植物生态学报 ›› 2021, Vol. 45 ›› Issue (7): 760-770.DOI: 10.17521/cjpe.2020.0420
所属专题: 生态化学计量
收稿日期:
2020-12-17
接受日期:
2021-05-17
出版日期:
2021-07-20
发布日期:
2021-10-22
通讯作者:
庄伟伟
作者简介:
* zww8611@sina.com基金资助:
Received:
2020-12-17
Accepted:
2021-05-17
Online:
2021-07-20
Published:
2021-10-22
Contact:
ZHUANG Wei-Wei
Supported by:
摘要:
同一生活型的植物可能通过吸收不同形态的氮来利用陆地生态系统中有限的氮, 避免和减少对资源的竞争, 从而完成共生。研究荒漠生态系统同一生活型植物对氮的利用是否存在生态位分离, 有助于深入了解荒漠植物的生存策略, 更好掌握氮利用对荒漠植物生存的影响。该研究利用15N同位素示踪法, 研究古尔班通古特沙漠中广泛分布的2种一年生植物——角果藜(Ceratocarpus arenarius)和碱蓬(Suaeda glauca)在不同月份和不同土壤深度对不同形态氮的吸收策略。结果显示, 在浅层土壤中, 2种植物7月的氮吸收速率均高于6月; 对比不同形态氮的吸收速率, 植物对无机氮的吸收均高于有机氮, 角果藜更偏好吸收硝态氮, 每克干根系最高氮吸收速率可达3.81 μg·h-1, 碱蓬更偏好吸收铵态氮, 每克干根系最高氮吸收速率可达4.74 μg·h-1; 从不同形态氮对总氮的贡献率看, 硝态氮是角果藜吸收氮的有利形态, 占比在35.7%-43.9%之间, 铵态氮是碱蓬吸收氮的有利形态, 占比最高可达48.3%, 最低也有40.0%。2种一年生植物不仅可以利用土壤中的无机氮, 也可以直接吸收利用土壤有机氮。研究结果表明: 在古尔班通古特沙漠生态系统中, 一年生植物对氮的吸收能力有着差异和多元化的特点, 且均可吸收土壤中的可溶性有机态氮源。
侯宝林, 庄伟伟. 古尔班通古特沙漠一年生植物的氮吸收策略. 植物生态学报, 2021, 45(7): 760-770. DOI: 10.17521/cjpe.2020.0420
HOU Bao-Lin, ZHUANG Wei-Wei. Nitrogen uptake strategy of annual plants in Gurbantünggüt Desert. Chinese Journal of Plant Ecology, 2021, 45(7): 760-770. DOI: 10.17521/cjpe.2020.0420
土壤组成成分含量 Soil composition content | 六月 June | 七月 July | ||
---|---|---|---|---|
土壤深度 Soil depth (cm) | 土壤深度 Soil depth (cm) | |||
0-5 | 5-15 | 0-5 | 5-15 | |
土壤有机碳 Soil organic C (%) | 2.20 ± 0.26 | 1.40 ± 0.10 | 2.37 ± 0.31 | 1.63 ± 0.21 |
总氮 Total N (%) | 0.159 ± 0.008 | 0.086 ± 0.011 | 0.188 ± 0.030 | 0.091 ± 0.007 |
NH4+-N (μg·g-1) | 12.563 ± 0.897 | 10.150 ± 1.697 | 13.800 ± 1.456 | 9.783 ± 1.262 |
NO3--N (μg·g-1) | 22.357 ± 3.446 | 18.587 ± 1.216 | 23.597 ± 3.118 | 17.407 ± 2.298 |
有机氮 Organic N (μg·g-1) | 12.747 ± 2.034 | 11.217 ± 1.216 | 12.717 ± 1.975 | 11.210 ± 1.800 |
表1 古尔班通古特沙漠样地不同月份各土壤深度土壤样品组成成分分析(平均值±标准差)
Table 1 Composition analysis of soil samples at various soil depths in different months of Gurbantünggüt Desert (mean ± SD)
土壤组成成分含量 Soil composition content | 六月 June | 七月 July | ||
---|---|---|---|---|
土壤深度 Soil depth (cm) | 土壤深度 Soil depth (cm) | |||
0-5 | 5-15 | 0-5 | 5-15 | |
土壤有机碳 Soil organic C (%) | 2.20 ± 0.26 | 1.40 ± 0.10 | 2.37 ± 0.31 | 1.63 ± 0.21 |
总氮 Total N (%) | 0.159 ± 0.008 | 0.086 ± 0.011 | 0.188 ± 0.030 | 0.091 ± 0.007 |
NH4+-N (μg·g-1) | 12.563 ± 0.897 | 10.150 ± 1.697 | 13.800 ± 1.456 | 9.783 ± 1.262 |
NO3--N (μg·g-1) | 22.357 ± 3.446 | 18.587 ± 1.216 | 23.597 ± 3.118 | 17.407 ± 2.298 |
有机氮 Organic N (μg·g-1) | 12.747 ± 2.034 | 11.217 ± 1.216 | 12.717 ± 1.975 | 11.210 ± 1.800 |
图1 古尔班通古特沙漠2个物种的地上、地下生物量(平均值±标准差)。不同大写字母表示同一层次(地上或地下)的不同月份对比差异显著(p < 0.05); 不同小写字母表示同一月份的不同层次对比差异显著(p < 0.05)。
Fig. 1 Above and below ground biomass of two species in Gurbantünggüt Desert (mean ± SD). Different uppercase letters indicate significant differences (p < 0.05) among different months for the same level (above or below ground); different lowercase letters indicate significant differences (p < 0.05) between different levels in the same month.
图2 古尔班通古特沙漠2物种6、7月的冠根比(平均值±标准差)。不同大写字母表示同一层次(地上或地下)的不同生长季对比差异显著(p < 0.05); 不同小写字母表示同一生长季的不同层次对比差异显著(p < 0.05)。
Fig. 2 Shoot-to-root ratio of two species in Gurbantünggüt Desert in June and July (mean ± SD). Different uppercase letters indicate significant differences (p < 0.05) between different growing seasons for the same level (above or below ground); different lowercase letters indicate significant differences (p < 0.05) between different levels in the same growing season.
影响因子 Effect indicator | df | F | p |
---|---|---|---|
物种 Species | 1 | 21.042 | <0.001 |
氮形态 N form | 2 | 98.604 | <0.001 |
土壤深度 Soil depth | 1 | 22.728 | <0.001 |
月份 Month | 1 | 4.110 | 0.048 |
物种×氮形态 Species × N form | 2 | 55.760 | <0.001 |
物种×土壤深度 Species × Soil depth | 1 | 0.035 | 0.852 |
物种×月份 Species × Month | 1 | 0.106 | 0.746 |
氮形态×土壤深度 N form × Soil depth | 2 | 5.956 | 0.005 |
氮形态×月份 N form × Month | 2 | 0.823 | 0.445 |
土壤深度×月份 Soil depth × Month | 1 | 6.813 | 0.012 |
物种×氮形态×土壤深度 Species × N form × Soil depth | 2 | 0.583 | 0.562 |
物种×氮形态×月份 Species × N form × Month | 2 | 0.883 | 0.420 |
物种×土壤深度×月份 Species × Soil depth × Month | 1 | 0.356 | 0.554 |
氮形态×土壤深度×月份 N form × Soil depth × Month | 2 | 0.499 | 0.611 |
物种×氮形态×土壤深度×月份 Species × N form × Soil depth × Month | 2 | 2.424 | 0.099 |
表2 物种、氮(N)形态、土壤深度、月份及其互作对植物氮吸收速率影响的四因素方差分析
Table 2 Four-way ANOVA analysis for the effects of species, month, nitrogen (N) form, soil depth, and their interactions on nitrogen uptake rate by plants
影响因子 Effect indicator | df | F | p |
---|---|---|---|
物种 Species | 1 | 21.042 | <0.001 |
氮形态 N form | 2 | 98.604 | <0.001 |
土壤深度 Soil depth | 1 | 22.728 | <0.001 |
月份 Month | 1 | 4.110 | 0.048 |
物种×氮形态 Species × N form | 2 | 55.760 | <0.001 |
物种×土壤深度 Species × Soil depth | 1 | 0.035 | 0.852 |
物种×月份 Species × Month | 1 | 0.106 | 0.746 |
氮形态×土壤深度 N form × Soil depth | 2 | 5.956 | 0.005 |
氮形态×月份 N form × Month | 2 | 0.823 | 0.445 |
土壤深度×月份 Soil depth × Month | 1 | 6.813 | 0.012 |
物种×氮形态×土壤深度 Species × N form × Soil depth | 2 | 0.583 | 0.562 |
物种×氮形态×月份 Species × N form × Month | 2 | 0.883 | 0.420 |
物种×土壤深度×月份 Species × Soil depth × Month | 1 | 0.356 | 0.554 |
氮形态×土壤深度×月份 N form × Soil depth × Month | 2 | 0.499 | 0.611 |
物种×氮形态×土壤深度×月份 Species × N form × Soil depth × Month | 2 | 2.424 | 0.099 |
图3 物种、氮形态、土壤深度和月份对古尔班通古特沙漠角果藜(A, B)和碱蓬(C, D)吸收速率的影响(平均值±标准差)。不同大写字母表示同一月份和土壤深度3种形态的氮对比有显著差异(p < 0.05); 不同小写字母表示同一物种和氮形态不同土壤深度间对比有显著差异(p < 0.05)。
Fig. 3 Effects of species, nitrogen (N) morphology, soil depth and month on nitrogen uptake rate of Ceratocarpus arenarius (A, B) and Suaeda glauca (C, D) in Gurbantünggüt Desert (mean ± SD). Different uppercase letters indicate significant differences (p < 0.05) among the three forms in the same month and soil depth; different lowercase letters indicate significant differences (p < 0.05) between the two soil depths for the same species and nitrogen form.
图4 古尔班通古特沙漠角果藜(A)和碱蓬(B) 6月和7月的全氮吸收速率(平均值±标准差)。不同大写字母表示同一土壤深度不同物种对比差异显著(p < 0.05), 不同小写字母表示同一月份不同土壤深度对比差异显著(p < 0.05)。
Fig. 4 Total nitrogen uptake rates of Ceratocarpus arenarius (A) and Suaeda glauca (B) in Gurbantünggüt Desert in June and July (mean ± SD). Different uppercase letters indicate significant differences (p < 0.05) between different species at the same soil depth, and different lowercase letters indicate significant differences (p < 0.05) between different soil depths in the same month for the same species.
图5 硝态氮、铵态氮和甘氨酸对古尔班通古特沙漠两种一年生植物物种总吸氮量的贡献率(%)。被黑色实线包围的区域是指6月, 阴影区域是指7月。
Fig. 5 Contribution rate (%) of nitrate-nitrogen, ammonia-nitrogen and glycine to the total nitrogen uptake of two annual plant species in Gurbantünggüt Desert. The area surrounded by the black solid line refers to June, while the shaded area refers to July.
回收率 Recovery (%) | 角果藜 Ceratocarpus arenarius | |||
---|---|---|---|---|
6月 June | 7月 July | |||
土壤深度 Soil depth (cm) | 土壤深度 Soil depth (cm) | |||
0-5 | 5-15 | 0-5 | 5-15 | |
15N-NO3- | 0.330 ± 0.070Aab | 0.323 ± 0.057Aab | 0.423 ± 0.074Aa | 0.270 ± 0.036Ab |
15N-NH4+ | 0.313 ± 0.048Aab | 0.223 ± 0.042Bb | 0.337 ± 0.051ABa | 0.260 ± 0.046Aab |
15N-Glyc | 0.193 ± 0.029Ba | 0.190 ± 0.036Ba | 0.237 ± 0.038Ba | 0.227 ± 0.032Aa |
回收率 Recovery (%) | 碱蓬 Suaeda glauca | |||
6月 June | 7月 July | |||
土壤深度 Soil depth (cm) | 土壤深度 Soil depth (cm) | |||
0-5 | 5-15 | 0-5 | 5-15 | |
15N-NO3- | 0.420 ± 0.036Aab | 0.290 ± 0.050Bc | 0.503 ± 0.067Aa | 0.327 ± 0.060ABbc |
15N-NH4+ | 0.487 ± 0.116Aa | 0.493 ± 0.071Aa | 0.527 ± 0.047Aa | 0.410 ± 0.044Aa |
15N-Glyc | 0.187 ± 0.021Bb | 0.237 ± 0.051Bab | 0.287 ± 0.055Ba | 0.240 ± 0.036Bab |
表3 古尔班通古特沙漠两种一年生植物15N回收率(%)(平均值±标准差)
Table 3 15N recovery of two annual plants in Gurbantünggüt Desert (%)(mean ± SD)
回收率 Recovery (%) | 角果藜 Ceratocarpus arenarius | |||
---|---|---|---|---|
6月 June | 7月 July | |||
土壤深度 Soil depth (cm) | 土壤深度 Soil depth (cm) | |||
0-5 | 5-15 | 0-5 | 5-15 | |
15N-NO3- | 0.330 ± 0.070Aab | 0.323 ± 0.057Aab | 0.423 ± 0.074Aa | 0.270 ± 0.036Ab |
15N-NH4+ | 0.313 ± 0.048Aab | 0.223 ± 0.042Bb | 0.337 ± 0.051ABa | 0.260 ± 0.046Aab |
15N-Glyc | 0.193 ± 0.029Ba | 0.190 ± 0.036Ba | 0.237 ± 0.038Ba | 0.227 ± 0.032Aa |
回收率 Recovery (%) | 碱蓬 Suaeda glauca | |||
6月 June | 7月 July | |||
土壤深度 Soil depth (cm) | 土壤深度 Soil depth (cm) | |||
0-5 | 5-15 | 0-5 | 5-15 | |
15N-NO3- | 0.420 ± 0.036Aab | 0.290 ± 0.050Bc | 0.503 ± 0.067Aa | 0.327 ± 0.060ABbc |
15N-NH4+ | 0.487 ± 0.116Aa | 0.493 ± 0.071Aa | 0.527 ± 0.047Aa | 0.410 ± 0.044Aa |
15N-Glyc | 0.187 ± 0.021Bb | 0.237 ± 0.051Bab | 0.287 ± 0.055Ba | 0.240 ± 0.036Bab |
图6 角果藜(A)和碱蓬(B)根系中13C和15N的单位摩尔原子百分超比值的差异(平均值±标准差)。
Fig. 6 Differences in the ratio of 13C and 15N per mole atomic percentage in the roots of Ceratocarpus arenarius (A) and Suaeda glauca (B)(mean ± SD).
[1] |
Ashton IW, Miller AE, Bowman WD, Suding KN (2010). Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology, 91, 3252-3260.
DOI URL |
[2] |
Barber SA (1962). A diffusion and mass-flow concept of soil nutrient availability. Soil Science, 93, 39-49.
DOI URL |
[3] |
Clemmensen KE, Sorensen PL, Michelsen A, Jonasson S, Ström L (2008). Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi. Oecologia, 155, 771-783.
DOI URL |
[4] |
Gao JQ, Mo Y, Xu XL, Zhang XW, Yu FH (2014). Spatiotemporal variations affect uptake of inorganic and organic nitrogen by dominant plant species in an alpine wetland. Plant and Soil, 381, 271-278.
DOI URL |
[5] | Gao RR (2004). Primary Study on the Biological Chatateristics of Four Chenopodiaceae Plants. Master degree dissertation, Xinjiang University, Ürümqi. |
[ 高瑞如 (2004). 四种藜科植物生物生态学特性初步研究. 硕士学位论文, 新疆大学, 乌鲁木齐.] | |
[6] |
Gioseffi E, de Neergaard A, Schjoerring JK (2012). Interactions between uptake of amino acids and inorganic nitrogen in wheat plants. Biogeosciences, 9, 1509-1518.
DOI URL |
[7] | Guo H, Zhuang WW, Li J (2019). Characteristics of biomass and stoichiometry of four desert herbaceous plants in the Gurbantunggut desert. Bulletin of Botanical Research, 39, 421-430. |
[ 郭浩, 庄伟伟, 李进 (2019). 古尔班通古特沙漠中4种荒漠草本植物的生物量与化学计量特征. 植物研究, 39, 421-430.] | |
[8] | Guo HY, Yang J, Guo JS, Cai C, Cao Y (2005). Ecophysiological responses of Caragana korshinskii and Ammopiptanthus mongolicus in shelter-forest along railway in western Ordos to different management measures. Journal of Desert Research, 25(1), 81-87. |
[ 郭宏宇, 杨劼, 郭景山, 蔡超, 曹云 (2005). 西鄂尔多斯铁路防护林柠条锦鸡儿和沙冬青对不同管护措施的生理生态响应. 中国沙漠, 25(1), 81-87.] | |
[9] |
Harrison KA, Bol R, Bardgett RD (2008). Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil Biology & Biochemistry, 40, 228-237.
DOI URL |
[10] |
Huygens D, Diaz S, Urcelay C, Boeckx P (2016). Microbial recycling of dissolved organic matter confines plant nitrogen uptake to inorganic forms in a semi-arid ecosystem. Soil Biology & Biochemistry, 101, 142-151.
DOI URL |
[11] | Jacob A, Leuschner C (2015). Complementarity in the use of nitrogen forms in a temperate broad-leaved mixed forest. Plant Ecology & Diversity, 8, 243-258. |
[12] |
Jämtgård S, Näsholm T, Huss-Danell K (2010). Nitrogen compounds in soil solutions of agricultural land. Soil Biology & Biochemistry, 42, 2325-2330.
DOI URL |
[13] | Kang J, Ren HY, Wang YH, Han MQ, Jin YX, Yan BL, Han GD (2019). Responses of soil respiration to long-term climate warming and nitrogen fertilization in a desert steppe. Journal of Arid Land Resources and Environment, 33, 151-157. |
[ 康静, 任海燕, 王悦骅, 韩梦琪, 靳宇曦, 闫宝龙, 韩国栋 (2019). 短花针茅荒漠草原土壤呼吸对长期增温和氮素添加的响应. 干旱区资源与环境, 33, 151-157.] | |
[14] |
Kaur B, Kaur G, Asthir B (2017). Biochemical aspects of nitrogen use efficiency: an overview. Journal of Plant Nutrition, 40, 506-523.
DOI URL |
[15] |
LeDuc SD, Rothstein DE (2010). Plant-available organic and mineral nitrogen shift in dominance with forest stand age. Ecology, 91, 708-720.
DOI URL |
[16] |
Li C, Li Q, Qiao N, Xu X, Li Q, Wang H (2016). Inorganic and organic nitrogen uptake by nine dominant subtropical tree species. IForest, 9, 253-258.
DOI URL |
[17] | Li CJ, Lei JQ, Xu XW, Gao P, Qiu YZ, Xu B, Zhong XB, Wang YD, Yan J, Wang GF (2014). Spatial pattern for soil water and chemical properties in Gurbantunggut Desert. Acta Ecologica Sinica, 34, 4380-4389. |
[ 李从娟, 雷加强, 徐新文, 高培, 邱永志, 许波, 钟显彬, 王永东, 闫健, 王桂芬 (2014). 古尔班通古特沙漠土壤水分与化学性质的空间分布. 生态学报, 34, 4380-4389.] | |
[18] | Li M (2020). Effects of Nitrogen Addition on Carbon, Nitrogen, Phosphorus and Microbial Characteristics of Soil Aggregates in Stipa baicalensis Grassland. Master degree dissertation, Inner Mongolia Normal University, Hohhot. |
[ 李明 (2020). 氮素添加对贝加尔针茅草原土壤团聚体碳氮磷和微生物特性的影响. 硕士学位论文, 内蒙古师范大学, 呼和浩特.] | |
[19] |
Li XY, Rennenberg H, Simon J (2016). Seasonal variation in N uptake strategies in the understorey of a beech-dominated N-limited forest ecosystem depends on N source and species. Tree Physiology, 36, 589-600.
DOI URL |
[20] | Luo XQ, Wang SJ, Liu XM (2007). Nitrogen source and its uptake by plants in terrestrial ecosystems. Chinese Journal of Ecology, 26, 1094-1100. |
[ 罗绪强, 王世杰, 刘秀明 (2007). 陆地生态系统植物的氮源及氮素吸收. 生态学杂志, 26, 1094-1100.] | |
[21] | McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002). Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 415, 68-71. |
[22] | Meng S (2016). Nitrogen Dynamic Uptake and Genetic Expression of Translocator of Tree Species in Fine Roots. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. |
[ 孟森 (2016). 林木细根氮素吸收动态及氮转运蛋白基因表达. 硕士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[23] |
Moore TR, Alfonso A, Clarkson BR (2018). Plant uptake of organic nitrogen in two peatlands. Plant and Soil, 433, 391-400.
DOI URL |
[24] | Qi K (2019). Root Distribution Characteristics of Typical Plant Community in Ulan Buh Desert. Master degree dissertation, Chinese Academy of Forestry, Beijing. |
[ 齐凯 (2019). 乌兰布和沙漠典型植物群落的根系分布特征. 硕士学位论文, 中国林业科学院, 北京.] | |
[25] |
Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012). Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nature Climate Change, 2, 752-755.
DOI URL |
[26] |
Schenk HJ (2006). Root competition: beyond resource depletion. Journal of Ecology, 94, 725-739.
DOI URL |
[27] |
Song MH, Zheng LL, Suding KN, Yin TE, Yu FH (2015). Plasticity in nitrogen form uptake and preference in response to long-term nitrogen fertilization. Plant and Soil, 394, 215-224.
DOI URL |
[28] | Tao Y, Wu GL, Liu YB, Zhang YM (2017). Soil stoichiometry and their influencing factors in typical shrub communities in the Gurbantunggut desert, China. Journal of Desert Research, 37, 305-314. |
[ 陶冶, 吴甘霖, 刘耀斌, 张元明 (2017). 古尔班通古特沙漠典型灌木群落土壤化学计量特征及其影响因素. 中国沙漠, 37, 305-314.] | |
[29] |
Tegeder M, Masclaux-Daubresse C (2018). Source and sink mechanisms of nitrogen transport and use. New Phytologist, 217, 35-53.
DOI URL |
[30] |
Uscola M, Villar-Salvador P, Oliet J, Warren CR (2017). Root uptake of inorganic and organic N chemical forms in two coexisting Mediterranean forest trees. Plant and Soil, 415, 387-392.
DOI URL |
[31] |
Wang RX, Tian YQ, Ouyang SN, Xu XL, Xu FZ, Zhang Y (2016). Nitrogen acquisition strategies used by Leymus chinensis and Stipa grandis in temperate steppes. Biology and Fertility of Soils, 52, 951-961.
DOI URL |
[32] |
Wang XQ, Jiang J, Lei JQ, Zhang WM, Qian YB (2003). Distribution of ephemeral plants and their significance in dune stabilization in Gurbantunggut Desert. Journal of Geographical Sciences, 13, 323-330.
DOI URL |
[33] |
Weigelt A, Bol R, Bardgett RD (2005). Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia, 142, 627-635.
DOI URL |
[34] | Yan XL, Hu WJ, Ma YF, Huo YF, Wang T, Ma XQ (2020). Nitrogen uptake preference of Cunninghamia lanceolata, Pinus massoniana, and Schima superba under heterogeneous nitrogen supply environment and their root foraging strategies. Scientia Silvae Sinicae, 56(2), 1-11. |
[ 闫小莉, 胡文佳, 马远帆, 霍昱帆, 王拓, 马祥庆 (2020). 异质性供氮环境下杉木、马尾松、木荷氮素吸收偏好及其根系觅氮策略. 林业科学, 56(2), 1-11.] | |
[35] |
Zhang CX, Meng S, Li YM, Su L, Zhao Z (2016). Nitrogen uptake and allocation in Populus simonii in different seasons supplied with isotopically labeled ammonium or nitrate. Trees, 30, 2011-2018.
DOI URL |
[36] | Zhang LY, Chen CD (2002). On the general characteristics of plant diversity of gurbantunggut sandy desert. Acta Ecologica Sinica, 22, 1923-1932. |
[ 张立运, 陈昌笃 (2002). 论古尔班通古特沙漠植物多样性的一般特点. 生态学报, 22, 1923-1932.] | |
[37] |
Zhou BQ, Zhang LM, Yang WH, Mao YL, Chen CR, Xing SH (2017). Differential uptake of soluble organic and inorganic nitrogen by two fruit species: Dimocarpus longan Lour. and Eriobotrya japonica Lindl. Journal of Soils and Sediments, 17, 1579-1587.
DOI URL |
[38] |
Zhu Q, Zhuang Q (2013). Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal forest and tundra ecosystems. Biogeosciences, 10, 7943-7955.
DOI URL |
[39] |
Zhuang W, Li J, Yu F, Dong Z, Guo H (2020). Seasonal nitrogen uptake strategies in a temperate desert ecosystem depends on N form and plant species. Plant Biology, 22, 386-393.
DOI PMID |
[40] |
Zou TT, Zhang ZL, Li N, Yuan YS, Zheng DH, Liu Q, Yin HJ (2017). Differential uptakes of different forms of soil coniferous forests of western Sichuan, China. Chinese Journal of Plant Ecology, 41, 1051-1059.
DOI URL |
[ 邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军 (2017). 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异. 植物生态学报, 41, 1051-1059.]
DOI |
[1] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[2] | 迪力夏旦木·塔什买买提, 刘会良. 荒漠一年生植物异时萌发研究进展[J]. 植物生态学报, 2023, 47(12): 1611-1628. |
[3] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[4] | 张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响[J]. 植物生态学报, 2022, 46(3): 350-361. |
[5] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[6] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[7] | 陈锦, 宋明华, 李以康. 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响[J]. 植物生态学报, 2019, 43(7): 576-584. |
[8] | 邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军. 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异[J]. 植物生态学报, 2017, 41(10): 1051-1059. |
[9] | 尹本丰, 张元明, 娄安如. 灌丛移除对荒漠齿肋赤藓越冬过程中生理生化特性的影响[J]. 植物生态学报, 2016, 40(7): 723-734. |
[10] | 尹本丰,张元明. 荒漠区不同微生境下齿肋赤藓对一次降雪的生理生化响应[J]. 植物生态学报, 2014, 38(9): 978-989. |
[11] | 肖遥,陶冶,张元明. 古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征[J]. 植物生态学报, 2014, 38(9): 929-940. |
[12] | 范连连, 马健, 吴林峰, 徐贵青, 李彦, 唐立松. 古尔班通古特沙漠南缘草本层对积雪变化的响应[J]. 植物生态学报, 2012, 36(2): 126-135. |
[13] | 张振春, 谭敦炎. 雄全同株植物簇花芹花期性别分配与开花式样[J]. 植物生态学报, 2012, 36(1): 63-71. |
[14] | 张道远, 王建成, 施翔. 根茎型木本克隆植物准噶尔无叶豆的种群数量动态[J]. 植物生态学报, 2009, 33(5): 893-900. |
[15] | 聂华丽, 张元明, 吴楠, 张静, 张丙昌. 生物结皮对5种不同形态的荒漠植物种子萌发的影响[J]. 植物生态学报, 2009, 33(1): 161-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19