37.95 ± 8.60 | 0.22 ± 0.05 | 1.99 ± 0.48 | 5.45 ± 1.55 | 49.55 ± 11.93 | |
CA | 0-15 | 25.53 ± 7.67 | 4.67 ± 0.19 | 24.08 ± 6.99 | 1.65 ± 0.44 | 77.93 ± 24.03 | 0.29 ± 0.07 | 2.73 ± 0.88 | 5.74 ± 1.55 | 69.30 ± 17.94 |
15-30 | 22.26 ± 5.76 | 4.69 ± 0.24 | 18.40 ± 4.62 | 1.33 ± 0.44 | 64.36 ± 19.18 | 0.27 ± 0.06 | 2.15 ± 0.74 | 5.76 ± 1.59 | 57.75 ± 16.84 | |
LG | 0-15 | 22.53 ± 2.33 | 4.63 ± 0.24 | 25.79 ± 6.30 | 1.44 ± 0.36 | 66.44 ± 15.53 | 0.20 ± 0.04 | 2.35 ± 0.43 | 4.91 ± 1.64 | 56.75 ± 12.83 |
15-30 | 21.61 ± 2.26 | 4.64 ± 0.20 | 18.48 ± 4.08 | 1.12 ± 0.37 | 50.28 ± 15.09 | 0.19 ± 0.04 | 2.03 ± 0.57 | 4.66 ± 1.36 | 45.56 ± 10.61 |
表1 不同森林土壤的基本性质(4个季节的平均值±标准偏差)
Table 1 Basic soil properties of different forest stands (average of the 4 seasons ± SD)
森林类型Forest types | 土层 Soil layer (cm) | 含水量 Moisture content (%) | pH | 有机碳 Soil organic carbon (g·kg-1) | 全N Total N (g·kg-1) | 水解N Hydrolysis N (mg·kg-1) | 全P Total P (g·kg-1) | 速效P Available P (mg·kg-1) | 全K Total K (g·kg-1) | 速效K Available K (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
CL | 0-15 | 26.62 ± 5.63 | 4.57 ± 0.20 | 19.72 ± 3.61 | 1.12 ± 0.23 | 58.21 ± 10.16 | 0.21 ± 0.05 | 1.96 ± 0.49 | 4.98 ± 1.41 | 52.55 ± 10.67 |
15-30 | 26.16 ± 3.37 | 4.65 ± 0.34 | 15.00 ± 3.22 | 0.96 ± 0.22 | 44.46 ± 6.20 | 0.20 ± 0.04 | 1.35 ± 0.37 | 5.08 ± 1.53 | 42.13 ± 7.63 | |
PM | 0-15 | 20.27 ± 4.35 | 4.55 ± 0.20 | 23.57 ± 6.82 | 1.37 ± 0.29 | 54.39 ± 14.03 | 0.25 ± 0.06 | 2.43 ± 0.55 | 5.82 ± 1.23 | 53.01 ± 10.65 |
15-30 | 18.33 ± 3.18 | 4.62 ± 0.18 | 17.76 ± 4.19 | 1.02 ± 0.22 | 37.95 ± 8.60 | 0.22 ± 0.05 | 1.99 ± 0.48 | 5.45 ± 1.55 | 49.55 ± 11.93 | |
CA | 0-15 | 25.53 ± 7.67 | 4.67 ± 0.19 | 24.08 ± 6.99 | 1.65 ± 0.44 | 77.93 ± 24.03 | 0.29 ± 0.07 | 2.73 ± 0.88 | 5.74 ± 1.55 | 69.30 ± 17.94 |
15-30 | 22.26 ± 5.76 | 4.69 ± 0.24 | 18.40 ± 4.62 | 1.33 ± 0.44 | 64.36 ± 19.18 | 0.27 ± 0.06 | 2.15 ± 0.74 | 5.76 ± 1.59 | 57.75 ± 16.84 | |
LG | 0-15 | 22.53 ± 2.33 | 4.63 ± 0.24 | 25.79 ± 6.30 | 1.44 ± 0.36 | 66.44 ± 15.53 | 0.20 ± 0.04 | 2.35 ± 0.43 | 4.91 ± 1.64 | 56.75 ± 12.83 |
15-30 | 21.61 ± 2.26 | 4.64 ± 0.20 | 18.48 ± 4.08 | 1.12 ± 0.37 | 50.28 ± 15.09 | 0.19 ± 0.04 | 2.03 ± 0.57 | 4.66 ± 1.36 | 45.56 ± 10.61 |
因子 Factor | 微生物生物量碳 Microbial biomass carbon | 可矿化有机碳 Mineralized organic carbon | 易氧化有机碳 Readily oxidized carbon | 水溶性有机碳 Dissolved organic carbon | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | Sig | df | F | p | ||||
A | 3 | 7.37 | 0.003 | 3 | 43.06 | 0.000 | 3 | 41.24 | 0.000 | 3 | 7.24 | 0.003 | |||
B | 3 | 32.21 | 0.000 | 3 | 21.81 | 0.000 | 3 | 28.25 | 0.000 | 3 | 63.22 | 0.000 | |||
C | 1 | 18.05 | 0.001 | 1 | 74.13 | 0.000 | 1 | 95.48 | 0.000 | 1 | 33.30 | 0.000 | |||
A × B | 9 | 5.97 | 0.000 | 9 | 1.42 | 0.206 | 9 | 3.63 | 0.002 | 9 | 1.40 | 0.215 | |||
A × C | 3 | 0.13 | 0.941 | 3 | 1.89 | 0.173 | 3 | 2.34 | 0.112 | 3 | 0.78 | 0.524 | |||
B × C | 3 | 0.423 | 0.736 | 3 | 1.91 | 0.141 | 3 | 1.20 | 0.320 | 3 | 3.74 | 0.017 | |||
A × B × C | 9 | 0.77 | 0.645 | 9 | 0.12 | 0.999 | 9 | 0.27 | 0.979 | 9 | 0.28 | 0.977 |
表2 土壤微生物生物量碳(MBC)、可矿化有机碳(MOC)、易氧化有机碳(ROC)和水溶性有机碳(DOC)含量变化的重复测量设计的方差分析
Table 2 Repeated-Measures ANOVA on the change of soil microbial biomass carbon, mineralized organic carbon, readily oxidized carbon and dissolved organic carbon
因子 Factor | 微生物生物量碳 Microbial biomass carbon | 可矿化有机碳 Mineralized organic carbon | 易氧化有机碳 Readily oxidized carbon | 水溶性有机碳 Dissolved organic carbon | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | Sig | df | F | p | ||||
A | 3 | 7.37 | 0.003 | 3 | 43.06 | 0.000 | 3 | 41.24 | 0.000 | 3 | 7.24 | 0.003 | |||
B | 3 | 32.21 | 0.000 | 3 | 21.81 | 0.000 | 3 | 28.25 | 0.000 | 3 | 63.22 | 0.000 | |||
C | 1 | 18.05 | 0.001 | 1 | 74.13 | 0.000 | 1 | 95.48 | 0.000 | 1 | 33.30 | 0.000 | |||
A × B | 9 | 5.97 | 0.000 | 9 | 1.42 | 0.206 | 9 | 3.63 | 0.002 | 9 | 1.40 | 0.215 | |||
A × C | 3 | 0.13 | 0.941 | 3 | 1.89 | 0.173 | 3 | 2.34 | 0.112 | 3 | 0.78 | 0.524 | |||
B × C | 3 | 0.423 | 0.736 | 3 | 1.91 | 0.141 | 3 | 1.20 | 0.320 | 3 | 3.74 | 0.017 | |||
A × B × C | 9 | 0.77 | 0.645 | 9 | 0.12 | 0.999 | 9 | 0.27 | 0.979 | 9 | 0.28 | 0.977 |
图1 不同森林土壤微生物生物量碳含量的季节变化(平均值±标准误差)。不同大写字母表示同一季节不同森林类型之间差异显著(p < 0.05), 不同小写字母表示同种森林不同季节之间差异显著(p < 0.05); CA, 南酸枣落叶阔叶林; CL, 杉木人工林; LG, 石栎+青冈常绿阔叶林; PM, 马尾松+石栎针阔混交林。
Fig. 1 Seasonal variations of soil microbial biomass carbon concentrations in different forests (mean ± SE). Capital letters indicate significant differences among the forests in the same season (p < 0.05), while lowercase letters indicate significant differences among seasons of the same forest (p < 0.05); CA, Choerospondias axillaris deciduous broad leaved-forest; CL, Cunninghamia lanceolata plantation; LG, Lithocarpus glaber-Cyclobalanopsis glauca evergreen broad-leaved forest; PM, Pinus massoniana-Lithocarpus glaber mixed forest.
图2 不同森林土壤可矿化有机碳含量的季节变化(平均值±标准误差)。不同大写字母表示同一季节不同森林类型之间差异显著(p < 0.05), 不同小写字母表示同种森林不同季节之间差异显著(p < 0.05); CA, 南酸枣落叶阔叶林; CL, 杉木人工林; LG, 石栎+青冈常绿阔叶林; PM, 马尾松+石栎针阔混交林。
Fig. 2 Seasonal variations of soil mineralized organic carbon in different forests (mean ± SE). Capital letters indicate significant differences among the forests in the same season (p < 0.05), while lowercase letters indicate significant differences among seasons in the same forest (p < 0.05); CA, Choerospondias axillaris deciduous broad leaved-forest; CL, Cunninghamia lanceolata plantation; LG, Lithocarpus glaber-Cyclobalanopsis glauca evergreen broad-leaved forest; PM, Pinus massoniana-Lithocarpus glaber mixed forest.
图3 不同森林土壤易氧化有机碳含量的季节变化(平均值±标准误差)。不同大写字母表示同一季节不同森林类型之间差异显著(p < 0.05), 不同小写字母表示同种森林不同季节之间差异显著(p < 0.05); CA, 南酸枣落叶阔叶林; CL, 杉木人工林; LG, 石栎+青冈常绿阔叶林; PM, 马尾松+石栎针阔混交林。
Fig. 3 Seasonal variations of soil readily oxidized carbon concentrations in different forests (mean ± SE). Capital letters indicate significant differences among the forests in the same season (p < 0.05), while lowercase letters indicate significant differences among different seasons in the same forest (p < 0.05); CA, Choerospondias axillaris deciduous broad-leaved forest; CL, Cunninghamia lanceolata plantation; LG, Lithocarpus glaber-Cyclobalanopsis glauca evergreen broad-leaved forest; PM, Pinus massoniana-Lithocarpus glaber mixed forest.
图4 不同森林土壤水溶性有机碳含量的季节变化(平均值±标准误差)。不同大写字母表示同一季节不同森林类型之间差异显著(p < 0.05), 不同小写字母表示同种森林不同季节之间差异显著(p < 0.05); CA, 南酸枣落叶阔叶林; CL, 杉木人工林; LG, 石栎+青冈常绿阔叶林; PM, 马尾松+石栎针阔混交林。
Fig. 4 Seasonal variations of soil dissolved organic carbon concentrations in different forests (mean ± SE). Capital letters indicate significant differences among the forests in the same season (p < 0.05), while lowercase letters indicate significant differences among different seasons in the same forest (p < 0.05); CA, Choerospondias axillaris deciduous broad-leaved forest; CL, Cunninghamia lanceolata plantation; LG, Lithocarpus glaber-Cyclobalanopsis glauca evergreen broad-leaved forest; PM, Pinus massoniana-Lithocarpus glaber mixed forest.
森林类型 Forest type | 土壤有机碳 Soil organic carbon | 微生物生物量碳 Microbial biomass carbon | 可矿化有机碳 Mineralized organic carbon | 易氧化有机碳 Readily oxidized carbon | 水溶性有机碳 Dissolved organic carbon |
---|---|---|---|---|---|
CL (n = 24) | 0.510 3* | 0.772 3** | 0.559 1** | 0.408 9* | 0.436 6* |
PM (n = 24) | 0.596 9** | 0.806 7** | 0.532 6** | 0.796 0** | 0.414 4* |
CA (n = 24) | 0.530 7** | 0.422 3* | 0.506 2* | 0.638 5** | 0.501 0* |
LG (n = 24) | 0.516 2* | 0.776 5 ** | 0.545 0** | 0.529 6** | 0.409 8* |
研究区 Research area (n = 96) | 0.344 5** | 0.497 2** | 0.246 5** | 0.319 2** | 0.267 1** |
表3 森林土壤有机碳各组分含量与土壤自然含水率的相关系数
Table 3 Correlation coefficients between soil organic carbon fractions and soil moisture content in four subtropical forests
森林类型 Forest type | 土壤有机碳 Soil organic carbon | 微生物生物量碳 Microbial biomass carbon | 可矿化有机碳 Mineralized organic carbon | 易氧化有机碳 Readily oxidized carbon | 水溶性有机碳 Dissolved organic carbon |
---|---|---|---|---|---|
CL (n = 24) | 0.510 3* | 0.772 3** | 0.559 1** | 0.408 9* | 0.436 6* |
PM (n = 24) | 0.596 9** | 0.806 7** | 0.532 6** | 0.796 0** | 0.414 4* |
CA (n = 24) | 0.530 7** | 0.422 3* | 0.506 2* | 0.638 5** | 0.501 0* |
LG (n = 24) | 0.516 2* | 0.776 5 ** | 0.545 0** | 0.529 6** | 0.409 8* |
研究区 Research area (n = 96) | 0.344 5** | 0.497 2** | 0.246 5** | 0.319 2** | 0.267 1** |
森林类型 Forest type | 项目 Item | 土壤有机碳 Soil organic carbon | 全N Total N | 全P Total P | 全K Total K | 水解N Hydrolysis N | 速效P Available P | 速效K Available K | pH |
---|---|---|---|---|---|---|---|---|---|
CL (n = 24) | 微生物生物量碳 Microbial biomass carbon | 0.631 7** | 0.481 0 * | 0.205 4 | -0.156 3 | 0.533 4 ** | 0.473 8 * | -0.108 3 | -0.064 6 |
可矿化有机碳 Mineralized organic carbon | 0.459 3* | 0.403 8 * | -0.050 8 | 0.244 4 | 0.539 6 ** | 0.418 1 * | 0.540 3 ** | -0.279 8 | |
易氧化有机碳 Readily oxidized carbon | 0.712 1** | 0.455 1 * | -0.021 1 | 0.037 1 | 0.600 8 ** | 0.559 9 ** | 0.076 8 | -0.380 6 | |
水溶性有机碳 Dissolved organic carbon | 0.947 3** | 0.708 1 ** | 0.455 6 * | -0.066 9 | 0.645 8 ** | 0.598 4 ** | 0.056 8 | 0.060 9 | |
PM (n = 24) | 微生物生物量碳 Microbial biomass carbon | 0.568 3** | 0.570 3** | 0.473 6* | -0.071 8 | 0.420 6* | 0.488 8* | 0.051 4 | -0.391 4 |
可矿化有机碳 Mineralized organic carbon | 0.536 0** | 0.579 1** | 0.583 3** | -0.332 0 | 0.657 9** | 0.491 0* | 0.050 6 | 0.251 8 | |
易氧化有机碳 Readily oxidized carbon | 0.709 3** | 0.638 2** | 0.523 3** | -0.064 5 | 0.554 8** | 0.545 6* | 0.013 1 | -0.270 1 | |
水溶性有机碳 Dissolved organic carbon | 0.972 7** | 0.656 1** | 0.702 1** | -0.100 6 | 0.652 1** | 0.479 9* | -0.158 1 | -0.005 8 | |
CA (n = 24) | 微生物生物量碳 Microbial biomass carbon | 0.533 9** | 0.511 3* | 0.678 1** | -0.318 4 | 0.451 7* | 0.459 5* | 0.138 6 | 0.147 8 |
可矿化有机碳 Mineralized organic carbon | 0.639 0** | 0.559 3** | 0.421 7* | 0.078 3 | 0.613 7** | 0.507 6* | -0.288 2 | -0.265 9 | |
易氧化有机碳 Readily oxidized carbon | 0.743 4** | 0.722 3** | 0.514 9* | -0.094 1 | 0.470 3* | 0.659 4** | 0.038 7 | 0.002 8 | |
水溶性有机碳 Dissolved organic carbon | 0.987 8** | 0.703 3** | 0.507 9* | 0.267 8 | 0.584 6** | 0.545 5** | 0.109 7 | -0.303 9 | |
LG (n = 24) | 微生物生物量碳 Microbial biomass carbon | 0.724 7** | 0.827 7** | 0.487 8* | -0.200 1 | 0.510 3* | 0.585 8** | -0.273 3 | -0.127 1 |
可矿化有机碳 Mineralized organic carbon | 0.637 1** | 0.603 9** | 0.439 3* | 0.115 4 | 0.516 3** | 0.471 7* | 0.267 8 | -0.265 4 | |
易氧化有机碳 Readily oxidized carbon | 0.715 6** | 0.562 8** | 0.458 5* | -0.088 1 | 0.559 3** | 0.412 1* | 0.126 4 | -0.052 6 | |
水溶性有机碳 Dissolved organic carbon | 0.601 2** | 0.584 7** | 0.409 6* | -0.168 6 | 0.659 4** | 0.728 6** | -0.009 5 | -0.237 4 | |
研究区 Research area (n = 96) | 微生物生物量碳 Microbial biomass carbon | 0.616 5** | 0.634 4** | 0.451 2** | -0.124 7 | 0.519 2** | 0.524 5** | 0.071 6 | -0.059 3 |
可矿化有机碳 Mineralized organic carbon | 0.619 9** | 0.537 2** | 0.262 1** | 0.002 2 | 0.507 3** | 0.481 1** | 0.093 8 | -0.128 0 | |
易氧化有机碳 Readily oxidized carbon | 0.730 7** | 0.671 3** | 0.409 8** | -0.003 5 | 0.532 5** | 0.633 1** | 0.183 2 | -0.086 2 | |
水溶性有机碳 Dissolved organic carbon | 0.808 9** | 0.634 4** | 0.326 0** | -0.022 3 | 0.557 4** | 0.586 4** | 0.079 0 | -0.087 1 |
表4 森林土壤活性有机碳各组分与土壤有机碳、养分、pH值的相关系数
Table 4 Correlation coefficients between soil active organic carbon fractions and soil organic carbon, nutrients, pH value in four tropical forests
森林类型 Forest type | 项目 Item | 土壤有机碳 Soil organic carbon | 全N Total N | 全P Total P | 全K Total K | 水解N Hydrolysis N | 速效P Available P | 速效K Available K | pH |
---|---|---|---|---|---|---|---|---|---|
CL (n = 24) | 微生物生物量碳 Microbial biomass carbon | 0.631 7** | 0.481 0 * | 0.205 4 | -0.156 3 | 0.533 4 ** | 0.473 8 * | -0.108 3 | -0.064 6 |
可矿化有机碳 Mineralized organic carbon | 0.459 3* | 0.403 8 * | -0.050 8 | 0.244 4 | 0.539 6 ** | 0.418 1 * | 0.540 3 ** | -0.279 8 | |
易氧化有机碳 Readily oxidized carbon | 0.712 1** | 0.455 1 * | -0.021 1 | 0.037 1 | 0.600 8 ** | 0.559 9 ** | 0.076 8 | -0.380 6 | |
水溶性有机碳 Dissolved organic carbon | 0.947 3** | 0.708 1 ** | 0.455 6 * | -0.066 9 | 0.645 8 ** | 0.598 4 ** | 0.056 8 | 0.060 9 | |
PM (n = 24) | 微生物生物量碳 Microbial biomass carbon | 0.568 3** | 0.570 3** | 0.473 6* | -0.071 8 | 0.420 6* | 0.488 8* | 0.051 4 | -0.391 4 |
可矿化有机碳 Mineralized organic carbon | 0.536 0** | 0.579 1** | 0.583 3** | -0.332 0 | 0.657 9** | 0.491 0* | 0.050 6 | 0.251 8 | |
易氧化有机碳 Readily oxidized carbon | 0.709 3** | 0.638 2** | 0.523 3** | -0.064 5 | 0.554 8** | 0.545 6* | 0.013 1 | -0.270 1 | |
水溶性有机碳 Dissolved organic carbon | 0.972 7** | 0.656 1** | 0.702 1** | -0.100 6 | 0.652 1** | 0.479 9* | -0.158 1 | -0.005 8 | |
CA (n = 24) | 微生物生物量碳 Microbial biomass carbon | 0.533 9** | 0.511 3* | 0.678 1** | -0.318 4 | 0.451 7* | 0.459 5* | 0.138 6 | 0.147 8 |
可矿化有机碳 Mineralized organic carbon | 0.639 0** | 0.559 3** | 0.421 7* | 0.078 3 | 0.613 7** | 0.507 6* | -0.288 2 | -0.265 9 | |
易氧化有机碳 Readily oxidized carbon | 0.743 4** | 0.722 3** | 0.514 9* | -0.094 1 | 0.470 3* | 0.659 4** | 0.038 7 | 0.002 8 | |
水溶性有机碳 Dissolved organic carbon | 0.987 8** | 0.703 3** | 0.507 9* | 0.267 8 | 0.584 6** | 0.545 5** | 0.109 7 | -0.303 9 | |
LG (n = 24) | 微生物生物量碳 Microbial biomass carbon | 0.724 7** | 0.827 7** | 0.487 8* | -0.200 1 | 0.510 3* | 0.585 8** | -0.273 3 | -0.127 1 |
可矿化有机碳 Mineralized organic carbon | 0.637 1** | 0.603 9** | 0.439 3* | 0.115 4 | 0.516 3** | 0.471 7* | 0.267 8 | -0.265 4 | |
易氧化有机碳 Readily oxidized carbon | 0.715 6** | 0.562 8** | 0.458 5* | -0.088 1 | 0.559 3** | 0.412 1* | 0.126 4 | -0.052 6 | |
水溶性有机碳 Dissolved organic carbon | 0.601 2** | 0.584 7** | 0.409 6* | -0.168 6 | 0.659 4** | 0.728 6** | -0.009 5 | -0.237 4 | |
研究区 Research area (n = 96) | 微生物生物量碳 Microbial biomass carbon | 0.616 5** | 0.634 4** | 0.451 2** | -0.124 7 | 0.519 2** | 0.524 5** | 0.071 6 | -0.059 3 |
可矿化有机碳 Mineralized organic carbon | 0.619 9** | 0.537 2** | 0.262 1** | 0.002 2 | 0.507 3** | 0.481 1** | 0.093 8 | -0.128 0 | |
易氧化有机碳 Readily oxidized carbon | 0.730 7** | 0.671 3** | 0.409 8** | -0.003 5 | 0.532 5** | 0.633 1** | 0.183 2 | -0.086 2 | |
水溶性有机碳 Dissolved organic carbon | 0.808 9** | 0.634 4** | 0.326 0** | -0.022 3 | 0.557 4** | 0.586 4** | 0.079 0 | -0.087 1 |
[1] | Barbhuiya AR, Arunachalam A, Pandey HN, Arunachalam K, Khan ML, Nath PC (2004). Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest.European Journal of Soil Biology, 40, 113-121. |
[2] | Bengtson P, Bengtsson G (2007). Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures.Ecology Letters, 10, 783-790. |
[3] | Devi NB, Yadava PS (2006). Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India.Applied Soil Ecology, 31, 220-227. |
[4] | Dosskey MG, Bertsch PM (1997). Transport of dissolved organic matter through a sandy forest soil.Soil Science Society of America Journal, 61, 920-927. |
[5] | Edwards KA, McCulloch J, Kershaw GP (2006). Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring. Soil Biology &Biochemistry, 38, 2843-2851. |
[6] | Fan YX, Yang YS, Yang ZJ, Xie JS, Chen GS, Zhong XJ, Guo JF (2013). Seasonal dynamics and content of soil labile organic carbon of mid-subtropical evergreen broadleaved forest during natural succession.Acta Ecologica Sinica, 33, 5751-5759.(in Chinese with English abstract)[范跃新, 杨玉盛, 杨智杰, 谢锦升, 陈光水, 钟小剑, 郭剑芬 (2013). 中亚热带常绿阔叶林不同演替阶段土壤活性有机碳含量及季节动态. 生态学报,33, 5751-5759.] |
[7] | Fang C, Smith P, Moncrieff JB, Smith JU (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59. |
[8] | Geng YQ, Yu XX, Yue YJ, Li JH, Zhang GZ, Liu S (2009). Soil active organic carbon pool of coniferous and broadleaved forests in the mountainous area of Beijing.Journal of Beijing Forestry University, 31(5), 192-224.(in Chinese with English abstract)[耿玉清, 余新晓, 岳永杰, 李金海, 张国桢, 刘松 (2009). 北京山地针叶林与阔叶林土壤活性有机碳库的研究. 北京林业大学学报, 31(5), 192-224.] |
[9] | Gu X, Fang X, Xiang WH, Li SL, Sun WJ (2013). Soil organic carbon and mineralizable organic carbon in four subtropical forests in hilly region of central Hunan Province, China. Chinese Journal of Ecology, 32, 2687-2694.(in Chinese with English abstract)[辜翔, 方晰, 项文化, 李胜蓝, 孙伟军 (2013). 湘中丘陵区4种森林类型土壤有机碳和可矿化有机碳的比较. 生态学杂志,32, 2687-2689.] |
[10] | Guo J, Yu LH, Fang X, Xiang WH, Deng XW, Lu X (2015). Litter production and turnover in four types of subtropical forests in China.Acta Ecologica Sinica, 35, 4668-4677.(in Chinese with English abstract)[郭婧, 喻林华, 方晰, 项文化, 邓湘雯, 路翔 (2015). 中亚热带4种森林凋落物量、组成、动态及其周转期. 生态学报,35, 4668-4677.] |
[11] | Haynes RJ (2005). Labile organic matter fractions as central components of the quality of agricultural soils: An overview.Advances in Agronomy, 85, 221-268. |
[12] | Huang LY, Cao JH, Zhou L, Xu XJ, Mo B, Zhang P (2007). Seasonal change and the influence factors of soil dissolved organic carbon at different geological background.Ecology and Environment, 16, 1282-1288.(in Chinese with English abstract)[黄黎英, 曹建华, 周莉, 徐祥明, 莫彬, 张佩 (2007). 不同地质背景下土壤溶解有机碳含量的季节动态及其影响因子. 生态环境,16, 1282-1288.] |
[13] | Institute of Soil Science, Chinese Academy of Sciences (1978). Physical and chemical analysis on soil. Shanghai Scientific and Technical Publishers, Shanghai.(in Chinese)[中国科学院南京土壤研究所 (1978). 土壤理化分析. 上海科学技术出版社, 上海.] |
[14] | Iqbal J, Hu RG, Feng ML, Shan L, Malghan S, Ali IM (2010). Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China.Agriculture, Ecosystems and Environment, 137, 294-307. |
[15] | Jiang PK (2005). Soil active carbon pool under different types of vegetation.Scientia Silvae Sinicae, 41(1), 10-14.(in Chinese with English abstract)[姜培坤 (2005). 不同林分下土壤活性有机碳库研究. 林业科学,41(1), 10-13.] |
[16] | Kawahigashi M, Hiroaki S, Kazuhiko Y (2003). Seasonal changes in organic compounds in soil solutions obtained from volcanic ash soils under different land uses. Geoderma, 113, 381-396. |
[17] | Liu C, Liu YK, Jin GZ (2014). Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing’an Mountains, China.Acta Ecologica Sinica, 34, 451-459.(in Chinese with English abstract)[刘纯, 刘延坤, 金光泽 (2014). 小兴安岭6种森林类型土壤微生物量的季节变化特征. 生态学报,34, 451-459.] |
[18] | Liu C, Xiang WH, Lei PF, Deng XW, Tian DL, Fang X, Peng CH (2014). Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient.Plant and Soil, 376, 445-459. |
[19] | Liu C, Xiang WH, Tian DL, Fang X, Peng CH (2011). Overyielding of fine root biomass as increasing plant species richness in subtropical forests in central southern China.Chinese Journal of Plant Ecology, 35, 539-550.(in Chinese with English abstract)[刘聪, 项文化, 田大伦, 方晰, 彭长辉 (2011). 中亚热带森林植物多样性增加导致细根生物量“超产”. 植物生态学报,35, 539-550.] |
[20] | Liu M, Yu WT, Jiang ZS, Ma Q (2006). A research review on soil active organic carbon.Chinese Journal of Ecology, 25, 1412-1417.(in Chinese with English abstract)[柳敏, 宇万太, 姜子绍, 马强 (2006). 土壤活性有机碳. 生态学杂志,25, 1412-1417.] |
[21] | Liu RJ, Liu ZC, Wang B, Wu YC, Cheng CF, Ma SJ, Geri LT (2013). Seasonal dynamics of soil water-soluble organic carbon in secondary forests and Chinese fir plantations in hilly region of northwest Zhejiang Province, East China.Chinese Journal of Ecology, 32, 1385-1390.(in Chinese with English abstract)[刘荣杰, 李正才, 王斌, 吴亚丛, 程彩芳, 马少杰, 格日乐图 (2013). 浙西北丘陵地区次生林与杉木林土壤水溶性有机碳季节动态. 生态学杂志,32, 1385-1390.] |
[22] | Liu RJ, Wu YC, Zhang Y, Li ZC, Ma SJ, Wang B, Geri LT (2012). Comparison of soil labile organic carbon in Chinese fir plantations and natural secondary forests in north subtropical areas of China.Chinese Journal of Plant Ecology, 36, 431-437.(in Chinese with English abstract)[刘荣杰, 吴亚丛, 张英, 李正才, 马少杰, 王斌, 格日乐图 (2012). 中国北亚热带天然次生林与杉木人工林土壤活性有机碳库的比较. 植物生态学报,36, 431-437.] |
[23] | Lu X, Xiang WH, Ren H, Peng CH (2012). Litter biomass and its carbon and nitrogen storage in four subtropical forests in central Southern China.Chinese Journal of Ecology, 31, 2234-2240.(in Chinese with English abstract)[路翔, 项文化, 任辉, 彭长辉(2012). 中亚热带四种森林凋落物及碳氮贮量比较. 生态学杂志,31, 2234-2240.] |
[24] | Luan JW, Xiang CH, Liu SR, Luo ZS, Gong YB, Zhu XL (2010). Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen mountain, Sichuan, China.Geoderma, 156, 228-236. |
[25] | Quideau SA, Chadwick OA, Trumbore SE, Johnson-Maynard JL, Graham RC, Anderson MA (2001). Vegetation control on soil organic matter dynamics.Organic Geochemistry, 32, 247-252. |
[26] | Ruan HH, Zou XM, Scatena FN, Zimmerman JK (2004). Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest.Plant and Soil, 260, 147-154. |
[27] | Santos VB, Araújo ASF, Leite LFC, Nunes LAPL, Melo WJ (2012). Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems.Geoderma, 170, 227-231. |
[28] | Shen H, Cao ZH, Hu ZY (1999). Characteristics and ecological effects of the active organic carbon in soil.Chinese Journal of Ecology, 18(3), 32-38.(in Chinese with English abstract)[沈宏, 曹志洪, 胡正义(1999). 土壤活性有机碳的表征及其生态效应. 生态学杂志,18(3), 32-38.] |
[29] | Shrestha RK, Ladha JK, Gami SK (2006). Total and organic soil carbon incropping systems of Nepal.Nutrient Cycling in Agrocosystems, 75, 257-269. |
[30] | Singh JS, Singh DP, Kashyap AK (2010). Microbial biomass C, N and P in disturbed dry tropical forest soils, India.Pedosphere, 20, 780-788. |
[31] | Sun WJ, Fang X, Xiang WH, Zhang SJ, Li SL (2013). Active pools of soil organic carbon in subtropical forests at dif- ferent successional stages in Central Hunan, China.Acta Ecologica Sinica, 33, 7765-7773.(in Chinese with English abstract)[孙伟军, 方晰, 项文化, 张仕吉, 李胜蓝 (2013). 湘中丘陵区不同演替阶段森林活性有机碳库的特征. 生态学报,33, 7765-7773.] |
[32] | Taggart M, Heitman JL, Wei S, Vepraskas M (2012). Tem- perature and water content effects on carbon minerali- zation for sapric soil material.Wetlands, 32, 939-944. |
[33] | Tan GX, Liu YQ, Li LL, Liu W, Zan YT, Li XD, Huo BN, He MJ (2014). Content and seasonal change of soil labile or- ganic carbon under four different plantations in degraded red soil region.Acta Agriculturae Universitatis Jiangxien- sis, 36, 434-440.(in Chinese with English abstract)[谭桂霞, 刘苑秋, 李莲莲, 刘武, 昝玉亭, 李晓东, 霍炳南, 何木姣 (2014). 退化红壤区不同类型人工林土壤活性有机碳及其季节变化. 江西农业大学学报,36, 434-440.] |
[34] | Taylor AR, Wang JR, Chen HYH (2007). Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia, Canada.Canadian Journal of Forest Research, 37, 2260-2269. |
[35] | Tipping E, Woof C, Rigg E, Harrison AF, Ineson P, Taylor K, Benham D, Poskitt J, Rowland AP, Bol R, Harkness DD (1999). Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment.Environment International, 25, 83-95. |
[36] | Wang D, Lü YL, Xu L, Zhang HX, Wang RM, He NP (2013). The effect of moisture and temperature on soil C mineralization in wetland and steppe of the Zoige region, China.Acta Ecologica Sinica, 33, 6436-6443.(in Chinese with English abstract)[王丹, 吕瑜良, 徐丽, 张洪轩, 王若梦, 何念鹏 (2013). 水分和温度对若尔盖湿地和草甸土壤碳矿化的影响. 生态学报,33, 6436-6443.] |
[37] | Wang GB, Ruan HH, Tang FY, He Y (2009). A review on the dynamics of soil microbial biomass in forest ecosystems.Journal of Anhui Agricultural University, 15, 390-398(in Chinese with English abstract).[王国兵, 阮宏华, 唐燕飞, 何容 (2009). 森林土壤微生物生物量动态变化研究进展. 安徽农业大学学报,15, 390-398.] |
[38] | Wang GB, Zhao XL, Wang MH, Ruan HH, Xu CM, Xu YM (2013). Effects of land use change on soil readily oxidizable carbon in a coastal area of northern Jiangsu Province, East China. Chinese Journal of Applied Ecology, 24, 921-926.(in Chinese with English abstract)[王国兵, 赵小龙, 王明慧, 阮宏华, 徐长柏, 徐亚明 (2013). 苏北沿海土地利用变化对土壤易氧化有机碳含量的影响. 应用生态学报,24, 921-926.] |
[39] | Wang QK, Wang SL (2011). Response of labile soil organic matter to changes in forest vegetation in subtropical regions.Applied Soil Ecology, 47, 210-216. |
[40] | Wang QK, Wang SL, Feng ZW, Huang Y (2005). Active soil organic matter and its relationship with soil quality.Acta Ecologica Sinica, 25, 513-519.(in Chinese with English abstract)[王清奎, 汪思龙, 冯宗炜, 黄宇 (2005). 土壤活性有机质及其与土壤质量的关系. 生态学报,25, 513-519.] |
[41] | Wang W, Yang YS, Chen GS, Guo JF, Qian W (2008). Profile distribution and seasonal variation of soil dissolved organic carbon in natural Castanopsis fabric forest in subtropical China.Chinese Journal of Ecology, 27, 924-928.(in Chinese with English abstract)[汪伟, 杨玉盛, 陈光水, 郭剑芬, 钱伟 (2008). 罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化. 生态学杂志,27, 924-928.] |
[42] | Wu Y, Jiang CS, Hao QJ (2012). Dynamics of soil active carbon pool in a purple paddy soil in Southwest China.Environment Science, 33, 2804-2809.(in Chinese with English abstract)[吴艳, 江长胜, 郝庆菊 (2012). 西南地区紫色水稻土活性碳库的季节动态. 环境科学,33, 2804-2809.] |
[43] | Xie T, Zheng AB, Wang GB, Ruan HH, Xu CM, Xu YM, Ge ZW (2012). Seasonal variation patterns of soil labile organic carbon in poplar plantations with different ages in northern Jiangsu.Chinese Journal of Ecology, 31, 1171-1178.(in Chinese with English abstract) [谢涛, 郑阿宝, 王国兵, 阮宏华, 徐亚明, 徐长柏, 葛之葳 (2012). 苏北不同林龄杨树林土壤活性碳的季节变化. 生态学杂志, 31, 1171-1178.] |
[44] | Xu X, Wang F, Luan YL,Wang JS, Fang YH, Ruan HH (2008). Soil readily oxidizable carbon along an elevation gradient of Wuyi Mountains in southeastern China.Chinese Journal of Ecology, 27, 1115-1121.(in Chinese with English abstract) [徐侠, 王丰, 栾以玲, 汪家社, 方燕鸿, 阮宏华 (2008). 武夷山不同海拔植被土壤易氧化碳. 生态学杂志,27, 1115-1121.] |
[45] | Yang H, Cao JH, Zhang LK, Huo YL, Mao LF (2011). Pool sizes and turnover of soil organic carbon of farmland soil in Karst area of Guilin. Journal of Northeast Agricultural University (English Edition), 18, 39-45. |
[46] | Yang YS, Xie JS, Sheng H, Chen GS, Li X (2007). The impact of land use/cover change on soil organic carbon stocks and quality in mid-subtropical mountainous area of southern China.Acta Geographica Sinica, 62, 1123-1131.(in Chi- nese with English abstract)[杨玉盛, 谢锦升, 盛浩, 陈光水, 李旭 (2007). 中亚热带山区土地利用变化对土壤有机碳储量和质量的影响. 地理学报,62, 1123-1131.] |
[47] | Zhang SJ, Xiang WH, Sun WJ, Fang X (2014). Soil dissolved organic carbon concentration under different land-use pat- terns in a hilly area of central Hunan Province, China.Chinese Journal of Ecology, 33, 2065-2071.(in Chinese with English abstract)[张仕吉, 项文化, 孙伟军, 方晰 (2014). 湘中丘陵区不同土地利用方式土壤水溶性有机碳含量. 生态学杂志,33, 2065-2071.] |
[48] | Zhou GM, Xu JM, Jiang PK (2006). Effect of management practices on seasonal dynamics of organic carbon in soils under bamboo plantations.Pedosphere, 16, 525-531. |
[49] | Zhou Y, Xu XG, Wang F, Ruan HH, Wang JS, Fang YH, Wu YY, Xu ZK (2009). Soil microbial biomass, respiration, and metabolic quotient along an altitudinal gradient in Wuyi Mountain of southeastern China. Chinese Journal of Ecology, 28, 265-269.(in Chinese with English abstract)[周焱, 徐宪根, 王丰, 阮宏华, 汪家社, 方燕鸿, 吴焰玉, 徐自坤 (2009). 武夷山不同海拔梯度土壤微生物生物量、微生物呼吸及其商值(qMB, Qco2). 生态学杂志,16, 265-269.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[3] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[4] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[5] | 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671. |
[6] | 李品, 木勒德尔•吐尔汗拜, 田地, 冯兆忠. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态[J]. 植物生态学报, 2019, 43(6): 532-542. |
[7] | 沈芳芳, 李燕燕, 刘文飞, 段洪浪, 樊后保, 胡良, 孟庆银. 长期氮沉降对杉木人工林叶、枝氮磷养分再吸收的影响[J]. 植物生态学报, 2018, 42(9): 926-937. |
[8] | 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J]. 植物生态学报, 2018, 42(6): 692-702. |
[9] | 程汉亭, 李勤奋, 刘景坤, 严廷良, 张俏燕, 王进闯. 橡胶林下益智光合特性的季节动态变化[J]. 植物生态学报, 2018, 42(5): 585-594. |
[10] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608. |
[11] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[12] | 赵睿宇, 李正才, 王斌, 葛晓改, 戴云喜, 赵志霞, 张雨洁. 毛竹林地表覆盖年限对土壤有机碳的影响[J]. 植物生态学报, 2017, 41(4): 418-429. |
[13] | 许飞, 王传宽. 4种温带针叶树种树干CO2释放通量的季节动态及其驱动因子[J]. 植物生态学报, 2017, 41(4): 396-408. |
[14] | 李晓杰, 刘小飞, 熊德成, 林伟盛, 林廷武, 施友文, 谢锦升, 杨玉盛. 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响[J]. 植物生态学报, 2016, 40(5): 447-457. |
[15] | 贺同鑫, 李艳鹏, 张方月, 王清奎. 林下植被剔除对杉木林土壤呼吸和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(8): 797-806. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19