植物生态学报 ›› 2020, Vol. 44 ›› Issue (8): 885-894.DOI: 10.17521/cjpe.2019.0358
所属专题: 生态化学计量
• 研究论文 • 上一篇
解梦怡1,2, 冯秀秀1,2, 马寰菲1,2, 胡汗1,2, 王洁莹1,2, 郭垚鑫3, 任成杰4, 王俊1,2, 赵发珠1,2,*()
收稿日期:
2019-12-23
接受日期:
2020-04-23
出版日期:
2020-08-20
发布日期:
2020-07-03
通讯作者:
赵发珠
作者简介:
* zhaofazhu@nwu.edu.cn基金资助:
XIE Meng-Yi1,2, FENG Xiu-Xiu1,2, MA Huan-Fei1,2, HU Han1,2, WANG Jie-Ying1,2, GUO Yao-Xin3, REN Cheng-Jie4, WANG Jun1,2, ZHAO Fa-Zhu1,2,*()
Received:
2019-12-23
Accepted:
2020-04-23
Online:
2020-08-20
Published:
2020-07-03
Contact:
ZHAO Fa-Zhu
Supported by:
摘要:
研究微尺度海拔梯度土壤酶活性与化学计量学比值的动态变化及驱动因素对于探讨生态系统养分循环过程具有重要意义。该研究以秦岭太白山6个海拔(分别为1 308、1 403、1 503、1 603、1 694和1 803 m)的锐齿栎(Quercus aliena var. acuteserrata)林作为研究对象, 测定锐齿栎叶片、凋落物、细根和土壤的碳(C)、氮(N)、磷(P)含量以及碱性磷酸酶(AKP)、β-1,4-葡萄糖苷酶(βG)、纤维二糖水解酶(CBH)、木糖苷酶(βX)与β-N-乙酰氨基葡萄糖苷酶(NAG)的活性, 探究不同海拔植物、土壤、酶含量如何变化及驱动土壤酶活性变化的主要因子。结果表明: 5种土壤酶活性在海拔梯度上表现出不同的变化趋势, CBH和βG活性随海拔升高整体呈先增后减趋势, βX与之相反; NAG与AKP活性在1 408-1 694 m呈下降趋势, 在1 803 m处有所升高; 土壤总体酶活性随海拔上升整体表现为降低趋势。相关性分析表明, 土壤酶活性及其化学计量比不同程度上受到植物和土壤C、N、P资源及土壤水热条件等的调控, 其中与土壤有机碳含量的相关性较高, 土壤有机碳含量可被认为是锐齿栎林中影响土壤酶活性变化的主要因子。总之, 土壤酶活性及化学计量比在微尺度海拔梯度上具有差异性, 且受到植物和土壤C、N、P资源的综合影响。
解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素. 植物生态学报, 2020, 44(8): 885-894. DOI: 10.17521/cjpe.2019.0358
XIE Meng-Yi, FENG Xiu-Xiu, MA Huan-Fei, HU Han, WANG Jie-Ying, GUO Yao-Xin, REN Cheng-Jie, WANG Jun, ZHAO Fa-Zhu. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains. Chinese Journal of Plant Ecology, 2020, 44(8): 885-894. DOI: 10.17521/cjpe.2019.0358
海拔 Altitude (m) | 纬度 Latitude (N) | 经度 Longitude (E) | 锐齿栎优势度1) (as % of total basal area)1) | pH | 土壤温度 ST (℃) | 土壤容重 BD (g·cm-3) | 土壤含水量 SMC (%) |
---|---|---|---|---|---|---|---|
1 308 | 34.08° | 107.70° | 0.79 | 5.32 ± 0.04bc | 16.81 ± 0.03a | 1.15 ± 0.08a | 22.96 ± 0.75c |
1 408 | 34.08° | 107.69° | 0.72 | 5.28 ± 0.01bc | 16.60 ± 0.02b | 1.00 ± 0.06a | 28.94 ± 1.52b |
1 503 | 34.08° | 107.69° | 0.81 | 5.57 ± 0.03ab | 16.50 ± 0.01b | 1.11 ± 0.03a | 21.97 ± 1.03c |
1 603 | 34.07° | 107.69° | 0.68 | 5.71 ± 0.03a | 16.24 ± 0.03c | 1.01 ± 0.07a | 26.85 ± 0.74b |
1 694 | 34.07° | 107.69° | 0.74 | 5.06 ± 0.04c | 16.01 ± 0.05d | 1.01 ± 0.09a | 44.93 ± 1.43a |
1 803 | 34.06° | 107.70° | 0.62 | 4.19 ± 0.22d | 15.84 ± 0.04e | 1.06 ± 0.09a | 23.32 ± 0.59c |
表1 锐齿栎林带不同海拔高度采样点主要特征(平均值±标准误差)
Table 1 Main characteristics of the sampling sites at different altitude of the Quercus aliena var. acuteserrata forest (mean ± SE)
海拔 Altitude (m) | 纬度 Latitude (N) | 经度 Longitude (E) | 锐齿栎优势度1) (as % of total basal area)1) | pH | 土壤温度 ST (℃) | 土壤容重 BD (g·cm-3) | 土壤含水量 SMC (%) |
---|---|---|---|---|---|---|---|
1 308 | 34.08° | 107.70° | 0.79 | 5.32 ± 0.04bc | 16.81 ± 0.03a | 1.15 ± 0.08a | 22.96 ± 0.75c |
1 408 | 34.08° | 107.69° | 0.72 | 5.28 ± 0.01bc | 16.60 ± 0.02b | 1.00 ± 0.06a | 28.94 ± 1.52b |
1 503 | 34.08° | 107.69° | 0.81 | 5.57 ± 0.03ab | 16.50 ± 0.01b | 1.11 ± 0.03a | 21.97 ± 1.03c |
1 603 | 34.07° | 107.69° | 0.68 | 5.71 ± 0.03a | 16.24 ± 0.03c | 1.01 ± 0.07a | 26.85 ± 0.74b |
1 694 | 34.07° | 107.69° | 0.74 | 5.06 ± 0.04c | 16.01 ± 0.05d | 1.01 ± 0.09a | 44.93 ± 1.43a |
1 803 | 34.06° | 107.70° | 0.62 | 4.19 ± 0.22d | 15.84 ± 0.04e | 1.06 ± 0.09a | 23.32 ± 0.59c |
图1 秦岭植物碳(C)、氮(N)、磷(P)含量及其化学计量比随海拔变化特征(平均值±标准误差)。不同小写字母表示不同海拔高度间差异显著(p < 0.05)。
Fig. 1 Altitudinal variation of plants carbon (C), nitrogen (N), phosphorus (P) content and stoichiometry characteristics in the Qinling Mountains (mean ± SE). Different lowercase letters within the same column mean significant differences among different altitudes (p < 0.05).
图2 秦岭土壤碳(C)、氮(N)、磷(P)含量及其化学计量比随海拔变化特征(平均值±标准误差)。不同小写字母表示不同海拔高度间差异显著(p < 0.05)。
Fig. 2 Altitudinal variation of soils carbon (C), nitrogen (N), phosphorus (P) content and stoichiometric characteristics in the Qinling Mountains (mean ± SE). Different lowercase letters within the same column mean significant differences among different altitudes (p < 0.05).
图3 秦岭土壤酶活性及总体酶活性沿海拔变化特征(平均值±标准误差)。不同小写字母表示不同海拔高度间差异显著(p < 0.05)。AKP, 碱性磷酸酶; CBH, 纤维二糖水解酶; NAG, β-N-乙酰氨基葡萄糖苷酶; βG, β-葡萄糖苷酶; βX, 木糖苷酶; TEI, 土壤总体酶活性。
Fig. 3 Altitudinal variation of soil enzyme activities and the total enzyme activity index in the Qinling Mountain (mean ± SE). Different lowercase letters within the same column mean significant differences among different altitudes (p < 0.05). AKP, alkaline phosphatase; CBH, cellobiohydrolase; NAG, β-1,4-N-acetylglucosaminidase; βG, β-1,4-glucosidase; βX, β-1,4-xylosidase; TEI, total enzyme activity index.
海拔 Altitude (m) | |||||||
---|---|---|---|---|---|---|---|
1 308 | 1 408 | 1 503 | 1 603 | 1 694 | 1 803 | 平均值 Mean | |
ln(βG):ln(NAG) | 0.91 ± 0.02cd | 0.84 ± 0.02d | 1.12 ± 0.01ab | 1.16 ± 0.06a | 1.02 ± 0.07bc | 0.93 ± 0.01cd | 0.99 ± 0.03 |
ln(βG):ln(AKP) | 0.73 ± 0.03c | 0.75 ± 0.03bc | 0.81 ± 0.02b | 0.88 ± 0.02a | 0.77 ± 0.03bc | 0.78 ± 0.01bc | 0.78 ± 0.02 |
ln(NAG):ln(AKP) | 0.80 ± 0.00bc | 0.90 ± 0.02a | 0.73 ± 0.01d | 0.76 ± 0.03cd | 0.76 ± 0.03cd | 0.84 ± 0.01b | 0.80 ± 0.02 |
表2 锐齿栎林土壤酶活性化学计量比沿海拔的变化特征(平均值±标准误差)
Table 2 Stoichiometry characteristics of soil enzyme activities in Quercus aliena var. acuteserrata forest along the elevation gradient (mean ± SE)
海拔 Altitude (m) | |||||||
---|---|---|---|---|---|---|---|
1 308 | 1 408 | 1 503 | 1 603 | 1 694 | 1 803 | 平均值 Mean | |
ln(βG):ln(NAG) | 0.91 ± 0.02cd | 0.84 ± 0.02d | 1.12 ± 0.01ab | 1.16 ± 0.06a | 1.02 ± 0.07bc | 0.93 ± 0.01cd | 0.99 ± 0.03 |
ln(βG):ln(AKP) | 0.73 ± 0.03c | 0.75 ± 0.03bc | 0.81 ± 0.02b | 0.88 ± 0.02a | 0.77 ± 0.03bc | 0.78 ± 0.01bc | 0.78 ± 0.02 |
ln(NAG):ln(AKP) | 0.80 ± 0.00bc | 0.90 ± 0.02a | 0.73 ± 0.01d | 0.76 ± 0.03cd | 0.76 ± 0.03cd | 0.84 ± 0.01b | 0.80 ± 0.02 |
酶 Enzyme | |||||||||
---|---|---|---|---|---|---|---|---|---|
CBH | βX | βG | NAG | AKP | ln(βG):ln(NAG) | ln(βG):ln(AKP) | ln(NAG):ln(AKP) | ||
叶片 Leaf | C | -0.33 | -0.36 | 0.18 | -0.26 | -0.23 | -0.36 | 0.02 | 0.31 |
N | 0.17 | -0.62** | 0.10 | -0.74** | -0.59** | -0.45 | 0.44 | 0.72** | |
P | 0.57* | 0.06 | -0.18 | -0.21 | -0.09 | 0.06 | 0.59** | 0.08 | |
C:N | -0.31 | 0.51* | 0.04 | 0.62** | 0.57* | 0.28 | -0.39 | -0.55* | |
C:P | -0.61** | -0.02 | 0.30 | 0.15 | 0.23 | -0.14 | -0.42 | 0.01 | |
N:P | -0.61** | -0.45 | 0.40 | -0.24 | -0.15 | -0.43 | -0.37 | 0.43 | |
凋落物 Litter | C | -0.56* | 0.30 | 0.15 | 0.03 | 0.41 | 0.04 | 0.09 | -0.18 |
N | 0.18 | 0.09 | 0.22 | -0.39 | 0.09 | -0.20 | 0.75** | 0.30 | |
P | -0.12 | -0.39 | 0.32 | -0.10 | 0.04 | -0.38 | -0.27 | 0.40 | |
C:N | -0.57* | 0.13 | -0.10 | 0.35 | 0.19 | 0.21 | -0.57* | -0.39 | |
C:P | -0.24 | 0.45 | -0.10 | 0.08 | 0.21 | 0.27 | 0.27 | -0.35 | |
N:P | 0.19 | 0.29 | 0.01 | -0.19 | 0.05 | 0.08 | 0.66** | -0.01 | |
细根 Fine root | C | 0.42 | -0.38 | -0.33 | -0.28 | -0.57* | 0.01 | 0.12 | 0.19 |
N | 0.01 | 0.50* | 0.18 | 0.41 | 0.69** | 0.17 | -0.23 | -0.32 | |
P | 0.19 | -0.39 | 0.37 | -0.57* | -0.33 | -0.49* | 0.59* | 0.72** | |
C:N | 0.15 | -0.53* | -0.32 | -0.45 | -0.78** | -0.09 | 0.26 | 0.30 | |
C:P | -0.13 | 0.51* | -0.39 | 0.44 | 0.37 | 0.54* | -0.30 | -0.70** | |
N:P | -0.17 | 0.60** | -0.15 | 0.46 | 0.58* | 0.44 | -0.25 | -0.62** | |
土壤 Soil | pH | 0.41 | -0.57* | -0.11 | -0.44 | -0.63** | -0.25 | 0.16 | 0.47* |
ST | 0.78** | 0.12 | -0.08 | 0.07 | 0.16 | 0.07 | 0.16 | -0.02 | |
SMC | -0.30 | -0.18 | -0.69** | -0.08 | -0.66** | 0.43 | -0.13 | -0.28 | |
SOC | -0.24 | -0.59* | 0.01 | -0.82** | -0.72** | -0.30 | 0.54* | 0.68** | |
TN | -0.06 | -0.36 | -0.24 | -0.67** | -0.69** | -0.01 | 0.61** | 0.40 | |
TP | 0.04 | -0.19 | -0.56* | -0.27 | -0.67** | 0.25 | 0.33 | -0.06 | |
C:N | -0.38 | -0.25 | 0.47 | -0.13 | 0.11 | -0.44 | -0.20 | 0.37 | |
C:P | -0.38 | -0.35 | 0.62** | -0.46 | 0.02 | -0.55* | 0.08 | 0.69** | |
N:P | -0.19 | -0.20 | 0.41 | -0.45 | -0.01 | -0.33 | 0.25 | 0.54* |
表3 锐齿栎林土壤酶活性及化学计量比与生物和非生物因素的相关性系数
Table 3 Correlation coefficients of activities of soil enzymes and stoichiometry characteristics with abiotic factors and biotic factors in Quercus aliena var. acuteserrata forest
酶 Enzyme | |||||||||
---|---|---|---|---|---|---|---|---|---|
CBH | βX | βG | NAG | AKP | ln(βG):ln(NAG) | ln(βG):ln(AKP) | ln(NAG):ln(AKP) | ||
叶片 Leaf | C | -0.33 | -0.36 | 0.18 | -0.26 | -0.23 | -0.36 | 0.02 | 0.31 |
N | 0.17 | -0.62** | 0.10 | -0.74** | -0.59** | -0.45 | 0.44 | 0.72** | |
P | 0.57* | 0.06 | -0.18 | -0.21 | -0.09 | 0.06 | 0.59** | 0.08 | |
C:N | -0.31 | 0.51* | 0.04 | 0.62** | 0.57* | 0.28 | -0.39 | -0.55* | |
C:P | -0.61** | -0.02 | 0.30 | 0.15 | 0.23 | -0.14 | -0.42 | 0.01 | |
N:P | -0.61** | -0.45 | 0.40 | -0.24 | -0.15 | -0.43 | -0.37 | 0.43 | |
凋落物 Litter | C | -0.56* | 0.30 | 0.15 | 0.03 | 0.41 | 0.04 | 0.09 | -0.18 |
N | 0.18 | 0.09 | 0.22 | -0.39 | 0.09 | -0.20 | 0.75** | 0.30 | |
P | -0.12 | -0.39 | 0.32 | -0.10 | 0.04 | -0.38 | -0.27 | 0.40 | |
C:N | -0.57* | 0.13 | -0.10 | 0.35 | 0.19 | 0.21 | -0.57* | -0.39 | |
C:P | -0.24 | 0.45 | -0.10 | 0.08 | 0.21 | 0.27 | 0.27 | -0.35 | |
N:P | 0.19 | 0.29 | 0.01 | -0.19 | 0.05 | 0.08 | 0.66** | -0.01 | |
细根 Fine root | C | 0.42 | -0.38 | -0.33 | -0.28 | -0.57* | 0.01 | 0.12 | 0.19 |
N | 0.01 | 0.50* | 0.18 | 0.41 | 0.69** | 0.17 | -0.23 | -0.32 | |
P | 0.19 | -0.39 | 0.37 | -0.57* | -0.33 | -0.49* | 0.59* | 0.72** | |
C:N | 0.15 | -0.53* | -0.32 | -0.45 | -0.78** | -0.09 | 0.26 | 0.30 | |
C:P | -0.13 | 0.51* | -0.39 | 0.44 | 0.37 | 0.54* | -0.30 | -0.70** | |
N:P | -0.17 | 0.60** | -0.15 | 0.46 | 0.58* | 0.44 | -0.25 | -0.62** | |
土壤 Soil | pH | 0.41 | -0.57* | -0.11 | -0.44 | -0.63** | -0.25 | 0.16 | 0.47* |
ST | 0.78** | 0.12 | -0.08 | 0.07 | 0.16 | 0.07 | 0.16 | -0.02 | |
SMC | -0.30 | -0.18 | -0.69** | -0.08 | -0.66** | 0.43 | -0.13 | -0.28 | |
SOC | -0.24 | -0.59* | 0.01 | -0.82** | -0.72** | -0.30 | 0.54* | 0.68** | |
TN | -0.06 | -0.36 | -0.24 | -0.67** | -0.69** | -0.01 | 0.61** | 0.40 | |
TP | 0.04 | -0.19 | -0.56* | -0.27 | -0.67** | 0.25 | 0.33 | -0.06 | |
C:N | -0.38 | -0.25 | 0.47 | -0.13 | 0.11 | -0.44 | -0.20 | 0.37 | |
C:P | -0.38 | -0.35 | 0.62** | -0.46 | 0.02 | -0.55* | 0.08 | 0.69** | |
N:P | -0.19 | -0.20 | 0.41 | -0.45 | -0.01 | -0.33 | 0.25 | 0.54* |
[1] |
Bach LH, Grytnes JA, Halvorsen R, Ohlson M (2010). Tree influence on soil microbial community structure. Soil Biology & Biochemistry, 42, 1934-1943.
DOI URL |
[2] | Cao R, Wu FZ, Yang WQ, Xu ZF, Tan B, Wang B, Li J, Chang CH (2016). Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions. Chinese Journal of Applied Ecology, 27, 1257-1264. |
[ 曹瑞, 吴福忠, 杨万勤, 徐振锋, 谭波, 王滨, 李俊, 常晨晖 (2016). 海拔对高山峡谷区土壤微生物生物量和酶活性的影响. 应用生态学报, 27, 1257-1264.] | |
[3] |
Enrique AG, Bruno C, Christopher A, Virgile C, Stéven C (2008). Effects of nitrogen availability on microbial activities, densities and functional diversities involved in the degradation of a Mediterranean evergreen oak litter (Quercus ilex L.). Soil Biology & Biochemistry, 40, 1654-1661.
DOI URL |
[4] | Gu XN, He HS, Tao Y, Jin YH, Zhang XY, Xu ZW, Wang YT, Song XX (2017). Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain. Acta Ecologica Sinica, 37, 8374-8384. |
[ 谷晓楠, 贺红士, 陶岩, 靳英华, 张心昱, 徐志伟, 王钰婷, 宋祥霞 (2017). 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子. 生态学报, 37, 8374-8384.] | |
[5] | Guo ZM, Zhang XY, Li DD, Dong WT, Li ML (2017). Characteristics of soil organic carbon and related exo-enzyme activities at different altitudes in temperate forests. Chinese Journal of Applied Ecology, 28, 2888-2896. |
[ 郭志明, 张心昱, 李丹丹, 董文亭, 李美玲 (2017). 温带森林不同海拔土壤有机碳及相关胞外酶活性特征. 应用生态学报, 28, 2888-2896.] | |
[6] | He WX, Tan XP, Wang XD, Tang M, Hao MD (2010). Study on total enzyme activity index in soils. Acta Pedologica Sinica, 47, 1232-1236. |
[ 和文祥, 谭向平, 王旭东, 唐明, 郝明德 (2010). 土壤总体酶活性指标的初步研究. 土壤学报, 47, 1232-1236.] | |
[7] |
Hofmann K, Lamprecht A, Pauli H, Illmer P (2016). Distribution of prokaryotic abundance and microbial nutrient cycling across a high-alpine altitudinal gradient in the Austrian Central Alps is affected by vegetation, temperature, and soil nutrients. Microbial Ecology, 72, 704-716.
DOI URL PMID |
[8] |
Huang HL, Zong N, He NP, Tian J (2019). Characteristics of soil enzyme stoichiometry along an altitude gradient on Qinghai-Tibet Plateau alpine meadow, China. Chinese Journal of Applied Ecology, 30, 3689-3696.
DOI URL PMID |
[ 黄海莉, 宗宁, 何念鹏, 田静 (2019). 青藏高原高寒草甸不同海拔土壤酶化学计量特征. 应用生态学报, 30, 3689-3696.]
PMID |
|
[9] | Jiang PP, Cao Y, Chen YM, Zhao YP (2017). N and P stoichiometric characteristics of leaves, litter, and soil for three dominant tree species in the Shaanxi Province. Acta Ecologica Sinica, 37, 443-454. |
[ 姜沛沛, 曹扬, 陈云明, 赵一娉 (2017). 陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征. 生态学报, 37, 443-454.] | |
[10] |
Kardol P, Cregger MA, Campany CE, Classen AT (2010). Soil ecosystem functioning under climate change: plant species and community effects. Ecology, 91, 767-781.
DOI URL PMID |
[11] | Koch O, Tscherko D, Kandeler E (2007). Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochemical Cycles, 21, GB4017. DOI: 10.1029/ 2007GB002983. |
[12] |
Lei TZ, Si GC, Wang J, Zhang GX (2017). Microbial communities and associated enzyme activities in alpine wetlands with increasing altitude on the Tibetan Plateau. Wetlands, 37, 401-412.
DOI URL |
[13] | Liu S, Luo D, Liu QL, Zhang L, Yang HG, Shi ZM (2017). Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan. Acta Ecologica Sinica, 37, 1074-1083. |
[ 刘顺, 罗达, 刘千里, 张利, 杨洪国, 史作民 (2017). 川西亚高山不同森林生态系统碳氮储量及其分配格局. 生态学报, 37, 1074-1083.] | |
[14] |
Lucas Y, Luizao FJ, Chauvel A, Rouiller J, Nahon D (1993). The relation between biological activity of the rain forest and mineral composition of soils. Science, 260, 521-523.
DOI URL PMID |
[15] |
Lucas-Borja ME, Candel Pérez D, López-Serrano FR, Andrés M, Bastida F (2012). Altitude-related factors but not Pinus community exert a dominant role over chemical and microbiological properties of a Mediterranean humid soil. European Journal of Soil Science, 63, 541-549.
DOI URL |
[16] | Ma J, Liu XD, Jin M, Zhao WJ, Cheng CX, Meng HJ, Wu XR (2019). Soil physicochemical properties and enzyme activities along the altitudinal gradients in Picea crassifolia of Qilian Mountains. Journal of Soil and Water Conservation, 33, 207-213. |
[ 马剑, 刘贤德, 金铭, 赵维俊, 成彩霞, 孟好军, 武秀荣 (2019). 祁连山青海云杉林土壤理化性质和酶活性海拔分布特征. 水土保持学报, 33, 207-213.] | |
[17] |
Nie YY, Wang HH, Li XJ, Ren YB, Jin CS, Xu ZK, Lv MK, Xie JS (2018). Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi Mountains, southeastern China. Chinese Journal of Applied Ecology, 29, 748-756.
DOI URL PMID |
[ 聂阳意, 王海华, 李晓杰, 任寅榜, 金昌善, 徐自坤, 吕茂奎, 谢锦升 (2018). 武夷山低海拔和高海拔森林土壤有机碳的矿化特征. 应用生态学报, 29, 748-756.]
PMID |
|
[18] |
Olander LP, Vitousek PM (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49, 175-191.
DOI URL |
[19] |
Qi RM, Li J, Lin ZA, Li ZJ, Li YT, Yang XD, Zhang JJ, Zhao BQ (2016). Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology, 102, 36-45.
DOI URL |
[20] | Si GC, Yuan YL, Wang J, Xia YQ, Lei TZ, Zhang GX (2014). Microbial community and soil enzyme activities along an altitudinal gradient in Sejila Mountains. Microbiology China, 41, 2001-2011. |
[ 斯贵才, 袁艳丽, 王建, 夏燕青, 雷天柱, 张更新 (2014). 藏东南森林土壤微生物群落结构与土壤酶活性随海拔梯度的变化. 微生物学通报, 41, 2001-2011.] | |
[21] |
Sinsabaugh RL, Follstad Shah JJ (2010). Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production. Ecology, 91, 1455-1465.
DOI URL PMID |
[22] | Tang ZY, Fang JY, Zhang L (2004). Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains. Biodiversity Science, 12, 115-122. |
[ 唐志尧, 方精云, 张玲 (2004). 秦岭太白山木本植物物种多样性的梯度格局及环境解释. 生物多样性, 12, 115-122.] | |
[23] | Tao BX, Zhang JC, Yu YC, Cong RL (2010). Season variations of forest soil enzyme activities in the hilly region of southern Jiangsu Province. Ecology and Environmental Sciences, 19, 2349-2354. |
[ 陶宝先, 张金池, 愈元春, 丛日亮 (2010). 苏南丘陵地区森林土壤酶活性季节变化. 生态环境学报, 19, 2349-2354.] | |
[24] |
Ushio M, Balser TC, Kitayama K (2013). Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest. Plant and Soil, 365, 157-170.
DOI URL |
[25] |
Wallenius K, Rita H, Mikkonen A, Lappi K, Lindström K, Hartikainen H, Raateland A, Niemi RM (2011). Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities. Soil Biology & Biochemistry, 43, 1464-1473.
DOI URL |
[26] | Wang Y, Wang YM, Chen LC (2010). Effects of forest vegetation change on soil microbial biomass carbon and enzyme activities in Huitong, Hunan Province. Chinese Journal of Ecology, 29, 905-909. |
[ 王莹, 王彦梅, 陈龙池 (2010). 湖南会同地区森林植被转变对土壤微生物生物量碳和酶活性的影响. 生态学杂志, 29, 905-909.] | |
[27] |
Xu ZW, Yu GR, Zhang XY, Ge JP, He NP, Wang QF, Wang D (2015). The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Applied Soil Ecology, 86, 19-29.
DOI URL |
[28] |
Xu ZW, Yu GR, Zhang XY, He NP, Wang QF, Wang SZ, Wang RL, Zhao N, Jia YL, Wang CY (2017). Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology & Biochemistry, 104, 152-163.
DOI URL |
[29] | Yang R, Liu S, Wang ZQ, Cao YC, Zhao YM, He WX, Geng ZC (2016). Relationships between the soil enzyme activity and soil nutrients in forest soils typical of the Qinling Mountain. Acta Pedologica Sinica, 53, 1037-1046. |
[ 杨瑞, 刘帅, 王紫泉, 曹永昌, 赵翊明, 和文祥, 耿增超 (2016). 秦岭山脉典型林分土壤酶活性与土壤养分关系的探讨. 土壤学报, 53, 1037-1046.] | |
[30] |
Yin S, Wang CK, Jin Y, Zhou ZH (2019). Changes in soil- microbe-exoenzyme C:N:P stoichiometry along an altitudinal gradient in Mt. Datudingzi, Northeast China. Chinese Journal of Plant Ecology, 43, 999-1009.
DOI URL |
[ 殷爽, 王传宽, 金鹰, 周正虎 (2019). 东北地区大秃顶子山土壤-微生物-胞外酶C:N:P化学计量特征沿海拔梯度的变化. 植物生态学报, 43, 999-1009.] | |
[31] |
Zhao YH, Lei RD, Jia X, He XY, Chen W (2003). Quantitative analysis on sharp-tooth oak stands in Qinling Mountains. Chinese Journal of Applied Ecology, 14, 2123-2128.
URL PMID |
[ 赵永华, 雷瑞德, 贾夏, 何兴元, 陈玮 (2003). 秦岭锐齿栎群落数量特征的研究. 应用生态学报, 14, 2123-2128.]
PMID |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[4] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[5] | 张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响[J]. 植物生态学报, 2022, 46(3): 350-361. |
[6] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[7] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[8] | 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民. 亚热带人工林下植被根际土壤酶化学计量特征[J]. 植物生态学报, 2019, 43(3): 258-272. |
[9] | 邹瓒, 陈劲松, 李洋, 宋会兴. 光合产物传输方向对蓉城竹根际微生物过程的影响[J]. 植物生态学报, 2018, 42(8): 863-872. |
[10] | 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J]. 植物生态学报, 2018, 42(6): 692-702. |
[11] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[12] | 陈日升, 康文星, 周玉泉, 田大伦, 项文化. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173-184. |
[13] | 周天阳, NARAYAN Prasad Gaire, 廖礼彬, 郑莉莉, 王金牛, 孙建, 魏彦强, 谢雨, 吴彦. 青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征[J]. 植物生态学报, 2018, 42(11): 1082-1093. |
[14] | 卢玉鹏, 许纪元, 张晓曦, 王博雅, 谢博, 刘增文. 林下药用植物淋出物对红桦和杜仲枯落物分解及土壤酶活性的影响[J]. 植物生态学报, 2017, 41(6): 639-649. |
[15] | 杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228-1238. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2505
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1797
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La