植物生态学报 ›› 2024, Vol. 48 ›› Issue (8): 1021-1034.DOI: 10.17521/cjpe.2023.0192 cstr: 32100.14.cjpe.2023.0192
刘士玲1,2, 杨保国1, 郑路1,2, 舒韦维1,2, 闵惠琳1,2, 张培1, 李华1,2, 杨坤1,2, 周炳江1, 田祖为1,*()
收稿日期:
2023-07-06
接受日期:
2024-01-15
出版日期:
2024-08-20
发布日期:
2024-01-25
通讯作者:
*田祖为(rlzxtzw@126.com)
基金资助:
LIU Shi-Ling1,2, YANG Bao-Guo1, ZHENG Lu1,2, SHU Wei-Wei1,2, MIN Hui-Lin1,2, ZHANG Pei1, LI Hua1,2, YANG Kun1,2, ZHOU Bing-Jiang1, TIAN Zu-Wei1,*()
Received:
2023-07-06
Accepted:
2024-01-15
Online:
2024-08-20
Published:
2024-01-25
Contact:
*TIAN Zu-Wei(rlzxtzw@126.com)
Supported by:
摘要:
树干径向生长量(GROrate)和水分亏缺量(TWD)是树木响应环境因子的重要表征, 分别受不同环境因子的影响, 对环境因子的响应也不同。研究径向变化动态及其对环境因子的响应关系, 对了解树木生长和生理特性应对气候变化具有重要意义。该研究利用高分辨率径向变化记录仪, 连续记录2018-2020年红锥(Castanopsis hystrix)树干径向变化过程, 同步监测环境因子, 分析GROrate和TWD的动态变化及其与环境因子的关系。结果表明: 径向生长的开始时间为3月4日至4月1日, 结束时间为9月23日至11月5日, 最大生长速率的出现时间为5月31日至6月8日。生长季内红锥生长呈不连续性, 实际生长天数占整个生长季长度的47.8%-74.1%。生长季越长, 生长发生的天数越多。日尺度上, 在主要生长期(4-9月)环境因子中空气相对湿度(RH)、降水量(P)、光合有效辐射(PAR)和饱和水汽压差(VPD)与GROrate的相关性最强, 而TWD的环境相关性与GROrate类似, 但方向相反。21天滑动相关结果显示, 在3年生长季的绝大部分时间VPD、P和RH是影响红锥径向变化的关键因素。月尺度上, GROrate与月降雨事件高度同步, 而TWD与干旱期同步。因此红锥径向变化主要响应水分相关的环境因子, 这将有助于更好地预测气候变化下森林动态的生长响应。
刘士玲, 杨保国, 郑路, 舒韦维, 闵惠琳, 张培, 李华, 杨坤, 周炳江, 田祖为. 广西红锥人工林径向生长的季节格局及其对气候因子的响应. 植物生态学报, 2024, 48(8): 1021-1034. DOI: 10.17521/cjpe.2023.0192
LIU Shi-Ling, YANG Bao-Guo, ZHENG Lu, SHU Wei-Wei, MIN Hui-Lin, ZHANG Pei, LI Hua, YANG Kun, ZHOU Bing-Jiang, TIAN Zu-Wei. Seasonal stem radial growth of Castanopsis hystrix plantation and its response to climatic factors in Guangxi, China. Chinese Journal of Plant Ecology, 2024, 48(8): 1021-1034. DOI: 10.17521/cjpe.2023.0192
平均胸径 Mean DBH (cm) | 平均树高 Mean H (m) | 平均枝下高 Mean Hc (m) | 平均胸高断面积 Mean basal area (cm2) | 平均冠幅 Mean CD (m) |
---|---|---|---|---|
18.12 ± 2.35 | 15.66 ± 1.42 | 6.44 ± 2.06 | 267.70 ± 74.35 | 3.30 ± 0.67 |
表1 广西红锥样地基本信息(平均值±标准误, n = 68)
Table 1 Basic information of Castanopsis hystrix plots (mean ± SE, n = 68)
平均胸径 Mean DBH (cm) | 平均树高 Mean H (m) | 平均枝下高 Mean Hc (m) | 平均胸高断面积 Mean basal area (cm2) | 平均冠幅 Mean CD (m) |
---|---|---|---|---|
18.12 ± 2.35 | 15.66 ± 1.42 | 6.44 ± 2.06 | 267.70 ± 74.35 | 3.30 ± 0.67 |
图2 2018年5月12-25日从原始数据中提取的径向生长量和树木水分亏缺量。A为红锥每小时测量的径向变化量值(黑线)。紫色线表示基于ZG概念(Zweifel, 2016)确定的树木水分亏缺期, 该概念假设在径向收缩时(树木水分亏缺期)没有生长诱导的不可逆生长。阴影区域表示不可逆的径向生长期(当树木水分亏缺量为零时)。
Fig. 2 Extracting growth-induced irreversible stem expansion and tree water deficit-induced stem shrinkage (TWD) from hourly recorded stem radius variation (SRV). A is hourly measured SRV during12 to 25 May 2018 (black line). The purple line is based on the ZG concept (Zweifel, 2016) which assumes no growth-induced irreversible expansion (GRO) during periods of stem shrinkage (= periods of TWD). Shaded areas indicate periods of GRO (when TWD is zero).
图3 广西友谊关森林生态系统国家定位观测研究站2018-2020年气温、光合有效辐射(PAR)、降水量(P)、相对湿度(RH)和饱和水汽压差(VPD)变化。Tave,平均气温; Tmax, 最高气温; Tmin, 最低气温。
Fig. 3 Changes of air temperature, photosynthetically active radiation (PAR), precipitation (P), relative humidity (RH) and vapor pressure factor (VPD) in Guangxi Youyiguan Forest Ecosystem Research Station from 2018 to 2020. Tave, average air temperature; Tmax, maximum air temperature; Tmin, minimum air temperature.
图4 2018-2020年广西红锥累积日径向变化量、树木水分亏缺量、径向生长量及径向生长速率。C为由零生长(ZG)模型计算的径向生长量日总和(Zweifel, 2016)。D为Gompertz函数模拟的红锥树干径向日生长速率。阴影部分表示平均值的标准误。
Fig. 4 Cumulative daily stem radius variations (SRV), tree water deficit (TWD), daily growth-induced irreversible stem expansion (GROrate) and daily stem growth rates of Castanopsis hystrix from 2018 to 2020. C, Daily sums of growth-induced irreversible stem expansion calculated from a zero-growth (ZG) model (Zweifel, 2016). D, Daily stem growth rates of C. hystrix modeled with a Gompertz function for the years 2018-2020. Shaded areas indicate the standard error of the mean.
图5 2018-2020年广西红锥生长起止时间、最大生长速率及年生长量。箱形图显示了中位数、第25%和75%四分位数以及最小、最大值。ns, p > 0.05; *, p < 0.05。DOY, 年序日。
Fig. 5 Timing of growth onset and cessation, maximum growth rate and annual growth from 2018 to 2020 of Castanopsis hystrix in Guangxi. The boxplots show medians, the 25% and 75% quartiles, minimum and maximum values. ns, p > 0.05; *, p < 0.05. DOY, day of the year.
2018 | 2019 | 2020 | |
---|---|---|---|
生长开始时间 Start day of growth (DOY) | 92 ± 10.3 | 63 ± 2.0 | 82 ± 11.5 |
生长结束时间 End day of growth (DOY) | 298 ± 18.3 | 309 ± 16.1 | 266 ± 26.1 |
生长季长度 Growth season duration (d) | 207 ± 16.4 | 247 ± 10.4 | 186 ± 19.7 |
最大生长速率出现时间 Day of maximum growth (DOY) | 156 ± 5.5 | 159 ± 24.5 | 151 ± 8.7 |
最大生长速率 Maximum growth rate (μm) | 23.4 ± 5.7 | 30.1 ± 5.2 | 21.2 ± 5.0 |
年生长量 Annual growth (mm) | 4.4 ± 1.1 | 7.9 ± 1.9 | 4.0 ± 1.2 |
表2 2018-2020年红锥季节生长特征(平均值±标准误, n = 4)
Table 2 Characteristics of the seasonal growth patterns of Castanopsis hystrix during 2018-2020 (mean ± SE, n = 4)
2018 | 2019 | 2020 | |
---|---|---|---|
生长开始时间 Start day of growth (DOY) | 92 ± 10.3 | 63 ± 2.0 | 82 ± 11.5 |
生长结束时间 End day of growth (DOY) | 298 ± 18.3 | 309 ± 16.1 | 266 ± 26.1 |
生长季长度 Growth season duration (d) | 207 ± 16.4 | 247 ± 10.4 | 186 ± 19.7 |
最大生长速率出现时间 Day of maximum growth (DOY) | 156 ± 5.5 | 159 ± 24.5 | 151 ± 8.7 |
最大生长速率 Maximum growth rate (μm) | 23.4 ± 5.7 | 30.1 ± 5.2 | 21.2 ± 5.0 |
年生长量 Annual growth (mm) | 4.4 ± 1.1 | 7.9 ± 1.9 | 4.0 ± 1.2 |
年份 Year | 径向生长量 GROrate (μm·d-1) | 树木水分亏缺 TWD (μm) | ||
---|---|---|---|---|
干季 Dry season | 湿季 Wet season | 干季 Dry season | 湿季 Wet season | |
2018 | 4.68 ± 2.98b | 23.69 ± 20.60ab | 31.82 ± 22.03b | 7.14 ± 4.08b |
2019 | 13.14 ± 9.59a | 27.63 ± 25.82a | 27.26 ± 14.94c | 7.59 ± 1.52b |
2020 | 2.84 ± 1.88b | 20.50 ± 15.86b | 48.08 ± 37.76a | 33.12 ± 26.13a |
表3 2018-2020年干湿季节的广西红锥径向生长量和树木水分亏缺量(平均值±标准误, n = 4)
Table 3 Growth-induced irreversible stem expansion and tree water deficit in dry and wet seasons during 2018-2020 of Castanopsis hystrix in Guangxi (mean ± SE, n = 4)
年份 Year | 径向生长量 GROrate (μm·d-1) | 树木水分亏缺 TWD (μm) | ||
---|---|---|---|---|
干季 Dry season | 湿季 Wet season | 干季 Dry season | 湿季 Wet season | |
2018 | 4.68 ± 2.98b | 23.69 ± 20.60ab | 31.82 ± 22.03b | 7.14 ± 4.08b |
2019 | 13.14 ± 9.59a | 27.63 ± 25.82a | 27.26 ± 14.94c | 7.59 ± 1.52b |
2020 | 2.84 ± 1.88b | 20.50 ± 15.86b | 48.08 ± 37.76a | 33.12 ± 26.13a |
图6 广西红锥林标准化日径向生长量(GROrate)和树木水分亏缺量(TWD)与环境因子的关系。*, p < 0.05; **, p < 0.01。P, 降水量; PAR, 光合有效辐射; RH, 相对湿度; SWC, 10 cm深度土壤含水率; Tave, 平均气温; Tmax, 最高气温; Tmin, 最低气温; TS10, 10 cm深度土壤温度; VPD, 饱和水汽压差。
Fig. 6 Correlation coefficients between normalized daily growth-induced irreversible stem expansion (GROrate), and tree water deficit-induced stem shrinkage (TWD) corresponding environmental variables for the years 2018-2020 of Castanopsis hystrix in Guangxi. *, p < 0.05; **, p < 0.01. P, precipitation; PAR, photosynthetic active radiation; RH, relative humidity; SWC10, soil water content at 10 cm depth; Tave, mean air temperature; Tmax, maximum air temperature; Tmin, minimum air temperature; TS10, soil temperature at 10 cm depth; VPD, vapor pressure deficit.
图7 月降水量与红锥径向生长量和树木水分亏缺量之间的比较(平均值±标准误)。
Fig. 7 Comparison between monthly sums of precipitation and monthly sums of daily growth-induced irreversible stem expansion (GROrate), and monthly sums of daily tree water deficit (TWD) of Castanopsis hystrix (mean ± SE).
图8 广西红锥标准化日径向生长量(GROrate)和水分亏缺量(TWD)与主要环境因子的滑动相关关系(21 d)。灰色虚线表示0.05水平上的显著性。不连续的线是由连续的零值引起的。P, 降水量; PAR, 光合有效辐射; RH, 相对湿度; SWC10, 10 cm深度土壤含水率; Tmax, 最高气温; VPD, 饱和水汽压差。
Fig. 8 Moving-window correlations (21 days window) between normalized growth-induced irreversible stem expansion (GROrate) and tree water deficit (TWD) of Castanopsis hystrix in Guangxi, and the main environmental factors. Gray dashed lines represent the significance at the 0.05 level. The discontinuous line is caused by consecutive zero values. P, precipitation; PAR, photosynthetic active radiation; RH, relative humidity; SWC10, soil water content at 10 cm depth; Tmax, maximum air temperature; VPD, vapor pressure deficit.
图9 广西红锥主要生长季标准化日径向生长量(GROrate)和树木水分亏缺量(TWD)与环境因子的主成分(PC)分析。P, 降水量; PAR, 光合有效辐射; RH, 相对湿度; SWC10, 10 cm深度土壤含水率; Tave, 平均气温; Tmax, 最高气温; Tmin, 最低气温; TS10, 10 cm深度土壤温度; VPD, 饱和水汽压差。
Fig. 9 Principal component (PC) analysis of normalized growth-induced irreversible stem expansion (GROrate) and tree water deficit (TWD) and environmental factors during the main growing seasons of Castanopsis hystrix in Guangxi. P, precipitation; PAR, photosynthetic active radiation; RH, relative humidity; SWC, soil water content at 10 cm depth; Tave, mean air temperature; Tmax, maximum air temperature; Tmin, minimum air temperature; TS10, soil temperature at 10 cm depth; VPD, vapor pressure deficit.
降水指标 Precipitation index | 6月 June | 7月 July | 8月 August | |
---|---|---|---|---|
平均降水量 Mean precipitation sum per event (mm) | 11.0 | 14.3 | 9.5 | |
平均持续时间 Mean duration of precipitation events (h) | 5.2 | 5.0 | 5.7 | |
平均降雨强度 Mean intensity per event (mm·h-1) | 3.5 | 2.9 | 1.8 | |
不同降水量级事件数 Number of events per amount class | 5.0-9.9 mm | 2.0 | - | 5.0 |
10.0-19.9 mm | 3.0 | 1.0 | 2.0 | |
降雨事件总数 Total number of precipitation events | 5.0 | 1.0 | 7.0 | |
至少7天无降雨的干旱期 Dry periods with at least 7 days without precipitation | ||||
最长持续时间 Maximum duration (d) | 11.0 | 26.0 | 14.0 | |
平均持续时间 Mean duration (d) | 10.0 | 26.0 | 12.5 | |
干旱次数 Total number of dry periods | 2.0 | 1.0 | 2.0 |
表4 2020年夏季降雨事件和干旱期特征(平均降水量的计算独立于事件的平均持续时间)
Table 4 Characteristics of precipitation events and dry periods of 2020 (mean precipitation sum was calculated independent from the mean duration of the events)
降水指标 Precipitation index | 6月 June | 7月 July | 8月 August | |
---|---|---|---|---|
平均降水量 Mean precipitation sum per event (mm) | 11.0 | 14.3 | 9.5 | |
平均持续时间 Mean duration of precipitation events (h) | 5.2 | 5.0 | 5.7 | |
平均降雨强度 Mean intensity per event (mm·h-1) | 3.5 | 2.9 | 1.8 | |
不同降水量级事件数 Number of events per amount class | 5.0-9.9 mm | 2.0 | - | 5.0 |
10.0-19.9 mm | 3.0 | 1.0 | 2.0 | |
降雨事件总数 Total number of precipitation events | 5.0 | 1.0 | 7.0 | |
至少7天无降雨的干旱期 Dry periods with at least 7 days without precipitation | ||||
最长持续时间 Maximum duration (d) | 11.0 | 26.0 | 14.0 | |
平均持续时间 Mean duration (d) | 10.0 | 26.0 | 12.5 | |
干旱次数 Total number of dry periods | 2.0 | 1.0 | 2.0 |
[1] | Chan T, Hölttä T, Berninger F, Mäkinen H, Nöjd P, Mencuccini M, Nikinmaa E (2016). Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell & Environment, 39, 233-244. |
[2] | Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755. |
[3] |
Cuny HE, Rathgeber CBK, Lebourgeois F, Fortin M, Fournier M (2012). Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiology, 32, 612-625.
DOI PMID |
[4] | Delpierre N, Vitasse Y, Chuine I, Guillemot J, Bazot S, Rutishauser T, Rathgeber CBK (2016). Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 73, 5-25. |
[5] |
Deslauriers A, Huang JG, Balducci L, Beaulieu M, Rossi S (2016). The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiology, 170, 2072-2084.
DOI PMID |
[6] | Deslauriers A, Morin H (2005). Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees, 19, 402-408. |
[7] | Deslauriers A, Morin H, Urbinati C, Carrer M (2003). Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees, 17, 477-484. |
[8] | Deslauriers A, Rossi S, Anfodillo T (2007). Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 25, 113-124. |
[9] |
Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008). Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology, 28, 863-871.
PMID |
[10] | Dong MY, Jiang Y, Yang HC, Wang MC, Zhang WT, Guo YY (2012). Dynamics of stem radial growth of Picea meyeri during the growing season at the treeline of Luya Mountain, China. Chinese Journal of Plant Ecology, 36, 956-964. |
[董满宇, 江源, 杨浩春, 王明昌, 张文涛, 郭媛媛 (2012). 芦芽山林线白杄生长季径向生长动态. 植物生态学报, 36, 956-964.]
DOI |
|
[11] |
Eilmann B, Zweifel R, Buchmann N, Graf Pannatier E, Rigling A (2011). Drought alters timing, quantity, and quality of wood formation in Scots pine. Journal of Experimental Botany, 62, 2763-2771.
DOI PMID |
[12] | Etzold S, Sterck F, Bose AK, Braun S, Buchmann N, Eugster W, Gessler A, Kahmen A, Peters RL, Vitasse Y, Walthert L, Ziemińska K, Zweifel R (2022). Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecology Letters, 25, 427-439. |
[13] | Fan ZX, Bräuning A, Fu P, Yang RQ, Qi JH, Grießinger J, Gebrekirstos A (2019). Intra-annual radial growth of Pinus kesiya var. langbianensis is mainly controlled by moisture availability in the Ailao Mountains, Southwestern China. Forests, 10, 899. DOI: 10.3390/f10100899. |
[14] | Forrest J, Miller-Rushing AJ (2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3101-3112. |
[15] | Gao J, Yang B, He M, Shishov V (2019). Intra-annual stem radial increment patterns of Chinese pine, Helan Mountains, Northern Central China. Trees, 33, 751-763. |
[16] | Garnier E, Berger A (1986). Effect of water stress on stem diameter changes of peach trees growing in the field. Journal of Applied Ecology, 23, 193-209. |
[17] |
Gheyret G, Zhang HT, Guo Y, Liu TY, Bai YH, Li S, Schmid B, Bruelheide H, Ma K, Tang Z (2021). Radial growth response of trees to seasonal soil humidity in a subtropical forest. Basic and Applied Ecology, 55, 74-86.
DOI |
[18] | Guo XW, Liu SR, Wang H, Chen ZC, Zhang JL, Chen L, Nie XQ, Zheng L, Cai DX, Jia HY, Niu BL (2022). Divergent allocations of nonstructural carbohydrates shape growth response to rainfall reduction in two subtropical plantations. Forest Ecosystems, 9, 100021. DOI: 10.1016/j.fecs.2022.100021. |
[19] | Güney A, Zweifel R, Türkan S, Zimmermann R, Wachendorf M, Güney CO (2020). Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Annals of Forest Science, 77, 105. DOI: 10.1007/s13595-020-01007-2. |
[20] | Harvey JE, Smiljanić M, Scharnweber T, Buras A, Cedro A, Cruz-García R, Drobyshev I, Janecka K, Jansons Ā, Kaczka R, Klisz M, Läänelaid A, Matisons R, Muffler L, Sohar K, et al. (2020). Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology, 26, 2505-2518. |
[21] | Huang JG, Guo X, Rossi S, Zhai L, Yu B, Zhang S, Zhang M (2018). Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season. Tree Physiology, 38, 1225-1236. |
[22] | Huang J, Wang XM, Zheng MH, Mo JM (2021). 13-year nitrogen addition increases nonstructural carbon pools in subtropical forest trees in southern China. Forest Ecology and Management, 481, 118748. DOI: 10.1016/j.foreco.2020.118748. |
[23] | Huang JG, Ma Q, Rossi S, Biondi F, Deslauriers A, Fonti P, Liang E, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhang JL, Antonucci S, et al. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 117, 20645-20652. |
[24] | Knüsel S, Peters RL, Haeni M, Wilhelm M, Zweifel R (2021). Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests, 12, 765. DOI: 10.3390/f12060765. |
[25] |
Köcher P, Horna V, Leuschner C (2012). Environmental control of daily stem growth patterns in five temperate broad- leaved tree species. Tree Physiology, 32, 1021-1032.
DOI PMID |
[26] | Körner C, Basler D, Hoch G, Kollas C, Lenz A, Randin CF, Vitasse Y, Zimmermann NE (2016). Where, why and how? Explaining the low-temperature range limits of temperate tree species. Journal of Ecology, 104, 1076-1088. |
[27] | Larysch E, Stangler DF, Nazari M, Seifert T, Kahle HP (2021). Xylem phenology and growth response of European beech, silver fir and scots pine along an elevational gradient during the extreme drought year 2018. Forests, 12, 75. DOI: 10.3390/f12010075. |
[28] | Lewis S, Wheeler CE, Mitchard E, Koch A (2019). Regenerate natural forests to store carbon. Nature, 568, 25-28. |
[29] | Liu SL, Yang BG, Yao JF, Zheng L, Zhang P, Pang SJ, Liao SS, Zou WX (2020). Study on stem radial growth of Castanopsis hystrix in Guangxi. Journal of South China Agricultural University, 41(5), 82-90. |
[刘士玲, 杨保国, 姚建峰, 郑路, 张培, 庞圣江, 廖树寿, 邹位锡 (2020). 广西红椎树干径向生长研究. 华南农业大学学报, 41(5), 82-90.] | |
[30] | Liu XJ, Xu DP (2021). Characteristics of resource distribution, industry status and development proposal of precious tree species in Guangdong. Guangdong Agricultural Sciences, 48(7), 57-65. |
[刘小金, 徐大平 (2021). 广东省珍贵树种资源分布特点、产业现状与发展建议. 广东农业科学, 48(7), 57-65.] | |
[31] | Liu XS, Nie YQ, Wen F (2018). Seasonal dynamics of stem radial increment of Pinus taiwanensis Hayata and its response to environmental factors in the Lushan Mountains, southeastern China. Forests, 9, 387. DOI: 10.3390/f9070387. |
[32] | Lu M (2016). Monitoring Radial Growth of Three Conifer Species in the Eastern Qilian Mountains. Masters degree dissertation, Lanzhou University, Lanzhou. |
[路明 (2016). 祁连山东部不同针叶树种径向生长监测研究. 硕士学位论文, 兰州大学, 兰州.] | |
[33] | Mäkinen H, Seo JW, Nöjd P, Schmitt U, Jalkanen R (2008). Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. European Journal of Forest Research, 127, 235-245. |
[34] | Meng SW, Fu XL, Zhao B, Dai XQ, Li QK, Yang FT, Kou L, Wang HM (2021). Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China. Trees, 35, 1817-1830. |
[35] |
Michelot A, Simard S, Rathgeber C, Dufrêne E, Damesin C (2012). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiology, 32, 1033-1045.
DOI PMID |
[36] | Miller TW, Stangler DF, Larysch E, Honer H, Seifert T, Kahle HP (2022). A methodological framework to optimize models predicting critical dates of xylem phenology based on dendrometer data. Dendrochronologia, 72, 125940. DOI: 10.1016/j.dendro.2022.125940. |
[37] | Murray FW (1967). On the computation of saturation vapor pressure. Journal of Applied Meteorology, 6, 203-204. |
[38] | Niu HG, Zhang F, Yu AL, Wang F, Zhang JZ, Gou XH (2018). Intra-annual stem radial growth dynamics of Picea wilsorii in response to climate in the eastern Qilian Mountains. Acta Ecologica Sinica, 38, 7412-7420. |
[牛豪阁, 张芬, 于爱灵, 王放, 张军周, 勾晓华 (2018). 祁连山东部青杄年内径向生长动态对气候的响应. 生态学报, 38, 7412-7420.] | |
[39] |
Oberhuber W, Gruber A, Kofler W, Swidrak I (2014). Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner alpine site. European Journal of Forest Research, 133, 467-479.
PMID |
[40] | Oberhuber W, Hammerle A, Kofler W (2015). Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science, 6, 703. DOI: 10.3389/fpls.2015.00703. |
[41] | Palacio S, Camarero JJ, Maestro M, Alla AQ, Lahoz E, Montserrat-Martí G (2018). Are storage and tree growth related? Seasonal nutrient and carbohydrate dynamics in evergreen and deciduous Mediterranean oaks. Trees, 32, 777-790. |
[42] |
Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006). Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, 170, 301-310.
DOI PMID |
[43] | Sass-Klaassen U (2015). Tree physiology: tracking tree carbon gain. Nature Plants, 1, 15175. DOI: 10.1038/nplants.2015.175. |
[44] |
Steppe K, Sterck F, Deslauriers A (2015). Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in Plant Science, 20, 335-343.
DOI PMID |
[45] | Tian QY, He ZB, Xiao SC, Peng XM, Ding AJ, Lin PF (2017). Response of stem radial growth of Qinghai spruce (Picea crassifolia) to environmental factors in the Qilian Mountains of China. Dendrochronologia, 44, 76-83. |
[46] | Wan YF, Yu PT, Li XQ, Wang YH, Wang B, Yu YP, Zhang L, Liu XD, Wang SL (2020). Seasonal pattern of stem diameter growth of Qinghai spruce in the Qilian Mountains, northwestern China. Forests, 11, 494. DOI: 10.3390/f11050494. |
[47] | Wang YR, Liu ZB, Wang YH, Xiong W, Yu PT, Xu LH, Ma J (2020). Variation of stem radius of Larix principis- rupprechtii and its influencing factors in the semi-humid Liupan Mountains, China. Chinese Journal of Applied Ecology, 31, 3313-3321. |
[王亚蕊, 刘泽彬, 王彦辉, 熊伟, 于澎涛, 徐丽宏, 马菁 (2020). 六盘山半湿润区华北落叶松树干半径变化特征及其影响因素. 应用生态学报, 31, 3313-3321.]
DOI |
|
[48] | Wei XL, Fan ZX, Kaewmano A, Lin YX, Chen LM, Fu PL (2021). Intra-annual radial growth of Garuga floribunda in tropical seasonal rain forest and its response to environmental factors in Xishuangbanna, Southwest China. Chinese Journal of Applied Ecology, 32, 3567-3575. |
[韦小练, 范泽鑫, Kaewmano A, 林友兴, 陈礼敏, 付培立 (2021). 热带季节雨林多花白头树年内径向生长动态及其对环境因子的响应. 应用生态学报, 32, 3567-3575.]
DOI |
|
[49] |
Wu GX, He YR, Zhang W, Zhang XL (2022). Current situation and high-quality development strategies of national reserve forest construction in Guangxi. Guangxi Forestry Science, 51, 445-451.
DOI |
[吴国欣, 何彦然, 张伟, 张先来 (2022). 广西国家储备林建设现状及高质量发展策略. 广西林业科学, 51, 445-451.]
DOI |
|
[50] | Yang XH, Yang HX, Xu F, Liao HQ, Zhang WH, Xu B, Zhu BZ, Wang YX, Chen XY, Pan W (2021). Effect of different seedling containers on the growth and root system development of Castanopsis hystrix. Journal of Central South University of Forestry & Technology, 41(11), 16-26. |
[杨晓慧, 杨会肖, 徐放, 廖焕琴, 张卫华, 徐斌, 朱报著, 王裕霞, 陈新宇, 潘文 (2021). 不同育苗容器对红锥苗期生长及根系发育的影响. 中南林业科技大学学报, 41(11), 16-26.] | |
[51] | Zhang JZ (2018). Cambial Phenology and Intra-annual Radial Growth Dynamics of Conifers over the Qilian Mountains. PhD dissertation, Lanzhou University, Lanzhou. |
[张军周 (2018). 祁连山树木形成层活动及年内径向生长动态监测研究. 博士学位论文, 兰州大学, 兰州.] | |
[52] | Zweifel R, Item H, Häsler R (2000). Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees, 15, 50-57. |
[53] |
Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006). Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57, 1445-1459.
PMID |
[54] | Zweifel R (2016). Radial stem variations—A source of tree physiological information not fully exploited yet. Plant, Cell & Environment, 39, 231-232. |
[55] |
Zweifel R, Sterck F, Braun S, Buchmann N, Eugster W, Gessler A, Häni M, Peters RL, Walthert L, Wilhelm M, Ziemińska K, Etzold S (2021). Why trees grow at night. New Phytologist, 231, 2174-2185.
DOI PMID |
[1] | 张小雨 贾国栋 余新晓 孙立博 蒋涛. 不同退化程度小叶杨人工林冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2024, 48(9): 0-0. |
[2] | 冉佳鑫 张宇辉 王云 杨智杰 毛超. 增温和氮磷添加对亚热带森林凋落物溶解有机碳生物可降解性的影响[J]. 植物生态学报, 2024, 48(9): 0-0. |
[3] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[4] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[5] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[6] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[7] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[8] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[9] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[10] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[11] | 牟利, 吴林, 刘雪飞, 李小玲, 王涵, 吴浩, 余玉蓉, 杜胜蓝. 鄂西南亚高山不同覆被类型泥炭藓沼泽湿地甲烷排放特征及其环境影响因子[J]. 植物生态学报, 2021, 45(2): 131-143. |
[12] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[13] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[14] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[15] | 刘雪飞, 吴林, 王涵, 洪柳, 熊莉军. 鄂西南亚高山湿地泥炭藓的生长与分解[J]. 植物生态学报, 2020, 44(3): 228-235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19