植物生态学报 ›› 2018, Vol. 42 ›› Issue (10): 1033-1042.DOI: 10.17521/cjpe.2018.0067
李晋波1,姚楠1,赵英1,2,*(),范庭1,张建国1,兰志龙1,易军1,司炳成2
收稿日期:
2018-03-29
出版日期:
2018-10-20
发布日期:
2018-09-26
通讯作者:
赵英
基金资助:
LI Jin-Bo1,YAO Nan1,ZHAO Ying1,2,*(),FAN Ting1,ZHANG Jian-Guo1,LAN Zhi-Long1,YI Jun1,SI Bing-Cheng2
Received:
2018-03-29
Online:
2018-10-20
Published:
2018-09-26
Contact:
Ying ZHAO
Supported by:
摘要:
由人类活动所导致的锡林郭勒草原草场退化、土地沙化等问题日趋严重, 区域土壤水资源评价及其科学管理显得尤为重要。为确定锡林郭勒典型草原不同放牧条件对深层土壤剖面水分动态及降水入渗补给的影响, 选取1979年以来禁牧(UG79)、1999年以来禁牧(UG99)和持续放牧(CG) 3个小区6个土壤剖面, 基于不同深度土层的质量含水量、Cl -浓度等数据, 分析了放牧对深层土壤水分特征的影响, 且利用氯质量平衡法估算了降水入渗补给量。结果表明: 1)禁牧可以提高土壤含水量, 且禁牧时间越长, 效果越显著, 尤以表层最为明显。整个土壤剖面(0-5 m)土壤质量含水量的平均值表现为UG79 > UG99 > CG, 但各处理间差异不显著; 0-2 m UG79处理土壤剖面质量含水量分别比UG99和CG处理高26.6%和33.7%, 储水量分别高87.19 mm和82.52 mm, 且UG79处理与UG99、CG差异显著, 但UG99与CG之间差异不显著; 除局部地区受土壤颗粒组成影响含水量不同外, 各处理2-5 m土层含水量和储水量差异较小; 2)不同处理土壤含水量影响因素不同, 0-2 m土层含水量主要受地表植被状况和土壤性质的综合影响, 而2-5 m土层则主要受土壤颗粒组成的影响, 但随着禁牧年限的增加, 土壤有机质(SOM)含量对土壤水分的影响越来越大。UG79整个土壤剖面含水量与土壤颗粒含量和SOM含量呈极显著相关关系, UG99与CG处理0-2 m含水量与SOM含量呈极显著相关关系, 2-5 m土壤含水量与土壤颗粒含量呈极显著相关关系, 而与SOM含量相关性不显著; 3)氯质量平衡法估算得出年降水入渗补给率为UG79 > UG99 > CG, 35年和15年禁牧分别将降水入渗补给率提高了130.2%和44.5%; 考虑干沉降的不确定性, 研究区年降水入渗补给率为1.95-7.61 mm·a -1, 仅占年降水量的0.55%-2.13%。总之, 禁牧能够增加土壤含水量和储水量, 增加降水对土壤水分的补给, 但降水不是该区地下水的主要补给源。
李晋波, 姚楠, 赵英, 范庭, 张建国, 兰志龙, 易军, 司炳成. 不同放牧条件下锡林郭勒典型草原土壤水分分布特征及降水入渗估算. 植物生态学报, 2018, 42(10): 1033-1042. DOI: 10.17521/cjpe.2018.0067
LI Jin-Bo, YAO Nan, ZHAO Ying, FAN Ting, ZHANG Jian-Guo, LAN Zhi-Long, YI Jun, SI Bing-Cheng. Characteristics of soil water distribution and evaluation of recharge rate under different grazing history in the Xilin Gol Steppe. Chinese Journal of Plant Ecology, 2018, 42(10): 1033-1042. DOI: 10.17521/cjpe.2018.0067
特征 Characteristic | 1979年以来禁牧 Ungrazed since 1979 | 1999年以来禁牧 Ungrazed since 1999 | 持续放牧 Continuously grazed |
---|---|---|---|
面积 Area (hm2) | 24 | 35 | 40 |
海拔 Altitude (m) | 1259 | 1274 | 1273 |
地理坐标 Geographic coordinates | 43.55° N, 116.65° E | 43.55° N, 116.67° E | 43.55° N, 116.66° E |
土壤有机质含量 Soil organic matter content (g·kg-1, 0-10 cm) | 55.31 | 49.65 | 38.70 |
坡度 Slope (°) | 2.7-3.0 | 2.6-3.0 | 2.7-2.9 |
容重 Bulk density (g·cm-3) | |||
4-8 cm | 1.14 | 1.15 | 1.30 |
18-22 cm | 1.39 | 1.26 | 1.43 |
30-34 cm | 1.44 | 1.33 | 1.43 |
40-44 cm | 1.43 | 1.31 | 1.46 |
地上生物量 Aboveground biomass (g·m-2) | 26.33 | 22.29 | 0.81 |
植被覆盖度 Vegetation coverage (%) | 41 | 48 | 4 |
优势种 Dominant species | 羊草、黄囊薹草、羽茅、大针茅等 Leymus chinensis, Carex korshinskyi, Achnatherum sibiricum, Stipa grandis et al. | 黄囊薹草、羊草、大针茅、根茎冰草等 Carex korshinskyi, Leymus chinensis Stipa grandis, Agropyron michnoi et al. | 羊草、黄囊薹草、糙隐子草、大针茅等 Leymus chinensis, Carex korshinskyi, Stipa grandis, Cleistogenes squarrosa et al. |
表1 处理基本情况
Table 1 Basic characteristics of the sampling plots
特征 Characteristic | 1979年以来禁牧 Ungrazed since 1979 | 1999年以来禁牧 Ungrazed since 1999 | 持续放牧 Continuously grazed |
---|---|---|---|
面积 Area (hm2) | 24 | 35 | 40 |
海拔 Altitude (m) | 1259 | 1274 | 1273 |
地理坐标 Geographic coordinates | 43.55° N, 116.65° E | 43.55° N, 116.67° E | 43.55° N, 116.66° E |
土壤有机质含量 Soil organic matter content (g·kg-1, 0-10 cm) | 55.31 | 49.65 | 38.70 |
坡度 Slope (°) | 2.7-3.0 | 2.6-3.0 | 2.7-2.9 |
容重 Bulk density (g·cm-3) | |||
4-8 cm | 1.14 | 1.15 | 1.30 |
18-22 cm | 1.39 | 1.26 | 1.43 |
30-34 cm | 1.44 | 1.33 | 1.43 |
40-44 cm | 1.43 | 1.31 | 1.46 |
地上生物量 Aboveground biomass (g·m-2) | 26.33 | 22.29 | 0.81 |
植被覆盖度 Vegetation coverage (%) | 41 | 48 | 4 |
优势种 Dominant species | 羊草、黄囊薹草、羽茅、大针茅等 Leymus chinensis, Carex korshinskyi, Achnatherum sibiricum, Stipa grandis et al. | 黄囊薹草、羊草、大针茅、根茎冰草等 Carex korshinskyi, Leymus chinensis Stipa grandis, Agropyron michnoi et al. | 羊草、黄囊薹草、糙隐子草、大针茅等 Leymus chinensis, Carex korshinskyi, Stipa grandis, Cleistogenes squarrosa et al. |
图1 不同放牧条件下土壤水分含量(SWC)(平均值±标准误差)与颗粒垂直分布特征。UG79, 1979年以来围封; UG99, 1999年以来围封; CG, 持续放牧。
Fig. 1 Vertical distributions of soil water content (SWC) (mean ± SD) and particles under different grazing history. UG79, ungrazed since 1979; UG99, ungrazed since 1999; CG, continuously grazing.
深度 Depth (m) | 储水量 Water storage (mm) | 平均含水量 Average water content (%) | ||||
---|---|---|---|---|---|---|
UG79 | UG99 | CG | UG79 | UG99 | CG | |
0-1 | 119.40 ± 11.43a | 110.52 ± 8.49a | 93.74 ± 19.67a | 8.52 ± 0.76a | 8.07 ± 0.58a | 6.40 ± 1.20a |
1-2 | 139.75 ± 2.32a | 61.44 ± 3.97b | 82.89 ± 1.44b | 8.91 ± 0.18a | 4.59 ± 0.24b | 5.17 ± 0.10b |
2-3 | 103.39 ± 27.89b | 138.66 ± 23.60a | 87.03 ± 31.86b | 6.40 ± 1.72b | 8.53 ± 1.45a | 5.39 ± 2.26b |
3-4 | 85.76 ± 26.60a | 86.16 ± 2.60a | 110.19 ± 17.07a | 5.28 ± 1.64a | 5.28 ± 0.16a | 6.77 ± 1.05a |
4-5 | 44.57 ± 8.12b | 143.75 ± 3.85a | 149.90 ± 59.55ab | 5.47 ± 0.63a | 8.82 ± 0.24a | 9.19 ± 3.65a |
表2 土壤剖面储水量和含水量分布特征(平均值±标准误差)
Table 2 Characteristics of water storage and water content distribution in the soil profiles(mean ± SD)
深度 Depth (m) | 储水量 Water storage (mm) | 平均含水量 Average water content (%) | ||||
---|---|---|---|---|---|---|
UG79 | UG99 | CG | UG79 | UG99 | CG | |
0-1 | 119.40 ± 11.43a | 110.52 ± 8.49a | 93.74 ± 19.67a | 8.52 ± 0.76a | 8.07 ± 0.58a | 6.40 ± 1.20a |
1-2 | 139.75 ± 2.32a | 61.44 ± 3.97b | 82.89 ± 1.44b | 8.91 ± 0.18a | 4.59 ± 0.24b | 5.17 ± 0.10b |
2-3 | 103.39 ± 27.89b | 138.66 ± 23.60a | 87.03 ± 31.86b | 6.40 ± 1.72b | 8.53 ± 1.45a | 5.39 ± 2.26b |
3-4 | 85.76 ± 26.60a | 86.16 ± 2.60a | 110.19 ± 17.07a | 5.28 ± 1.64a | 5.28 ± 0.16a | 6.77 ± 1.05a |
4-5 | 44.57 ± 8.12b | 143.75 ± 3.85a | 149.90 ± 59.55ab | 5.47 ± 0.63a | 8.82 ± 0.24a | 9.19 ± 3.65a |
图2 不同放牧条件下土壤质量含水量差异。不同小写字母表示不同处理间差异显著(p < 0.05)。UG79, 1979年以来围封; UG99, 1999年以来围封; CG, 持续放牧。
Fig. 2 The difference of soil gravimetric water content under different grazing history. Different lowercase letters indicate significant differences (p < 0.05). UG79, ungrazed since 1979; UG99, ungrazed since 1999; CG, continuously grazing.
处理 Sampling plots | 样本数 Number of samples | 土壤有 机质 SOM | 沙粒 Sand | 粉粒 Silt | 黏粒 Clay |
---|---|---|---|---|---|
UG79 (0-2 m) | 20 | 0.537** | -0.597** | 0.633** | 0.441** |
UG99 (0-2 m) | 20 | 0.890** | -0.295 | 0.195 | 0.390* |
CG (0-2 m) | 20 | 0.795** | -0.436* | 0.467* | 0.362 |
UG79 (2-5 m) | 25 | 0.720** | -0.565** | 0.380* | 0.578** |
UG99 (2-5 m) | 25 | 0.233 | -0.678** | 0.611** | 0.668** |
CG (2-5 m) | 25 | -0.199 | -0.569** | 0.547** | 0.567** |
表3 土壤含水量与土壤有机质及质地的相关系数
Table 3 Correlation coefficients of soil water content with soil organic matter and texture
处理 Sampling plots | 样本数 Number of samples | 土壤有 机质 SOM | 沙粒 Sand | 粉粒 Silt | 黏粒 Clay |
---|---|---|---|---|---|
UG79 (0-2 m) | 20 | 0.537** | -0.597** | 0.633** | 0.441** |
UG99 (0-2 m) | 20 | 0.890** | -0.295 | 0.195 | 0.390* |
CG (0-2 m) | 20 | 0.795** | -0.436* | 0.467* | 0.362 |
UG79 (2-5 m) | 25 | 0.720** | -0.565** | 0.380* | 0.578** |
UG99 (2-5 m) | 25 | 0.233 | -0.678** | 0.611** | 0.668** |
CG (2-5 m) | 25 | -0.199 | -0.569** | 0.547** | 0.567** |
图3 不同放牧条件下土壤剖面Cl-垂直分布特征。UG79, 1979年以来围封; UG99, 1999年以来围封; CG, 持续放牧。
Fig. 3 Vertical distribution characteristics of chloride in different soil profiles under different grazing history. UG79, ungrazed since 1979; UG99, ungrazed since 1999; CG, continuously grazing.
处理 Sampling plots | Cl-平均浓度 Average Cl- concentrations (mg·L-1, 0-160 cm) | 补给率 Recharge rate (mm·a-1) | 年平均补给 量/年降水量 Annual average supply/Annual precipitation (%) | 补给上界 Upper bound (mm· a-1) | 补给下界 Lower bound (mm·a-1) |
---|---|---|---|---|---|
UG79 | 101.63 | 5.64 | 1.58 | 7.61 | 4.51 |
UG99 | 161.68 | 3.54 | 0.99 | 4.78 | 2.83 |
CG | 233.88 | 2.45 | 0.68 | 3.31 | 1.96 |
表4 包气带土壤水分特征值
Table 4 Soil water eigenvalues of vadose zone
处理 Sampling plots | Cl-平均浓度 Average Cl- concentrations (mg·L-1, 0-160 cm) | 补给率 Recharge rate (mm·a-1) | 年平均补给 量/年降水量 Annual average supply/Annual precipitation (%) | 补给上界 Upper bound (mm· a-1) | 补给下界 Lower bound (mm·a-1) |
---|---|---|---|---|---|
UG79 | 101.63 | 5.64 | 1.58 | 7.61 | 4.51 |
UG99 | 161.68 | 3.54 | 0.99 | 4.78 | 2.83 |
CG | 233.88 | 2.45 | 0.68 | 3.31 | 1.96 |
1 |
Allison GB, Cook PG, Barnett SR, Walker GR, Jolly ID, Hughes MW ( 1990). Land clearance and river salinisation in the western Murray basin, Australia. Journal of Hydrology, 119, 1-20.
DOI URL |
2 | Bai L, Wang ZL ( 2008). Chemical composition and potential sources of major ions in precipitation in the Xi’an District, Shaanxi Province. Earth and Environment, 36, 289-297. |
[ 白莉, 王中良 ( 2008). 西安地区大气降水化学组成特征与物源分析. 地球与环境, 36, 289-297.] | |
3 |
Barthold FK, Wu JK, Vaché KB, Schneider K, Frede HG, Breuer L ( 2010). Identification of geographic runoff sources in a data sparse region: Hydrological processes and the limitations of tracer-based approaches. Hydrological Processes, 24, 2313-2327.
DOI URL |
4 | Chen ZY, Bi EP, Nie ZL, Ye H, Nan YJ ( 2001). A tentative discussion on paleohydrological and paleoclimatical information from unsaturated zone profile. Acta Geosinetia Sinica, 22, 335-339. |
[ 陈宗宇, 毕二平, 聂振龙, 叶浩, 南云驹 ( 2001). 包气带剖面中古水文-气候信息的初步研究. 地球学报, 22, 335-339.] | |
5 |
Eriksson E, Khunakasem V ( 1969). Chloride concentration in groundwater recharge rate and rate of deposition of chloride in the Israel Coastal Plain. Journal of Hydrology, 7, 178-197.
DOI URL |
6 | Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C ( 2009). Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review. Water Resources Research, 45, 450-455. |
7 | Franzluebbers AJ ( 2002). Water infiltration and soil structure related to organic matter and its stratification with depth. Soil & Tillage Research, 66, 197-205. |
8 | Gan L, Ma R, Peng YJ, Peng XH, Mo CM, Rainer H ( 2015). The effect of different grazing intensities on spatial distribution of soil water under Leymus chinensis and Stipa grands grassland. Ecology and Environmental Sciences, 24, 1274-1279. |
[ 甘磊, 马蕊, 彭扬建, 彭新华, 莫春梦, Rainer H ( 2015). 不同放牧强度下羊草和大针茅草原土壤含水量的空间变化. 生态环境学报, 24, 1274-1279.] | |
9 | Guan SY, Jia SH ( 1997). The properties of soil and its change regularities in the degraded succession of dark chestnut in Leymus chinensis Steppe. Grassland of China, ( 3), 39-43. |
[ 关世英, 贾树海 ( 1997). 草原暗栗钙土退化过程中的土壤性状及其变化规律的研究. 中国草地学报, ( 3), 39-43.] | |
10 | Guo LB, Gifford RM ( 2010). Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 8, 345-360. |
11 | Han NY ( 2002). AXilin Gol Biosphere Reserve Degraded Ecosystem Management. Tsinghua University Press, Beijing. |
[ 韩念勇 ( 2002). 锡林郭勒生物圈保护区退化生态系统管理. 清华大学出版社, 北京.] | |
12 |
Huang TM, Pang ZH, Liu J, Yin L, Edmunds WM ( 2017). Groundwater recharge in an arid grassland as indicated by soil chloride profile and multiple tracers. Hydrological Processes, 31, 1-5.
DOI URL |
13 | Jia LM, Liao ZL, Long YH, Liang WT, Han ZH ( 2016). Response process of groundwater table to the water balance element in the village plain of typical grassland. Water Saving Irrigation, 12, 76-79. |
[ 贾利民, 廖梓龙, 龙胤慧, 梁文涛, 韩振华 ( 2016). 典型草原区河谷带地下水位对水均衡要素变化的响应. 节水灌溉, 12, 76-79.] | |
14 | Lan ZL, Pan XL, Zhao Y, Si BC, Wang YK, Jiao R, Zhang JG ( 2017). Effects of land use types on deep soil water content in the loess hilly area of the north Shaanxi Province. Chinese Journal of Applied Ecology, 28, 847-855. |
[ 兰志龙, 潘小莲, 赵英, 司炳成, 汪有科, 焦瑞, 张建国 ( 2017). 黄土丘陵区不同土地利用模式对深层土壤含水量的影响. 应用生态学报, 28, 847-855.] | |
15 | Li JB, Yao N, Li X, Zhao Y, Zhang AF, Lan ZL, Fan T ( 2018) Dynamics of CO2 and N2O under soil profile of seasonal frozen in typical steppe of Inner Mongolia. Environmental Science, 39, 2330-2338. |
[ 李晋波, 姚楠, 李秀, 赵英, 张阿凤, 兰志龙, 范庭 ( 2018). 内蒙古典型草原季节性冻土区土壤剖面CO2、N2O特征. 环境科学, 39, 2330-2338.] | |
16 |
Li LF, Fan WY, Kang XM, Wang YF, Cui XY, Xu CY, Griffin KL, Hao YB ( 2016). Responses of greenhouse gas fluxes to climate extremes in a semiarid grassland. Atmospheric Environment, 142, 32-42.
DOI URL |
17 | Liu XY, Chen JS, Sun XX ( 2010). Application of chloride tracer method to study replenishment ratio of precipitation in desert. Transactions of the Chinese Society of Agricultural Engineering, 26, 146-149. |
[ 刘晓艳, 陈建生, 孙晓旭 ( 2010). 采用氯离子示踪法计算沙漠降水入渗量. 农业工程学报, 26, 146-149.] | |
18 | Luo ZZ, Niu YN, Li LL, Cai LQ, Zhang RZ, Xie JH ( 2015). Soil moisture and alfalfa productivity response from different years of growth on the Loess Plateau of central Gansu. Acta Prataculturae Sinica, 24, 31-38. |
[ 罗珠珠, 牛伊宁, 李玲玲, 蔡立群, 张仁陟, 谢军红 ( 2015). 陇中黄土高原不同种植年限苜蓿草地土壤水分及产量响应. 草业学报, 24, 31-38.] | |
19 |
Ma J, Ding Z, Edmunds WM, Gates JB, Huang T ( 2009). Limits to recharge of groundwater from Tibetan Plateau to the Gobi Desert, implications for water management in the mountain front. Journal of Hydrology, 364, 128-141.
DOI URL |
20 |
Ma J, Edmunds WM ( 2006). Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia. Hydrogeology Journal, 14, 1231-1243.
DOI URL |
21 | Ma J, Zhang P, Zhu G, Wang Y, Edmunds WM, Ding Z, He JH ( 2012). The composition and distribution of chemicals and isotopes in precipitation in the Shiyang River system, northwestern China. Journal of Hydrology, 436- 437, 92-101. |
22 |
Russo SL, Zavattaro L, Acutis M, Zuppi GM ( 2003). Chloride profile technique to estimate water movement through unsatured zone in a cropped area in subhumid climate (Po Valley—NW Italy). Journal of Hydrology, 270, 65-74.
DOI URL |
23 | Scanlon BR, Reedy RC, Tachovsky JA ( 2007). Semiarid unsaturated zone chloride profiles: Archives of past land use change impacts on water resources in the southern High Plains, United States. Water Resources Research, 43, 122-127. |
24 |
Sibanda T, Nonner JC, Uhlenbrook S ( 2009). Comparison of groundwater recharge estimation methods for the semi-arid Nyamandhlovu area, Zimbabwe. Hydrogeology Journal, 17, 1427-1441.
DOI URL |
25 | Tang XW, Wu JK, Xue LY, Zhang MQ, Barthold F, Breuer L, Frede HG ( 2014). Major ion chemistry of surface water in the Xilin River Basin and the possible controls. Environmental Science, 35, 131-142. |
[ 唐玺雯, 吴锦奎, 薛丽洋, 张明泉 , Barthold F, Breuer L, Frede HG ( 2014). 锡林河流域地表水水化学主离子特征及控制因素. 环境科学, 35, 131-142.] | |
26 | Tian XY ( 2007). Studies on Soil Water Content Dynamic Varying of Typical Castanozem in Leymus chinensis Steppe in Inner Mongolia. Master degree dissertation, Inner Mongolia Agricultural University, Huhhot. |
[ 田晓艳 ( 2007). 内蒙古羊草草原暗栗钙土水分动态变化研究. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
27 | Wang ZQ, Liu BY, Zhang Y ( 2008). Effects of different vegetation types on soil moisture in deep loess soil profiles. Acta Geographica Sinica, 63, 703-713. |
[ 王志强, 刘宝元, 张岩 ( 2008). 不同植被类型对厚层黄土剖面水分含量的影响. 地理学报, 63, 703-713.] | |
28 |
Xu ZF, Li YS, Yang T, Han GL ( 2009). Chemical and strontium isotope characterization of rainwater at an urban site in Loess Plateau, northwest China. Atmospheric Research, 94, 481-490.
DOI URL |
29 | Xue LY, Wu JK, Zhang MQ, Ding YJ, Ye BS ( 2012). Spatial and temporal distribution of trace elements in surface water in the Xilin River Basin. Environmental Science, 33, 3417-3425. |
[ 薛丽洋, 吴锦奎, 张明泉, 丁永建, 叶柏生 ( 2012). 锡林河流域地表水痕量元素的时空分布. 环境科学, 33, 3417-3425.] | |
30 | Yang QY, Wu JK, Ding YJ, Ye BS, Zhang MQ ( 2009). A study of isotope hydrology in shallow groundwater and stream water in the Xilin River Basin. Journal of Glaciology and Geocryology, 31, 850-856. |
[ 杨淇越, 吴锦奎, 丁永建, 叶柏生, 张明泉 ( 2009). 锡林河流域地表水和浅层地下水的稳定同位素研究. 冰川冻土, 31, 850-856.] | |
31 | Yang WZ, Shao MA ( 2000). Soil Moisture in the Loess Plateau. Science Press, Beijing, 30-114. |
[ 杨文治, 邵明安 . ( 2000). 黄土高原土壤水分研究. 科学出版社, 北京. 30-114.] | |
32 | Zhang GS, Chan KY, Oates A, Heenan DP, Huang GB ( 2007). Relationship between soil structure and runoff soil loss after 24 years of conservation tillage. Soil & Tillage Research, 92, 122-128. |
33 | Zhang JG, Chen HS, Su YR, Zhang W, Lu Z, Tan JM ( 2006). Spatial variability of soil moisture content and reasonable sampling number in cluster-peak depression areas of karst region. Journal of Soil and Water Conservation, 20, 114-117. |
[ 张继光, 陈洪松, 苏以荣, 张伟, 卢洲, 谭江明 ( 2006). 喀斯特地区典型峰丛洼地表层土壤水分空间变异及合理取样数研究. 水土保持学报, 20, 114-117.] | |
34 | Zhao LY, Gao DD, Xiong BQ, Chen T, Li YQ, Li RF ( 2017). Relationship between the aboveground biomass and species diversity of sandy communities during the process of restoring succession in the Horqin Sandy Land, China. Acta Ecologica Sinica, 37, 4108-4117. |
[ 赵丽娅, 高丹丹, 熊炳桥, 陈涛, 李艳蔷, 李锋瑞 ( 2017). 科尔沁沙地恢复演替进程中群落物种多样性与地上生物量的关系. 生态学报, 37, 4108-4117.] | |
35 | Zhao Y, Peth S, Reszkowska A, Gan L, Krümmelbein J, Peng XH, Horn R ( 2011). Response of soil moisture and temperature to grazing intensity in a Leymus chinensis steppe, Inner Mongolia. Plant and Soil, 340, 89-102. |
36 | Zhao YG, Zhao SW, Cao LH, Liang XF ( 2008). Soil structural characteristics and its effect on infiltration on abandoned lands in semi-arid typical grassland areas. Transactions of the Chinese Society of Agricultural Engineering, 24, 14-20. |
[ 赵勇钢, 赵世伟, 曹丽花, 梁向锋 ( 2008). 半干旱典型草原区退耕地土壤结构特征及其对入渗的影响. 农业工程学报, 24, 14-20.] |
[1] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[2] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[3] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[4] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[5] | 苗百岭, 梁存柱, 史亚博, 梁茂伟, 刘钟龄. 降水变化对内蒙古典型草原地上生物量的影响[J]. 植物生态学报, 2019, 43(7): 557-565. |
[6] | 汤永康, 武艳涛, 武魁, 郭之伟, 梁存柱, 王敏杰, 常佩静. 放牧对草地生态系统服务和功能权衡关系的影响[J]. 植物生态学报, 2019, 43(5): 408-417. |
[7] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[8] | 闫宝龙, 王忠武, 屈志强, 王静, 韩国栋. 围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响[J]. 植物生态学报, 2018, 42(3): 327-336. |
[9] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[10] | 陈敏玲, 张兵伟, 任婷婷, 王姗姗, 陈世苹. 内蒙古半干旱草原土壤水分对降水格局变化的响应[J]. 植物生态学报, 2016, 40(7): 658-668. |
[11] | 孙鹏森, 刘宁, 刘世荣, 孙阁. 川西亚高山流域水碳平衡研究[J]. 植物生态学报, 2016, 40(10): 1037-1048. |
[12] | 张彬,朱建军,刘华民,潘庆民. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014, 38(9): 1008-1018. |
[13] | 乔丽青, 田大栓, 万宏伟, 宝音陶格涛, 潘庆民. 不同载畜率下瓣蕊唐松草的生长和繁殖对策[J]. 植物生态学报, 2014, 38(8): 878-887. |
[14] | 熊育久,邱国玉,谢芳. 内蒙古太仆寺旗退耕草地植物种类变化与水分收支[J]. 植物生态学报, 2014, 38(5): 425-439. |
[15] | 白雪, 程军回, 郑淑霞, 詹书侠, 白永飞. 典型草原建群种羊草对氮磷添加的生理生态响应[J]. 植物生态学报, 2014, 38(2): 103-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19