植物生态学报 ›› 2025, Vol. 49 ›› Issue (5): 710-719.DOI: 10.17521/cjpe.2024.0030 cstr: 32100.14.cjpe.2024.0030
所属专题: 草原与草业
郝杰1,3,4, 刁华杰2,3,4, 苏原2,3,4, 武帅楷2,3,4, 高阳阳2,3,4, 梁雯君2,3,4, 牛慧敏2,3,4, 杨倩雯2,3,4, 常婕2,3,4, 王袼2,3,4, 许雯丽2,3,4, 马腾飞2,3,4, 董宽虎2,3,4,*(), $\boxed{\hbox{王常慧}}$2,3,4,*
收稿日期:
2024-01-28
接受日期:
2024-12-10
出版日期:
2025-05-20
发布日期:
2025-04-14
通讯作者:
*董宽虎(dongkuanhu@sxau.edu.cn)基金资助:
HAO Jie1,3,4, DIAO Hua-Jie2,3,4, SU Yuan2,3,4, WU Shuai-Kai2,3,4, GAO Yang-Yang2,3,4, LIANG Wen-Jun2,3,4, NIU Hui-Min2,3,4, YANG Qian-Wen2,3,4, CHANG Jie2,3,4, WANG Ge2,3,4, XU Wen-Li2,3,4, MA Teng-Fei2,3,4, DONG Kuan-Hu2,3,4,*(), $\boxed{\hbox{WANG Chang-Hui}}$ 2,3,4,*
Received:
2024-01-28
Accepted:
2024-12-10
Online:
2025-05-20
Published:
2025-04-14
Supported by:
摘要:
在养分受限的农牧交错带盐渍化草地, 农业施肥诱导的氮输入增加和土地利用方式的改变通常会使土壤可利用养分发生变化, 进而影响植物净初级生产力。然而, 受年降水量的影响, 植物净初级生产力对氮添加与刈割的响应是否随降水量的改变而变化, 仍存在很大的不确定性。因此, 该研究以中国北方农牧交错带盐渍化草地为研究对象, 依托山西右玉黄土高原草地生态系统国家定位观测研究站的氮形态与刈割试验平台, 设置了包括对照和模拟氮沉降实验中常用的两种氮化合物(硝酸铵和尿素), 并与刈割和未刈割进行交叉处理, 共6个处理, 研究植物净初级生产力对氮添加与刈割的响应。研究结果表明: (1)无论在刈割还是非刈割处理下, 短期硝酸铵和尿素添加均显著提高土壤中无机氮含量, 进而提高植物地上(ANPP)、地下(BNPP)及总净初级生产力(NPP); (2) ANPP、BNPP、NPP、无机氮含量及土壤含水量表现出明显的年际差异, 具体表现为在湿润年(2018)显著高于干旱年(2017); (3)短期氮添加与年份的交互作用对NPP有显著影响。在湿润年, 氮添加对NPP的正效应显著高于干旱年, 这主要与土壤氮水的协同效应有关; (4)刈割降低了NPP, 且与年份的交互作用对BNPP:ANPP有显著影响; 在干旱年, 刈割整体降低了BNPP:ANPP, 然而, 在湿润年, 这种负效应逐渐减弱, 甚至转变为正效应。这些结果强调了自然降水量在调控农牧交错带盐渍化草地净初级生产力对人为干扰的响应中发挥着至关重要的作用, 也进一步说明农牧交错带盐渍化草地生态系统受氮和水的共同限制。
郝杰, 刁华杰, 苏原, 武帅楷, 高阳阳, 梁雯君, 牛慧敏, 杨倩雯, 常婕, 王袼, 许雯丽, 马腾飞, 董宽虎, $\boxed{\hbox{王常慧}}$. 降水调控农牧交错带盐渍化草地净初级生产力对氮添加及刈割的响应. 植物生态学报, 2025, 49(5): 710-719. DOI: 10.17521/cjpe.2024.0030
HAO Jie, DIAO Hua-Jie, SU Yuan, WU Shuai-Kai, GAO Yang-Yang, LIANG Wen-Jun, NIU Hui-Min, YANG Qian-Wen, CHANG Jie, WANG Ge, XU Wen-Li, MA Teng-Fei, DONG Kuan-Hu, $\boxed{\hbox{WANG Chang-Hui}}$. Precipitation regulates the response of salinized grassland net primary productivity to nitrogen addition and mowing in the agro-pastoral zone. Chinese Journal of Plant Ecology, 2025, 49(5): 710-719. DOI: 10.17521/cjpe.2024.0030
图1 2017-2018年生长季(5-9月)盐渍化草地日平均气温(A)和累积降水量(B)。
Fig. 1 Daily average air temperature (A) and accumulated precipitation (B) in the growing season (May-September) of salinized grassland at 2017 and 2018.
影响因子 Effecting factor | 无机氮含量 IN content | 土壤含水量 SM | ||
---|---|---|---|---|
F | p | F | p | |
截距 Intercept | 467.78 | <0.01 | 189.17 | <0.01 |
氮添加 Nitrogen addition (N) | 3.57* | <0.05 | 0.85 | 0.43 |
刈割 Mowing (M) | 0.04 | 0.83 | 0.57 | 0.45 |
年 Year (Y) | 251.19** | <0.01 | 37.91** | <0.01 |
N × M | 0.01 | 0.98 | 0.30 | 0.73 |
N × Y | 2.84# | 0.06 | 0.24 | 0.78 |
M × Y | 0.75 | 0.38 | 7.12* | <0.05 |
N × M × Y | 0.00 | 0.99 | 0.00 | 0.99 |
表1 氮添加及刈割对农牧交错带土壤无机氮含量与含水量影响的重复测量方差分析结果
Table 1 Repeated analysis of variance of the effects of nitrogen addition and mowing on soil inorganic nitrogen (IN) content and soil water content (SM) in agro-pastoral ecotone
影响因子 Effecting factor | 无机氮含量 IN content | 土壤含水量 SM | ||
---|---|---|---|---|
F | p | F | p | |
截距 Intercept | 467.78 | <0.01 | 189.17 | <0.01 |
氮添加 Nitrogen addition (N) | 3.57* | <0.05 | 0.85 | 0.43 |
刈割 Mowing (M) | 0.04 | 0.83 | 0.57 | 0.45 |
年 Year (Y) | 251.19** | <0.01 | 37.91** | <0.01 |
N × M | 0.01 | 0.98 | 0.30 | 0.73 |
N × Y | 2.84# | 0.06 | 0.24 | 0.78 |
M × Y | 0.75 | 0.38 | 7.12* | <0.05 |
N × M × Y | 0.00 | 0.99 | 0.00 | 0.99 |
图2 氮添加(N)及刈割(M)对农牧交错带土壤无机氮含量(A)、土壤含水量(C)及年均值(B、D)的影响。AN+M, 添加硝酸铵+刈割处理; AN+UM, 添加硝酸铵+不刈割处理; CK+M, 对照+刈割处理; CK+UM, 对照+不刈割处理; UN+M, 添加尿素+刈割处理; UN+UM, 添加尿素+不刈割处理。不同小写字母分别代表刈割与不刈割条件下不同氮添加处理之间差异显著(p < 0.05), 不同大写字母分别代表各处理下年际之间差异显著(p < 0.05)。线性混合效应模型的结果(F值)如图所示, *和ns分别代表差异显著(p < 0.05)和无显著差异(p > 0.1)。
Fig. 2 Effects of nitrogen addition (N) and mowing (M) on soil inorganic nitrogen (IN, A) content, soil water content (SM, C) and inter-annual average values (B, D) in agro-pastoral ecotone. AN+M, NH4NO3 + mowing; AN+UM, NH4NO3 + un-mowing; CK+M, control + mowing; CK+UM, control + un-mowing; UN+M, urea + mowing; UN+UM, urea + un-mowing. Different lowercase letters indicate significant difference in indicators among different N treatments at p < 0.05 under the un-mowing and the mowing treatment, and different uppercase letters represent significant differences between years among different treatments (p < 0.05). Results (F values) of linear mixed-effects models are shown in figure and indicated by * when p < 0.05, and ns when not statistically significant (p > 0.1).
影响因子 Effecting factor | 地上净初级生产力 ANPP | 地下净初级生产力 BNPP | 总初级生产力 NPP | 地下:地上净初级生产力 BNPP:ANPP | ||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |
截距 Intercept | 234.28 | <0.01 | 156.63 | <0.01 | 230.27 | <0.01 | 149.60 | <0.01 |
氮添加 Nitrogen addition (N) | 14.81** | <0.01 | 4.08* | <0.05 | 10.56** | <0.01 | 1.86 | 0.16 |
刈割 Mowing (M) | 0.93 | 0.33 | 2.75 | 0.10 | 4.09* | <0.05 | 0.91 | 0.34 |
年 Year (Y) | 11.33** | <0.01 | 4.21* | <0.05 | 11.06** | <0.01 | 0.00 | 0.92 |
N × M | 0.22 | 0.80 | 1.04 | 0.35 | 1.14 | 0.32 | 1.20 | 0.30 |
N × Y | 3.80* | <0.05 | 0.86 | 0.42 | 2.77# | 0.07 | 0.14 | 0.86 |
M × Y | 0.50 | 0.48 | 1.39 | 0.24 | 0.82 | 0.36 | 3.13# | 0.08 |
N × M × Y | 0.01 | 0.98 | 0.09 | 0.90 | 0.07 | 0.93 | 0.67 | 0.51 |
表2 氮添加及刈割对农牧交错带地上(ANPP)、地下(BNPP)、总初级生产力(NPP)与BNPP:ANPP影响的重复测量方差分析结果
Table 2 Repeated analysis of variance of the effects of nitrogen addition and mowing on aboveground (ANPP), belowground (BNPP), total net primary productivity (NPP) and BNPP:ANPP in agro-pastoral ecotone
影响因子 Effecting factor | 地上净初级生产力 ANPP | 地下净初级生产力 BNPP | 总初级生产力 NPP | 地下:地上净初级生产力 BNPP:ANPP | ||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |
截距 Intercept | 234.28 | <0.01 | 156.63 | <0.01 | 230.27 | <0.01 | 149.60 | <0.01 |
氮添加 Nitrogen addition (N) | 14.81** | <0.01 | 4.08* | <0.05 | 10.56** | <0.01 | 1.86 | 0.16 |
刈割 Mowing (M) | 0.93 | 0.33 | 2.75 | 0.10 | 4.09* | <0.05 | 0.91 | 0.34 |
年 Year (Y) | 11.33** | <0.01 | 4.21* | <0.05 | 11.06** | <0.01 | 0.00 | 0.92 |
N × M | 0.22 | 0.80 | 1.04 | 0.35 | 1.14 | 0.32 | 1.20 | 0.30 |
N × Y | 3.80* | <0.05 | 0.86 | 0.42 | 2.77# | 0.07 | 0.14 | 0.86 |
M × Y | 0.50 | 0.48 | 1.39 | 0.24 | 0.82 | 0.36 | 3.13# | 0.08 |
N × M × Y | 0.01 | 0.98 | 0.09 | 0.90 | 0.07 | 0.93 | 0.67 | 0.51 |
图3 氮添加(N)及刈割(M)对农牧交错带植物地上(A)、地下(C)、总净初级生产力(E)、地下:地上净初级生产力(G)及年际均值(B、D、F、H)的影响。AN+M, 添加硝酸铵+刈割处理; AN+UM, 添加硝酸铵+不刈割处理; CK+M, 对照+刈割处理; CK+UM, 对照+不刈割处理; UN+M, 添加尿素+刈割处理; UN+UM, 添加尿素+不刈割处理。不同小写字母分别代表刈割与不刈割条件下不同氮添加处理之间差异显著(p < 0.05), 不同大写字母分别代表各处理下年际之间差异显著(p < 0.05)。线性混合效应模型的结果(F值)如图所示, **、*、#和ns分别代表p < 0.01、0.01 ≤ p < 0.05、0.05 ≤ p < 0.1和无显著差异(p > 0.1)。
Fig. 3 Effects of nitrogen addition (N) and mowing (M) on the aboveground (ANPP, A), belowground (BNPP, C), and total net primary productivity (NPP, E), as well as the belowground/aboveground net primary productivity ratio (G), and the inter-annual means (B, D, F, H). AN+M, NH4NO3 + mowing; AN+UM, NH4NO3 + un-mowing; CK+M, control + mowing; CK+UM, control + un-mowing; UN + M, urea + mowing; UN+UM, urea + un-mowing. Different lowercase letters indicate significant difference in indicators among different nitrogen treatments at p < 0.05 under the un-mowing and the mowing treatment, and different uppercase letters represent significant differences between years among different treatments (p < 0.05). Results (F values) of linear mixed-effects models are shown in figure and indicated by ** when p < 0.01, * when 0.01 ≤ p < 0.05, # when 0.05 ≤ p < 0.10, and ns when p > 0.10.
图4 2017、2018年刈割与不刈割处理下农牧交错带盐渍化草地植物总初级生产力与土壤无机氮含量(A)、土壤含水量(B)、土壤温度(C)的关系, 及土壤无机氮含量与土壤含水量的关系(D)。不同颜色的方块代表不同形态氮添加处理。实线与虚线分别代表不刈割与刈割处理; 阴影代表95%的置信区间。AN+M, 添加硝酸铵+刈割处理; AN+UM, 添加硝酸铵+不刈割处理; CK+M, 对照+刈割处理; CK+UM, 对照+不刈割处理; UN+M, 添加尿素+刈割处理; UN+UM, 添加尿素+不刈割处理。
Fig. 4 Relationship between total net primary productivity and soil inorganic nitrogen content (A), soil water content (B), soil temperature (C), and the relationship between soil inorganic nitrogen content and soil water content (D) under mowing and un-mowing treatment measured in 2017 and 2018 in the salinized grasslands of the agro-pastoral ecotone. Different colored squares represent different forms of nitrogen addition treatments. Solid lines and dotted lines represent un-mowing and mowing treatments, respectively. Shadow parts represent 95% confidence intervals. AN+M, NH4NO3 + mowing; AN+UM, NH4NO3 + un-mowing; CK+M, control + mowing; CK+UM, control + un-mowing; UN+M, urea + mowing; UN+UM, urea + un-mowing.
图5 农牧交错带盐渍化草地在土壤无机氮含量、土壤含水量控制因素下, 整个采样日期的植物净初级生产力(NPP)的变化。
Fig. 5 Variability of total net primary productivity (NPP) across the sampling dates in the context of soil inorganic nitrogen content, and soil water content in the salinized grasslands of the agro-pastoral ecotone.
[1] | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. |
[2] | Diao HJ, Chen XP, Wang G, Ning QS, Hu SY, Sun W, Dong KH, Wang CH (2022). The response of soil respiration to different N compounds addition in a saline-alkaline grassland of northern China. Journal of Plant Ecology, 15, 897-910. |
[3] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI PMID |
[4] |
Eskelinen A, Harrison SP (2015). Resource colimitation governs plant community responses to altered precipitation. Proceedings of the National Academy of Sciences of the United States of America, 112, 13009-13014.
DOI PMID |
[5] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[6] | Hu SY, Diao HJ, Wang HL, Bo YC, Shen Y, Sun W, Dong KH, Huang JH, Wang CH (2020). Response of soil respiration to addition of different forms of nitrogen and mowing in a saline-alkali grassland in the northern agro-pastoral ecotone. Chinese Journal of Plant Ecology, 44, 70-79. |
[ 胡姝娅, 刁华杰, 王惠玲, 薄元超, 申颜, 孙伟, 董宽虎, 黄建辉, 王常慧 (2020). 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应. 植物生态学报, 44, 70-79.]
DOI |
|
[7] | Ke Y, Yu Q, Wang H, Zhao Y, Jia X, Yang Y, Zhang Y, Zhou W, Wu H, Xu C, Sun T, Gao Y, Jentsch A, He N, Yu G (2023). The potential bias of nitrogen deposition effects on primary productivity and biodiversity. Global Change Biology, 29, 1054-1061. |
[8] | Kong DL, Lü XT, Jiang LL, Wu HF, Miao Y, Kardol P (2013). Extreme rainfall events can alter inter-annual biomass responses to water and N enrichment. Biogeosciences, 10, 8129-8138. |
[9] | Kuai XY, Xing PF, Zhang XL, Liang Y, Wang CH, Dong KH (2018). Effects of short-term grazing intensity on plant community diversity and productivity in semi-arid grassland. Acta Agrestia Sinica, 26, 1283-1289. |
[ 蒯晓妍, 邢鹏飞, 张晓琳, 梁艳, 王常慧, 董宽虎 (2018). 短期放牧强度对半干旱草地植物群落多样性和生产力的影响. 草地学报, 26, 1283-1289.]
DOI |
|
[10] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI PMID |
[11] | Lee M, Manning P, Rist J, Power SA, Marsh C (2010). A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 365, 2047-2056. |
[12] |
Lei TJ, Feng J, Zheng CY, Li SG, Wang Y, Wu ZT, Lu JX, Kan GY, Shao CL, Jia JS, Cheng H (2020). Review of drought impacts on carbon cycling in grassland ecosystems. Frontiers of Earth Science, 14, 462-478.
DOI |
[13] | Li CB, Zheng Z, Peng YF, Nie XQ, Yang LC, Xiao YM, Zhou GY (2019). Precipitation and nitrogen addition enhance biomass allocation to aboveground in an alpine steppe. Ecology and Evolution, 9, 12193-12201. |
[14] | Li S, An PL, Pan ZH, Wang FT, Li XM, Liu Y (2015). Farmers’ initiative on adaptation to climate change in the Northern Agro-pastoral Ecotone. International Journal of Disaster Risk Reduction, 12, 278-284. |
[15] | Luo Y (2022). Effects of Different Mowing Intensity on Belowground Net Primary Production and Root Dynamics in the Grassland of Farming-pastoral Zone in Northern China. Master degree dissertation, Northeast Normal University, Changchun. |
[ 骆岩 (2022). 不同刈割强度对北方农牧交错带草地地下净初级生产力和根系动态的影响. 硕士学位论文, 东北师范大学, 长春.] | |
[16] | Ning QS, Jiang LC, Niu GX, Yu Q, Liu JS, Wang RZ, Liao S, Huang JH, Han XG, Yang JJ (2023). Mowing increased plant diversity but not soil microbial biomass under N-enriched environment in a temperate grassland. Plant and Soil, 491, 205-217. |
[17] | Pinheiro J, Bates D, Debroy S (2017). nlme: Linear and nonlinear mixed effects models. R package version, 3, 1-131. https://web.mit.edu/r/current/lib/R/library/nlme/html/00Index.html. |
[18] |
Sasaki T, Lauenroth WK (2011). Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia, 166, 761-768.
DOI PMID |
[19] | Seabloom EW, Adler PB, Alberti J, Biederman L, Buckley YM, Cadotte MW, Collins SL, Dee L, Fay PA, Firn J, Hagenah N, Harpole WS, Hautier Y, Hector A, Hobbie SE, et al. (2021). Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 102, e03218. DOI: 10.1002/ecy.3218. |
[20] | Smith MD (2011). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99, 656-663. |
[21] | Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, et al. (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320. |
[22] | Tian DS, Niu SL, Pan QM, Ren TT, Chen SP, Bai YF, Han XG (2016). Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland. Functional Ecology, 30, 490-499. |
[23] | Wang C, Vera-Vélez R, Lamb EG, Wu J, Ren F (2022). Global pattern and associated drivers of grassland productivity sensitivity to precipitation change. Science of the Total Environment, 806, 151224. DOI: 10.1016/j.scitotenv.2021.151224. |
[24] | Wang J, Abdullah I, Xu T, Zhu W, Gao Y, Wang L (2019a). Effects of mowing disturbance and competition on spatial expansion of the clonal plant Leymus chinensis into saline-alkali soil patches. Environmental and Experimental Botany, 168, 103890. DOI: 10.1016/j.envexpbot.2019.103890. |
[25] | Wang J, Gao Y, Zhang Y, Yang J, Smith MD, Knapp AK, Eissenstat DM, Han X (2019b). Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Global Change Biology, 25, 2958-2969. |
[26] |
Wang K, Zhong S, Sun W (2020). Clipping defoliation and nitrogen addition shift competition between a C3grass (Leymus chinensis) and a C4 grass (Hemarthria altissima). Plant Biology, 22, 221-232.
DOI PMID |
[27] | Wang X, Guo X, Ding WL, Du N, Guo WH, Pang JY (2023). Precipitation pattern alters the effects of nitrogen deposition on the growth of alien species Robinia pseudoacacia. Heliyon, 9, e21822. DOI: 10.1016/j.heliyon.2023.e21822. |
[28] | Wilcox KR, Koerner SE, Hoover DL, Borkenhagen AK, Burkepile DE, Collins SL, Hoffman AM, Kirkman KP, Knapp AK, Strydom T, Thompson DI, Smith MD (2020). Rapid recovery of ecosystem function following extreme drought in a south African savanna grassland. Ecology, 101, e02983. DOI: 10.1002/ecy.2983. |
[29] |
Wilcox KR, Shi Z, Gherardi LA, Lemoine NP, Koerner SE, Hoover DL, Bork E, Byrne KM, Cahill Jr J, Collins SL, Evans S, Gilgen AK, Holub P, Jiang L, Knapp AK, et al. (2017). Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Global Change Biology, 23, 4376-4385.
DOI PMID |
[30] | Wu SK, Hao J, Diao HJ, Ju X, Ning YN, Su Y, Dong KH, Wang CH (2023). Response of grassland biomass to short-term grazing intensities in the agro-pastoral ecotone in northern Shanxi. Acta Agrestia Sinica, 31, 2446-2454. |
[ 武帅楷, 郝杰, 刁华杰, 居新, 宁亚楠, 苏原, 董宽虎, 王常慧 (2023). 晋北农牧交错带草地生物量对短期放牧强度的响应. 草地学报, 31, 2446-2454.]
DOI |
|
[31] |
Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
DOI PMID |
[32] | Xu ZW, Jiang L, Ren HY, Han XG (2024). Opposing responses of temporal stability of aboveground and belowground net primary productivity to water and nitrogen enrichment in a temperate grassland. Global Change Biology, 30, e17071. DOI: 10.1111/gcb.17071. |
[33] | Yang GJ, Hautier Y, Zhang ZJ, Lü XT, Han XG (2022). Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. Global Change Biology, 28, 2711-2720. |
[34] | Yang GJ, Lü XT, Stevens CJ, Zhang GM, Wang HY, Wang ZW, Zhang ZJ, Liu ZY, Han XG (2019). Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia, 189, 769-779. |
[35] | Yang GJ, Stevens C, Zhang ZJ, Lü XT, Han XG (2023). Different nitrogen saturation thresholds for above-, below-, and total net primary productivity in a temperate steppe. Global Change Biology, 29, 4586-4594. |
[36] | Yang Z, Minggagud H, Baoyin T, Li FY (2020). Plant production decreases whereas nutrients concentration increases in response to the decrease of mowing stubble height. Journal of Environmental Management, 253, 109745. DOI: 10.1016/j.jenvman.2019.109745. |
[37] | Yu G, Jia Y, He N, Zhu J, Chen Z, Wang Q, Piao S, Liu X, He H, Guo X, Wen Z, Li P, Ding G, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429. |
[38] | Zhao CZ, Li GD, Li Q, Zhou DW (2022). Effects of mowing frequency on biomass allocation and yield of Leymus chinensis. Rangeland Ecology & Management, 83, 102-111. |
[39] | Zhao X, Zhu HS, Dong KH, Li DY (2017). Plant community and succession in lowland grasslands under saline-alkali conditions with grazing exclusion. Agronomy Journal, 109, 2428-2437. |
[40] | Zhou J, Wilson GWT, Cobb AB, Yang G, Zhang Y (2019). Phosphorus and mowing improve native alfalfa establishment, facilitating restoration of grassland productivity and diversity. Land Degradation and Development, 30, 647-657. |
[1] | 童金莲, 张博纳, 汤璐瑶, 叶琳峰, 李姝雯, 谢江波, 李彦, 王忠媛. C4植物狗尾草功能性状网络沿降水梯度带的区域分异规律[J]. 植物生态学报, 2025, 49(预发表): 1-. |
[2] | 韩菲, 王袼, 武帅楷, 林茂, 董宽虎, $\boxed{\hbox{王常慧}}$, 苏原. 极端降水对不同草原土壤总硝化及总氮矿化速率及其敏感性的影响[J]. 植物生态学报, 2025, 49(5): 697-709. |
[3] | 唐远翔, 熊仕臣, 朱洪锋, 张新生, 游成铭, 刘思凝, 谭波, 徐振锋. 长期氮添加对四川盆地西缘常绿阔叶林优势树种凋落叶产量及碳氮磷归还的影响[J]. 植物生态学报, 2025, 49(5): 720-731. |
[4] | 闫小莉, 刘贵梅, 李小玉, 江宇翔, 全小强, 王燕茹, 曲鲁平, 汤行昊. 不同氮添加水平和铵硝态氮配比环境下木荷幼苗光合及叶绿素荧光特性[J]. 植物生态学报, 2025, 49(4): 624-637. |
[5] | 赵梦扬, 庄淏然, 许德浩, 马国荣, 马永成, 冯克鹏. 干旱半干旱地区灌区玉米农田土壤植物大气连续体系统氢氧稳定同位素特征及其影响因素[J]. 植物生态学报, 2025, 49(2): 256-267. |
[6] | 冉佳鑫, 张宇辉, 王云, 杨智杰, 毛超. 增温和氮磷添加对亚热带森林凋落物溶解有机碳生物可降解性的影响[J]. 植物生态学报, 2024, 48(9): 1232-1242. |
[7] | 全小强, 王燕茹, 李小玉, 梁海燕, 王立冬, 闫小莉. 氮添加和铵硝态氮配比对杉木幼苗光合特性及叶绿素荧光参数的影响[J]. 植物生态学报, 2024, 48(8): 1050-1064. |
[8] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[9] | 张富崇, 于明含, 张建玲, 王平, 丁国栋, 何莹莹, 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制[J]. 植物生态学报, 2024, 48(7): 903-914. |
[10] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[11] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[12] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[13] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[14] | 黄砺成, 莫兴国. 海河流域生态系统净初级生产力对气象干旱的响应与弹性[J]. 植物生态学报, 2024, 48(10): 1256-1273. |
[15] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19