植物生态学报 ›› 2016, Vol. 40 ›› Issue (4): 385-394.DOI: 10.17521/cjpe.2015.1102
所属专题: 生态遥感及应用
王紫君1, 申广荣1,3,*(), 朱赟1, 刘春江2,3, 王哲4, 韩玉洁4, 薛春燕4
收稿日期:
2015-03-23
接受日期:
2015-10-24
出版日期:
2016-04-29
发布日期:
2016-04-30
通讯作者:
申广荣
基金资助:
Zi-Jun WANG1, Guang-Rong SHEN1,3,*(), Yun ZHU1, Yu-Jie HAN4, Chun-Jiang LIU2,3, Zhe WANG4, Chun-Yan XUE4
Received:
2015-03-23
Accepted:
2015-10-24
Online:
2016-04-29
Published:
2016-04-30
Contact:
Guang-Rong SHEN
摘要:
城市森林发挥着改善和维护城市生态环境质量的作用, 研究城市森林生物量和分布特点对其生态系统服务评价和林分经营均具有重要意义。该文根据上海城市森林的种植分布和经营状况利用2011年6月-2012年6月样地实测森林生物量数据和同期Landsat ETM+遥感图像, 在基于逐步回归分析建立森林生物量反演模型的基础上, 引入回归残差及空间分析, 研究了城市森林及其主要优势树种樟(Cinnamomum camphora)林分的生物量分布特征, 探讨了区域尺度森林生物量的遥感估测方法。结果表明: (1)上海城市森林生物量密度总体呈现中心城区(静安区、黄浦区等)较高, 生物量密度集中在35-70 t·hm-2之间, 郊区(嘉定区、青浦区等)空间分布状况相对较低, 生物量密度介于15-50 t·hm-2之间的变化特征。上海优势树种樟林分生物量密度范围为20-110 t·hm-2; 空间上呈现出东北部较高、西南部较低的变化特征。(2)上海城市森林及樟林分的生物量总量分别为3.57 Tg和1.33 Tg。林地面积小, 具有较高森林生物量密度的上海中心城区, 其森林生物量占总量的6.1%, 其中林地面积最小的静安区生物量最低, 仅占总量的0.11%。在所有区县中, 林地面积最大的崇明县、浦东新区具有较高的森林生物量, 分别占总量的20.08%和19.18%。(3)所建立的基于回归反距离插值的城市森林生物量估测模型, 其标准误差、平均绝对误差、平均相对误差分别为8.39、6.86、24.22%, 较回归模型分别降低了57.69%、55.43%、64.00%, 较空间插值的方法分别降低了62.21%、58.50%、65.40%。残差的引入减少了由于空间变异引发的城市森林生物量遥感估测的不确定性。相比基于实测数据通过空间插值的估测, 遥感为快速便捷、客观高效的森林生物量监测提供了可能, 更加完善的结果和模型的优化有待引入其他信息源如高分高光谱信息或改善残差空间分析方法获得。
王紫君, 申广荣, 朱赟, 刘春江, 王哲, 韩玉洁, 薛春燕. 基于遥感和空间分析的上海城市森林生物量分布特征. 植物生态学报, 2016, 40(4): 385-394. DOI: 10.17521/cjpe.2015.1102
Zi-Jun WANG, Guang-Rong SHEN, Yun ZHU, Yu-Jie HAN, Chun-Jiang LIU, Zhe WANG, Chun-Yan XUE. Research on characteristics of biomass distribution in urban forests of Shanghai metropolis based on remote sensing and spatial analysis. Chinese Journal of Plant Ecology, 2016, 40(4): 385-394. DOI: 10.17521/cjpe.2015.1102
林分类型 Forest type | 样地数 Number of plots | 平均胸径 Mean D (cm) | 平均树高 Mean tree height (m) | 林龄 Stand age (a) |
---|---|---|---|---|
樟 Cinnamomum camphora | 15 | 7.8-21 | 5.4-13.6 | 12-18 |
水杉 Metasequoia glyptostroboides | 18 | 8.5-28.7 | 8.5-28.54 | 11-50 |
枫香树 Liquidambar formosana | 2 | 9.2-12.8 | 7.9-10.3 | 12-30 |
池杉 Taxodium distichum var. imbricatum | 4 | 9.4-17.3 | 8.0-14.6 | 12-30 |
无患子 Sapindus saponaria | 3 | 8.3-8.8 | 6.7-7.7 | 12 |
全缘叶栾树 Koelreuteria bipinnata var. integrifoliola | 3 | 8.9-9.5 | 8.6-8.8 | 12 |
女贞 Ligustrum lucidum | 3 | 10.0-10.9 | 7.7-8.6 | 12 |
银杏 Ginkgo biloba | 6 | 6.5-13.8 | 2.6-6.4 | 12-25 |
山杜英 Elaeocarpus sylvestri | 7 | 10.7-13.6 | 6.6-8.4 | 11 |
荷花玉兰 Magnolia grandiflora | 6 | 7.5-10.2 | 4.4-5.7 | 8-12 |
毛竹 Phyllostachys edulis | 5 | 8.0-9.3 | 11.2-11.8 | 2 |
意大利的‘I-214’杨 Populus × canadensis ‘I-214’ | 3 | 14.9-17.7 | 11.6-14.5 | 12 |
阔叶混交林 Broadleaved mixed forest | 18 | 6.7-17.4 | 4.1-17.2 | 10-15 |
总计 Total | 93 | 5.7-28.7 | 2.6-28.4 | 2-50 |
表1 不同林分样地信息
Table 1 Information on sampling plots of different forest types
林分类型 Forest type | 样地数 Number of plots | 平均胸径 Mean D (cm) | 平均树高 Mean tree height (m) | 林龄 Stand age (a) |
---|---|---|---|---|
樟 Cinnamomum camphora | 15 | 7.8-21 | 5.4-13.6 | 12-18 |
水杉 Metasequoia glyptostroboides | 18 | 8.5-28.7 | 8.5-28.54 | 11-50 |
枫香树 Liquidambar formosana | 2 | 9.2-12.8 | 7.9-10.3 | 12-30 |
池杉 Taxodium distichum var. imbricatum | 4 | 9.4-17.3 | 8.0-14.6 | 12-30 |
无患子 Sapindus saponaria | 3 | 8.3-8.8 | 6.7-7.7 | 12 |
全缘叶栾树 Koelreuteria bipinnata var. integrifoliola | 3 | 8.9-9.5 | 8.6-8.8 | 12 |
女贞 Ligustrum lucidum | 3 | 10.0-10.9 | 7.7-8.6 | 12 |
银杏 Ginkgo biloba | 6 | 6.5-13.8 | 2.6-6.4 | 12-25 |
山杜英 Elaeocarpus sylvestri | 7 | 10.7-13.6 | 6.6-8.4 | 11 |
荷花玉兰 Magnolia grandiflora | 6 | 7.5-10.2 | 4.4-5.7 | 8-12 |
毛竹 Phyllostachys edulis | 5 | 8.0-9.3 | 11.2-11.8 | 2 |
意大利的‘I-214’杨 Populus × canadensis ‘I-214’ | 3 | 14.9-17.7 | 11.6-14.5 | 12 |
阔叶混交林 Broadleaved mixed forest | 18 | 6.7-17.4 | 4.1-17.2 | 10-15 |
总计 Total | 93 | 5.7-28.7 | 2.6-28.4 | 2-50 |
图1 研究区样地分布图。图中的1-9为上海中心城区, 分别代表: 卢湾、徐汇、长宁、静安、普陀、闸北、虹口、杨浦和黄浦区。
Fig. 1 The map of sample plot distributions. Numbers 1-9 represent the nine districts in the central city, namely Luwan, Xuhui, Changning, Jing’an, Putuo, Zhabei, Hongkou, Yangpu and Huangpu, respectively.
样地数 Number of plots | 模型公式 Model equation | 决定系数 Coefficient of determination | 校正决定系数 Adjusted coefficient of determination | |
---|---|---|---|---|
城市森林 Urban forest | 62 | Y = 82.941-2.564 × X1 + 0.651 × X2 | 0.46 | 0.44 |
樟 Cinnamomum camphora | 15 | Y = 125.6 × exp(-0.833 × X3) | 0.56 | 0.52 |
表2 上海城市森林及樟林分生物量的回归模型
Table 2 Regression models for biomass in urban forests and Cinnamomum camphora trees in the Shanghai metropolis
样地数 Number of plots | 模型公式 Model equation | 决定系数 Coefficient of determination | 校正决定系数 Adjusted coefficient of determination | |
---|---|---|---|---|
城市森林 Urban forest | 62 | Y = 82.941-2.564 × X1 + 0.651 × X2 | 0.46 | 0.44 |
樟 Cinnamomum camphora | 15 | Y = 125.6 × exp(-0.833 × X3) | 0.56 | 0.52 |
回归模型 Regression model | 回归反距离插值模型 IDW regression model | ||||||
---|---|---|---|---|---|---|---|
标准误差 RMSE | 平均绝对误差 MAE | 平均相对误差 MRE | 标准误差 RMSE | 平均绝对误差 MAE | 平均相对误差 MRE | ||
城市森林 Urban forest | 19.83 | 15.39 | 67.30% | 8.39 | 6.86 | 24.22% | |
樟 Cinnamomum camphora | 10.90 | 8.92 | 24.93% | 10.42 | 7.33 | 19.74% |
表3 基于回归模型和回归反距离插值的上海城市森林及樟林分生物量估测结果
Table 3 Results of evaluations on estimation of urban forest biomass and Cinnamomum camphora tree biomass based on regression model and combination of regression model and spatial analysis (IDW regression model) from validation sites in the Shanghai metropolis
回归模型 Regression model | 回归反距离插值模型 IDW regression model | ||||||
---|---|---|---|---|---|---|---|
标准误差 RMSE | 平均绝对误差 MAE | 平均相对误差 MRE | 标准误差 RMSE | 平均绝对误差 MAE | 平均相对误差 MRE | ||
城市森林 Urban forest | 19.83 | 15.39 | 67.30% | 8.39 | 6.86 | 24.22% | |
樟 Cinnamomum camphora | 10.90 | 8.92 | 24.93% | 10.42 | 7.33 | 19.74% |
图3 基于回归模型的上海城市森林生物量的分布图(A)及其残差分布图(B)。
Fig. 3 Maps of spatial distribution of urban forest biomass based on regression model (A) and its residual (B) in the Shanghai metropolis.
1 | Antonarakis AS, Saatchi SS, Chazdon RL, Moorcroft PR (2011). Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.Ecological Applications, 21, 1120-1137. |
2 | Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina M, Hall JS, van Breugel M (2012). A universal airborne LiDAR approach for tropical forest carbon mapping.Oecologia, 168, 1147-1160. |
3 | Barbosa JM, Broadbent EN, Bitencourt MD (2014b). Remote sensing of aboveground biomass in tropical secondary forests: A review.International Journal of Forestry Research, 2014, 1-14. |
4 | Barbosa JM, Melendez-Pastor I, Navarro-Pedreño J, Bitencourt MD (2014a). Remotely sensed biomass over steep slopes: An evaluation among successional stands of the Atlantic Forest, Brazil.ISPRS Journal of Photogrammetry and Remote Sensing, 88, 91-100. |
5 | Burrough PA, McDonnell RA (1998). Principles of Geogra- phical Information Systems. 2nd ed. Oxford University Press, Oxford, UK. |
6 | Eckert S, Ratsimba HR, Rakotondrasoa LO, Rajoelison LG, Ehrensperger A (2011). Deforestation and forest degrada- tion monitoring and assessment of biomass and carbon stock of lowland rainforest in the Analanjirofo region, Madagascar.Forest Ecology and Management, 262, 1996-2007. |
7 | Hall FG, Bergen K, Blair JB, Dubayah R, Houghton R, Hurtt G, Kellndorfer J, Lefsky M, Ranson J, Saatchi S, Shugarti HH, Wicklande D (2011). Characterizing 3D vegetation structure from space: Mission requirements.Remote Sensing of Environment, 115, 2753-2775. |
8 | Liu CF, He XY, Chen W, Zhao GL, Li L, Xu WD (2008). Ecological benefit evaluation of urban forests in Shenyang City based on QuickBird image and CITYgreen model.Chinese Journal of Applied Ecology, 19, 1865-1870. (in Chinese with English abstract)[刘常富, 何兴元, 陈玮, 赵桂玲, 李玲, 徐文铎 (2008). 基于QuickBird和CITY- green的沈阳城市森林效益评价. 应用生态学报, 19, 1865-1870.] |
9 | Liu SN, Zhou T, Shu Y, Dai M, Wei LY, Zhang X (2012). The estimating of the spatial distribution of forest biomass in China based on remote sensing and downscaling techniques.Acta Ecologica Sinica, 32, 2320-2330. (in Chinese with English abstract)[刘双娜, 周涛, 舒阳, 戴铭, 魏林艳, 张鑫 (2012). 基于遥感降尺度估算中国森林生物量的空间分布. 生态学报, 32, 2320-2330.] |
10 | Lu DS (2006). The potential and challenge of remote sensing-based biomass estimation.International Journal of Remote Sensing, 27, 1297-1328. |
11 | Manna S, Nandy S, Chanda A, Akhand A, Hazra S, Dadhwal VK (2014). Estimating aboveground biomass in Avicennia marina plantation in Indian Sundarbans using high- resolution satellite data.Journal of Applied Remote Sensing, 8, 1-12. |
12 | Pereira P, Oliva M, Baltrenaite E (2010). Modelling extreme precipitation in hazardous mountainous areas. Contribu- tion to landscape planning and environmental manage- ment.Journal of Environmental Engineering and Lands- cape Management, 18, 329-342. |
13 | Ren Y, Yan J, Wei XH, Wang YJ, Yang YS, Hua LZ, Xiong YZ, Niu X, Song XD (2012). Effects of rapid urban sprawl on urban forest carbon stocks: Integrating remotely sensed, GIS and forest inventory data.Journal of Environmental Management, 113, 447-455. |
14 | Shen LY (2008). Studies and Assessments on Vegetation Characteristics in Urban Forests of Shanghai. PhD dissertation, Nanjing Forestry University, Nanjing. (in Chinese with English abstract)[沈烈英 (2008). 上海城市森林的植被特征与综合评价研究. 博士学位论文, 南京林业大学, 南京.] |
15 | Shi LJ (2009). The Research on LUCC and Soil Organic Carbon Pool of Shanghai Based on RS and GIS. PhD dissertation, East China Normal University, Shanghai. (in Chinese with English abstract)[史利江 (2009). 基于遥感和GIS的上海土地利用变化与土壤碳库研究. 博士学位论文, 华东师范大学, 上海.] |
16 | Wang C, Qi J (2008). Biophysical estimation in tropical forests using JERS-1 SAR and VNIR imagery. II. Aboveground woody biomass.International Journal of Remote Sensing, 29, 6827-6849. |
17 | Wang Z (2012). Studies on Carbon Stock in Shanghai Urban Forest. PhD dissertation, Shanghai Jiao Tong University, Shanghai. (in Chinese with English abstract)[王哲 (2012). 上海城市森林碳储量研究. 博士学位论文, 上海交通大学, 上海.] |
18 | Wang Z, Cui X, Yin S, Shen GR, Han YJ, Liu CJ (2013). Characteristics of carbon storage in Shanghai’s urban forest.Chinese Science Bulletin, 58, 1130-1138. |
19 | Woodwell GM, Whittaker RH, Reiners WA, Likens GE, Delwiche CC, Botkin DB (1978). The biota and the world carbon budget.Science, 199, 141-146. |
20 | Xu F, Liu WH, Ren WL, Zhong QC, Zhang GL, Wang KY (2010). Effects of community structure on carbon fixation of urban forests in Shanghai, China.Chinese Journal of Ecology, 29, 439-447. (in Chinese with English abstract)[徐飞, 刘为华, 任文玲, 仲启铖, 张桂莲, 王开运 (2010). 上海城市森林群落结构对固碳能力的影响. 生态学杂志, 29, 439-447.] |
21 | Xu XL, Cao MK (2006). An analysis of the applications of remote sensing method to the forest biomass estimation.Geo-Information Science, 8, 122-128. (in Chinese with English abstract)[徐新良, 曹明奎 (2006). 森林生物量遥感估算与应用分析. 地球信息科学, 8, 122-128.] |
22 | Zhang HF (2008). Remotely Sensed Inversion of Forest Bio- mass and Its Temporal and Spatial Distribution Patterns Dynamics in Beijing. Master degree dissertation, Beijing Forestry University, Beijing. (in Chinese with English abstract)[张慧芳 (2008). 北京地区森林植被生物量遥感反演及时空动态格局分析. 硕士学位论文, 北京林业大学, 北京.] |
23 | Zhang KX (2010). Study on Community Ecology of Shanghai Green Belt and Ecological Benefits and Aesthetics Assessment of Its Plant Communities. PhD dissertation, East China Normal University, Shanghai. (in Chinese with English abstract)[张凯旋 (2010). 上海环城林带群落生态学与生态效益及景观美学评价研究. 博士学位论文, 华东师范大学, 上海.] |
24 | Zhang QF, Xia L, Qiao P, Yang WY (2001). Development dynamic, distribution pattern and scale characters of the parks system in Shanghai.Journal of Chinese Landscape Architecture, (1), 58-61. (in Chinese with English abstract)[张庆费, 夏檑, 乔平, 杨文悦 (2001). 上海公园的发展动态、分布格局与规模特征分析. 中国园林, (1), 58-61.] |
25 | Zhu CY, Wang RH, Chen DQ (2013). Urban forest ecosystem NPP and carbon storage based on the casa model in Nanjing.China Forestry Science and Technology, 27(3), 53-56. (in Chinese with English abstract)[朱婵璎, 王让会, 陈东强 (2013). 南京城市森林生态系统生产力与碳储量的计算. 林业科技开发, 27(3), 53-56.] |
26 | Zhu XL, Liu DS (2015). Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series.ISPRS Journal of Photogrammetry and Remote Sensing, 102, 222-231. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[10] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[11] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[12] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[13] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[14] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[15] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19