植物生态学报 ›› 2008, Vol. 32 ›› Issue (2): 336-346.DOI: 10.3773/j.issn.1005-264x.2008.02.010
收稿日期:
2007-03-01
接受日期:
2007-07-01
出版日期:
2008-03-01
发布日期:
2008-03-30
通讯作者:
陈效逑
作者简介:
E-mail: cxq@pku.edu.cn基金资助:
Received:
2007-03-01
Accepted:
2007-07-01
Online:
2008-03-01
Published:
2008-03-30
Contact:
CHEN Xiao-Qiu
摘要:
植物群落季相阶段的划分,对于诊断地方、区域和全球尺度上生态系统对气候变化的快速响应和进行遥感植被生长季节的地面检验,具有重要的科学意义。该文利用物候累积频率拟合法对我国东部温带地区7个站点1982~1996年的植物群落季相阶段进行划分,并分析了植物群落季相的空间差异和年际变化及其与气候因子的关系。结果表明:1)各站点多年平均变绿期和旺盛光合期初日随纬度的升高而推迟,凋落期和休眠期初日随纬度的升高而提前;多年平均变绿期、旺盛光合期和凋落期长度随纬度的变化不甚明显,而休眠期则随纬度的升高明显延长;2)在研究期间内,站点平均变绿期初日以0.6 d·a-1的平均速率显著提前,且长度以0.7 d·a-1的平均速率显著延长;旺盛光合期初日呈不显著推迟,长度呈不显著缩短;凋落期初日呈微弱提前,长度呈微弱延长;休眠期初日呈微弱提前,但长度却以0.9 d·a-1的平均速率显著缩短;3)站点平均变绿期初日与当月平均气温的负相关显著,平均气温每升高1 ℃,初日提前约4.3 d;站点平均旺盛光合期初日与初日前第二个月到初日当月平均气温的负相关显著,平均气温每升高1 ℃,初日提前约4.4 d;站点平均凋落期和休眠期初日与气温的相关均不显著。
陈效逑, 韩建伟. 我国东部温带植物群落的季相及其时空变化特征. 植物生态学报, 2008, 32(2): 336-346. DOI: 10.3773/j.issn.1005-264x.2008.02.010
CHEN Xiao-Qiu, HAN Jian-Wei. SEASONAL ASPECT STAGES OF PLANT COMMUNITIES AND ITS SPATIAL-TEMPORAL VARIATION IN TEMPERATE EASTERN CHINA. Chinese Journal of Plant Ecology, 2008, 32(2): 336-346. DOI: 10.3773/j.issn.1005-264x.2008.02.010
图2 物候累积频率的拟合(a)和季相转折点的确定(b) A: 变绿期或凋落期初日 Onset dates of greenup period or senescence period B: 旺盛光合期或休眠期初日 Onset dates of active photosynthesis period or dormancy period
Fig.2 Simulating cumulative frequencies of phenophases (a) and determining turning points of seasonal aspect stages (b)
地点 Site | 统计量 Statistical variables | 变绿期 Greenup period | 旺盛光合期 Active photosynthesis period | 凋落期 Senescence period | 休眠期 Dormancy period | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
初日 Onset date | 长度 Length | 初日 Onset date | 长度 Length | 初日 Onset date | 长度 Length | 初日 Onset date | 长度 Length | |||||
哈尔滨 | 平均值Mean | 4/12 | 61 | 6/11 | 73 | 8/23 | 54 | 10/16 | 179 | |||
Harbin | 标准差SD | 5 | 5 | 4 | 4 | 5 | 5 | 3 | 4 | |||
牡丹江 | 平均值Mean | 4/9 | 58 | 6/6 | 74 | 8/19 | 60 | 10/19 | 172 | |||
Mudanjiang | 标准差SD | 5 | 6 | 5 | 8 | 6 | 7 | 2 | 5 | |||
盖县 | 平均值Mean | 3/21 | 66 | 5/26 | 114 | 9/17 | 51 | 11/6 | 134 | |||
Gaixian | 标准差SD | 12 | 11 | 4 | 9 | 9 | 7 | 6 | 17 | |||
北京 | 平均值Mean | 3/15 | 67 | 5/21 | 133 | 10/1 | 49 | 11/19 | 117 | |||
Beijing | 标准差SD | 5 | 5 | 4 | 6 | 4 | 8 | 6 | 9 | |||
邢台 | 平均值Mean | 3/11 | 59 | 5/9 | 130 | 9/16 | 65 | 11/20 | 110 | |||
Xingtai | 标准差SD | 5 | 6 | 5 | 9 | 8 | 5 | 6 | 4 | |||
洛阳 | 平均值Mean | 2/27 | 81 | 5/19 | 110 | 9/6 | 81 | 11/26 | 94 | |||
Luoyang | 标准差SD | 7 | 8 | 5 | 7 | 9 | 9 | 5 | 8 | |||
西安 | 平均值Mean | 3/8 | 68 | 5/15 | 125 | 9/17 | 72 | 11/27 | 101 | |||
Xi'an | 标准差SD | 4 | 7 | 7 | 10 | 7 | 10 | 4 | 4 | |||
全区Entire area | 平均值Mean | 3/19 | 66 | 5/23 | 108 | 9/9 | 62 | 11/9 | 130 |
表1 各站季相阶段初日(月/日)与长度(d)的均值和标准差
Table 1 Means and standard deviations of onset dates (month/day) and lengths of seasonal aspect stages at each site
地点 Site | 统计量 Statistical variables | 变绿期 Greenup period | 旺盛光合期 Active photosynthesis period | 凋落期 Senescence period | 休眠期 Dormancy period | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
初日 Onset date | 长度 Length | 初日 Onset date | 长度 Length | 初日 Onset date | 长度 Length | 初日 Onset date | 长度 Length | |||||
哈尔滨 | 平均值Mean | 4/12 | 61 | 6/11 | 73 | 8/23 | 54 | 10/16 | 179 | |||
Harbin | 标准差SD | 5 | 5 | 4 | 4 | 5 | 5 | 3 | 4 | |||
牡丹江 | 平均值Mean | 4/9 | 58 | 6/6 | 74 | 8/19 | 60 | 10/19 | 172 | |||
Mudanjiang | 标准差SD | 5 | 6 | 5 | 8 | 6 | 7 | 2 | 5 | |||
盖县 | 平均值Mean | 3/21 | 66 | 5/26 | 114 | 9/17 | 51 | 11/6 | 134 | |||
Gaixian | 标准差SD | 12 | 11 | 4 | 9 | 9 | 7 | 6 | 17 | |||
北京 | 平均值Mean | 3/15 | 67 | 5/21 | 133 | 10/1 | 49 | 11/19 | 117 | |||
Beijing | 标准差SD | 5 | 5 | 4 | 6 | 4 | 8 | 6 | 9 | |||
邢台 | 平均值Mean | 3/11 | 59 | 5/9 | 130 | 9/16 | 65 | 11/20 | 110 | |||
Xingtai | 标准差SD | 5 | 6 | 5 | 9 | 8 | 5 | 6 | 4 | |||
洛阳 | 平均值Mean | 2/27 | 81 | 5/19 | 110 | 9/6 | 81 | 11/26 | 94 | |||
Luoyang | 标准差SD | 7 | 8 | 5 | 7 | 9 | 9 | 5 | 8 | |||
西安 | 平均值Mean | 3/8 | 68 | 5/15 | 125 | 9/17 | 72 | 11/27 | 101 | |||
Xi'an | 标准差SD | 4 | 7 | 7 | 10 | 7 | 10 | 4 | 4 | |||
全区Entire area | 平均值Mean | 3/19 | 66 | 5/23 | 108 | 9/9 | 62 | 11/9 | 130 |
地点 Site | 变绿期初日 Onset date of greenup period | 旺盛光合期初日 Onset date of active photosynthesis period | 凋落期初日 Onset date of senescence period | 休眠期初日 Onset date of dormancy period |
---|---|---|---|---|
哈尔滨Harbin | -0.73 | -1.00* | -1.38** | -0.13 |
牡丹江Mudanjiang | 0.35 | 0.58* | 0.41 | -0.11 |
盖县Gaixian | -1.68*** | 0.20 | 1.34*** | 0.38 |
北京Beijing | -0.52* | 0.07 | -0.35 | 0.29 |
邢台Xingtai | -0.88*** | 0.03 | -1.32**** | -0.89*** |
洛阳Luoyang | -0.16 | -0.02 | -0.60 | -0.14 |
西安Xi'an | -0.26 | 0.04 | 0.73 | -0.41 |
表2 各站季相阶段初日的线性趋势(d·a-1)
Table 2 Linear trends of onset dates of seasonal aspect stages at each site (d·a-1)
地点 Site | 变绿期初日 Onset date of greenup period | 旺盛光合期初日 Onset date of active photosynthesis period | 凋落期初日 Onset date of senescence period | 休眠期初日 Onset date of dormancy period |
---|---|---|---|---|
哈尔滨Harbin | -0.73 | -1.00* | -1.38** | -0.13 |
牡丹江Mudanjiang | 0.35 | 0.58* | 0.41 | -0.11 |
盖县Gaixian | -1.68*** | 0.20 | 1.34*** | 0.38 |
北京Beijing | -0.52* | 0.07 | -0.35 | 0.29 |
邢台Xingtai | -0.88*** | 0.03 | -1.32**** | -0.89*** |
洛阳Luoyang | -0.16 | -0.02 | -0.60 | -0.14 |
西安Xi'an | -0.26 | 0.04 | 0.73 | -0.41 |
变绿期长度 Duration of greenup period | 旺盛光合期长度 Duration of active photosynthesis period | 凋落期长度 Duration of senescence period | 休眠期长度 Duration of dormancy period | |
---|---|---|---|---|
哈尔滨Harbin | -0.27 | -0.38 | 1.25* | -1.02* |
牡丹江Mudanjiang | 0.23 | -0.17 | -0.52 | 0.22 |
盖县Gaixian | 1.88**** | 1.14** | -0.96** | -2.54** |
北京Beijing | 0.59** | -0.42 | 0.64 | -1.19** |
邢台Xingtai | 0.91*** | -1.35*** | 0.43 | 0.06 |
洛阳Luoyang | 0.46 | -0.59 | 0.46 | -0.75 |
西安Xi'an | 0.36 | 0.69 | -1.14* | 0.23 |
表3 各站季相阶段长度的线性趋势(d·a-1)
Table 3 Linear trends of seasonal aspect stage lenghts at each site (d·a-1)
变绿期长度 Duration of greenup period | 旺盛光合期长度 Duration of active photosynthesis period | 凋落期长度 Duration of senescence period | 休眠期长度 Duration of dormancy period | |
---|---|---|---|---|
哈尔滨Harbin | -0.27 | -0.38 | 1.25* | -1.02* |
牡丹江Mudanjiang | 0.23 | -0.17 | -0.52 | 0.22 |
盖县Gaixian | 1.88**** | 1.14** | -0.96** | -2.54** |
北京Beijing | 0.59** | -0.42 | 0.64 | -1.19** |
邢台Xingtai | 0.91*** | -1.35*** | 0.43 | 0.06 |
洛阳Luoyang | 0.46 | -0.59 | 0.46 | -0.75 |
西安Xi'an | 0.36 | 0.69 | -1.14* | 0.23 |
图3 5站季相阶段平均初日的线性趋势 a: 变绿期 Greenup period b:旺盛光合期 Active photosynthesis period c:凋落期 Senescence period d:休眠期 Dormancy period
Fig.3 Linear trends of average onset dates of seasonal aspect stages at the five stations
地点 Site | 季相阶段初日 Onset date of seasonal aspect stages | T1 | T2 | T3 | T1~3 | P1 | P2 | P3 |
---|---|---|---|---|---|---|---|---|
哈尔滨 Harbin | 变绿期Greenup period | -0.528 | -0.599 | -0.711* | -0.699* | -0.182 | +0.219 | -0.485 |
旺盛光合期 Active photosynthesis period | -0.026 | -0.643 | -0.201 | -0.739* | -0.006 | +0.254 | -0.276 | |
凋落期Senescence period | -0.186 | -0.149 | +0.823** | -0.64 | -0.335 | -0.076 | +0.236 | |
休眠期Dormancy period | +0.064 | +0.501 | -0.442 | -0.159 | +0.164 | +0.587 | -0.168 | |
牡丹江 Mudanjiang | 变绿期Greenup period | -0.248 | -0.501 | -0.740** | +0.258 | -0.382 | +0.381 | +0.056 |
旺盛光合期 Active photosynthesis period | -0.522* | -0.311 | -0.302 | +0.788** | +0.244 | -0.054 | -0.043 | |
凋落期Senescence period | +0.596* | +0.29 | +0.157 | -0.362 | -0.629* | +0.186 | +0.015 | |
休眠期Dormancy period | +0.395 | +0.321 | +0.187 | -0.154 | -0.076 | +0.264 | -0.012 | |
盖县 Gaixian | 变绿期Greenup period | -0.563* | -0.846** | -0.669** | +0.770** | +0.119 | +0.235 | +0.361 |
旺盛光合期 Active photosynthesis period | -0.379 | -0.539* | -0.663** | +0.438 | +0.272 | +0.422 | +0.212 | |
凋落期Senescence period | +0.415 | +0.35 | +0.229 | -0.006 | +0.145 | +0.016 | +0.177 | |
休眠期Dormancy period | +0.457 | +0.514* | +0.099 | +0.469 | +0.048 | -0.193 | +0.07 | |
北京 Beijing | 变绿期Greenup period | -0.562* | -0.629* | -0.780** | -0.820** | -0.144 | +0.021 | +0.182 |
旺盛光合期 Active photosynthesis period | -0.660** | -0.266 | -0.436 | -0.637* | +0.057 | -0.591* | -0.21 | |
凋落期Senescence period | +0.006 | -0.051 | +0.265 | +0.116 | -0.159 | +0.024 | -0.339 | |
休眠期Dormancy period | +0.276 | -0.01 | -0.146 | +0.015 | -0.054 | +0.225 | +0.431 | |
邢台 Xingtai | 变绿期Greenup period | -0.453 | -0.784** | -0.564* | -0.873** | -0.108 | +0.107 | +0.021 |
旺盛光合期 Active photosynthesis period | -0.601* | -0.411 | -0.765** | -0.798** | -0.077 | -0.221 | +0.501 | |
凋落期Senescence period | +0.044 | +0.378 | -0.14 | +0.089 | -0.305 | -0.329 | +0.417 | |
休眠期Dormancy period | +0.031 | +0.263 | +0.224 | +0.279 | +0.106 | +0.318 | -0.088 | |
洛阳 Luoyang | 变绿期Greenup period | -- | +0.053 | -0.479 | -0.561* | -- | +0.099 | +0.17 |
旺盛光合期 Active photosynthesis period | -0.445 | -0.564* | -0.403 | -0.619* | +0.018 | -0.317 | +0.373 | |
凋落期Senescence period | +0.007 | -0.071 | +0.223 | +0.096 | +0.103 | +0.203 | +0.072 | |
休眠期Dormancy period | +0.678** | +0.314 | +0.099 | +0.622* | -0.368 | -0.058 | -0.083 | |
西安 Xi'an | 变绿期Greenup period | -0.147 | -0.254 | -0.615* | -0.545* | +0.197 | +0.333 | +0.048 |
旺盛光合期 Active photosynthesis period | -0.743** | -0.256 | -0.256 | -0.707** | +0.469 | -0.47 | +0.389 | |
凋落期Senescence period | +0.538* | +0.473 | +0.451 | +0.640* | -0.508 | -0.44 | -0.574* | |
休眠期Dormancy period | -0.137 | +0.540* | -0.163 | +0.071 | +0.326 | -0.324 | +0.074 |
Table 4 Correlation analyses between onset dates of seasonal aspect stages and climatic factors at each site
地点 Site | 季相阶段初日 Onset date of seasonal aspect stages | T1 | T2 | T3 | T1~3 | P1 | P2 | P3 |
---|---|---|---|---|---|---|---|---|
哈尔滨 Harbin | 变绿期Greenup period | -0.528 | -0.599 | -0.711* | -0.699* | -0.182 | +0.219 | -0.485 |
旺盛光合期 Active photosynthesis period | -0.026 | -0.643 | -0.201 | -0.739* | -0.006 | +0.254 | -0.276 | |
凋落期Senescence period | -0.186 | -0.149 | +0.823** | -0.64 | -0.335 | -0.076 | +0.236 | |
休眠期Dormancy period | +0.064 | +0.501 | -0.442 | -0.159 | +0.164 | +0.587 | -0.168 | |
牡丹江 Mudanjiang | 变绿期Greenup period | -0.248 | -0.501 | -0.740** | +0.258 | -0.382 | +0.381 | +0.056 |
旺盛光合期 Active photosynthesis period | -0.522* | -0.311 | -0.302 | +0.788** | +0.244 | -0.054 | -0.043 | |
凋落期Senescence period | +0.596* | +0.29 | +0.157 | -0.362 | -0.629* | +0.186 | +0.015 | |
休眠期Dormancy period | +0.395 | +0.321 | +0.187 | -0.154 | -0.076 | +0.264 | -0.012 | |
盖县 Gaixian | 变绿期Greenup period | -0.563* | -0.846** | -0.669** | +0.770** | +0.119 | +0.235 | +0.361 |
旺盛光合期 Active photosynthesis period | -0.379 | -0.539* | -0.663** | +0.438 | +0.272 | +0.422 | +0.212 | |
凋落期Senescence period | +0.415 | +0.35 | +0.229 | -0.006 | +0.145 | +0.016 | +0.177 | |
休眠期Dormancy period | +0.457 | +0.514* | +0.099 | +0.469 | +0.048 | -0.193 | +0.07 | |
北京 Beijing | 变绿期Greenup period | -0.562* | -0.629* | -0.780** | -0.820** | -0.144 | +0.021 | +0.182 |
旺盛光合期 Active photosynthesis period | -0.660** | -0.266 | -0.436 | -0.637* | +0.057 | -0.591* | -0.21 | |
凋落期Senescence period | +0.006 | -0.051 | +0.265 | +0.116 | -0.159 | +0.024 | -0.339 | |
休眠期Dormancy period | +0.276 | -0.01 | -0.146 | +0.015 | -0.054 | +0.225 | +0.431 | |
邢台 Xingtai | 变绿期Greenup period | -0.453 | -0.784** | -0.564* | -0.873** | -0.108 | +0.107 | +0.021 |
旺盛光合期 Active photosynthesis period | -0.601* | -0.411 | -0.765** | -0.798** | -0.077 | -0.221 | +0.501 | |
凋落期Senescence period | +0.044 | +0.378 | -0.14 | +0.089 | -0.305 | -0.329 | +0.417 | |
休眠期Dormancy period | +0.031 | +0.263 | +0.224 | +0.279 | +0.106 | +0.318 | -0.088 | |
洛阳 Luoyang | 变绿期Greenup period | -- | +0.053 | -0.479 | -0.561* | -- | +0.099 | +0.17 |
旺盛光合期 Active photosynthesis period | -0.445 | -0.564* | -0.403 | -0.619* | +0.018 | -0.317 | +0.373 | |
凋落期Senescence period | +0.007 | -0.071 | +0.223 | +0.096 | +0.103 | +0.203 | +0.072 | |
休眠期Dormancy period | +0.678** | +0.314 | +0.099 | +0.622* | -0.368 | -0.058 | -0.083 | |
西安 Xi'an | 变绿期Greenup period | -0.147 | -0.254 | -0.615* | -0.545* | +0.197 | +0.333 | +0.048 |
旺盛光合期 Active photosynthesis period | -0.743** | -0.256 | -0.256 | -0.707** | +0.469 | -0.47 | +0.389 | |
凋落期Senescence period | +0.538* | +0.473 | +0.451 | +0.640* | -0.508 | -0.44 | -0.574* | |
休眠期Dormancy period | -0.137 | +0.540* | -0.163 | +0.071 | +0.326 | -0.324 | +0.074 |
图5 5站变绿期平均初日与当月月均温的相关-回归分析
Fig.5 Correlation and regression analyses between the mean onset date of greenup stage and the mean temperature in the current month at the five sites
图6 5站旺盛光合期平均初日与初日前第二个月到当月平均气温的相关-回归分析
Fig.6 Correlation and regression analyses between the mean onset date of active photosynthesis stage and the mean temperature during the former second month to the current month at the five sites
划分方法 Method | 统计时段 Statistical period | 春季初日 Spring onset date | 夏季初日 Summer onset date | 秋季初日 Autumn onset date | 冬季初日 Winter onset date |
---|---|---|---|---|---|
物候频率统计法 Statistical method of phenological frequency1) | 1962~1979 | 2.28 | 5.5 | 9.18 | 11.12 |
物候频率分布型法 Distribution pattern method of phenological frequency2) | 1979~1987 | 2.25 | 5.16 | 9.3 | 11.22 |
物候累积频率拟合法 Simulating method of phenological cumulative frequency | 1982~1996 | 3.15(变绿期Onset date of greenup period) | 5.21(旺盛光合期Onset date of active photosynthesis period) | 10.1(凋落期Onset date of senescence period) | 11.19(休眠期Onset date of dormancy period) |
表5 北京平原不同方法确定的季相阶段初日的比较
Table 5 Comparison of onset dates of seasonal aspect stages determined by different methods in the Beijing Plain
划分方法 Method | 统计时段 Statistical period | 春季初日 Spring onset date | 夏季初日 Summer onset date | 秋季初日 Autumn onset date | 冬季初日 Winter onset date |
---|---|---|---|---|---|
物候频率统计法 Statistical method of phenological frequency1) | 1962~1979 | 2.28 | 5.5 | 9.18 | 11.12 |
物候频率分布型法 Distribution pattern method of phenological frequency2) | 1979~1987 | 2.25 | 5.16 | 9.3 | 11.22 |
物候累积频率拟合法 Simulating method of phenological cumulative frequency | 1982~1996 | 3.15(变绿期Onset date of greenup period) | 5.21(旺盛光合期Onset date of active photosynthesis period) | 10.1(凋落期Onset date of senescence period) | 11.19(休眠期Onset date of dormancy period) |
[1] | Badeck FW, Bondeau A, Boettcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004). Responses of spring phenology to climate change. New Phytologist, 162, 295-309. |
[2] | Beaubien EG, Freeland HJ (2000). Spring phenology trends in Alberta, Canada: links to ocean temperature. International Journal of Biometeorology, 44, 53-59. |
[3] | Botta A, Viovy N, Ciais P, Friedlingstein P, Monfray P (2000). A global prognostic scheme of leaf onset using satellite data. Global Change Biology, 6, 709-725. |
[4] | Bradley NL, Leopold AC, Ross J, Huffaker W (1999). Phenological changes reflect climate change in Wisconsin. Proceedings of National Academy of Sciences of the Uonited States of America, 96, 9701-9704. |
[5] | Chen XQ (1994). Untersuchung zur Zeitlich-Raeumlichen Aehnlichkeit von Phaenologischen und Klimatologischen Parametern in Westdeutschland und zum Einfluss Geooekologischer Faktoren auf die Phaenologische Entwicklung im Gebiet des Taunus. Selbstverlag des Deutschen Wetterdienstes, Offenbach. (in German) |
[6] | Chen XQ (1997). Phenological Models and techniques: assessing phenology at the biome level. In: Schwartz M ed. Phenology: an Integrative Environmental Science. Kluwer Academic Publishers, Dordrecht, Boston, London. 285-300. |
[7] | Chen XQ (陈效逑), Cao ZP (曹志萍) (1999). Frequency distribution pattern of plant phenophases and its application to season determination. Scientia Geographica Sinica (地理科学), 19, 21-27. (in Chinese with English abstract) |
[8] | Chen XQ, Hu B, Yu R (2005). Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology, 11, 1118-1130. |
[9] | Chen XQ, Pan WF (2002). Relationships among phenological growing season, time-integrated normalized difference vegetation index and climate forcing in the temperate region of eastern China. International Journal of Climatology, 22, 1781-1792. |
[10] | Chen XQ, Tan ZJ, Schwartz MD, Xu CX (2000). Determining the growing season of land vegetation on the basis of plant phenology and satellite data in northern China. International Journal of Biometeorology, 44, 97-101. |
[11] | Chen XQ (陈效逑), Yu R (喻蓉) (2007). Spatial and temporal variations of the vegetation growing season in warm-temperate eastern China during 1982 to 1999. Acta Geographica Sinica (地理学报), 62, 41-51. (in Chinese with English abstract) |
[12] | Chmielewski FM, Roetzer T (2001). Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108, 101-112. |
[13] | Ding D (丁登), Chen XQ (陈效逑) (2007). A study on surface validation of the satellite-derived vegetation growing season in China: a case of the temperate steppe area and the warm temperate deciduous broad-leaved forest area. Remote Sensing Technology and Application (遥感技术与应用), 22, 382-388. (in Chinese with English abstract) |
[14] | Duchemin B, Goubier J, Courrier G (1999). Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data. Remote Sensing of Environment, 67, 68-82. |
[15] |
Fitter AH, Fitter RSR (2002). Rapid changes in flowering time in British plants. Science, 296, 1689-1691.
URL PMID |
[16] | Institute of Geography of Chinese Academy of Sciences (中国科学院地理研究所)(1988). Yearbook of Chinese Animal and Plant Phenological Observation No. 8 (中国动植物物候观测年报第8号). Geological Publishing House, Beijing. (in Chinese) |
[17] | Institute of Geography of Chinese Academy of Sciences (中国科学院地理研究所)(1989a). Yearbook of Chinese Animal and Plant Phenological Observation No. 9 (中国动植物物候观测年报第9号). Geological Publishing House, Beijing. (in Chinese) |
[18] | Institute of Geography of Chinese Academy of Sciences (中国科学院地理研究所)(1989b). Yearbook of Chinese Animal and Plant Phenological Observation No. 10 (中国动植物物候观测年报第10号). Survey and Mapping Press, Beijing. (in Chinese) |
[19] | Institute of Geography of Chinese Academy of Sciences (中国科学院地理研究所)(1992). Yearbook of Chinese Animal and Plant Phenological Observation No. 11 (中国动植物物候观测年报第11号). Chinese Science and Technology Press, Beijing. (in Chinese) |
[20] | Kramer K (1996). Phenology and Growth of European Trees in Relation to Climate Change. Landbouw Universiteit Wageningen, Wageningen. |
[21] | Markon CJ, Fleming MD, Binnian EF (1995). Characteristics of vegetation phenology over the Alaskan landscape using AVHRR time-series data. Polar Record, 31, 179-190. |
[22] | Menzel A, Fabian P (1999). Growing season extended in Europe. Nature, 397, 659. |
[23] | Moulin S, Kergoat L, Viovy N, Dedieu G (1997). Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal of Climate, 10, 1154-1170. |
[24] | Reed BC, Brown JF, VanderZee D, Loveland TR, Merchant JW, Ohlen DO (1994). Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5, 703-714. |
[25] | Schwartz MD, Chen XQ (2002). Examining the onset of spring in China. Climatic Research, 21, 157-164. |
[26] | Schwartz MD, Reed BC, White MA (2002). Assessing satellite-derived start-of-season measures in the conterminous USA. International Journal of Climatology, 22, 1793-1805. |
[27] | Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Heogh-Guldberg O, Bairlein F (2002). Ecological responses to recent climate change. Nature, 416, 389-395. |
[28] | White MA, Thornton PE, Running SW (1997). A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 11, 217-234. |
[29] | Wolfe DW, Schwartz MD, Lakso AN, Otsuki Y, Pool RM, Shaulis NJ (2005). Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. International Journal of Biometeorology, 49, 303-309. |
[30] | Yang GD (杨国栋) (1983). A preliminary study on determining phenological seasons in eastern China. Journal of Henan Normal University (河南师范大学学报), (1), 69-76. (in Chinese) |
[31] | Yang GD (杨国栋), Chen XQ (陈效逑) (1980). A preliminary study on phenological seasons in the Beijing area. Journal of Beijing Teachers College (北京师范学院学报), 2, 110-119. (in Chinese) |
[32] | Yang GD (杨国栋), Chen XQ (陈效逑) (1995). Phenological Calendars and Their Applications in the Beijing Area (北京地区的物候日历及其应用). Capital Normal University Press, Beijing. (in Chinese) |
[33] | Zhang XY, Friedl MA, Schaaf CB, Strahler AH (2004). Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology, 10, 1133-1145. |
[34] | Zheng JY (郑景云), Ge QS (葛全胜), Hao ZX (郝志新) (2002). Climate change impacts to plant phenological changes in China in recent 40 years. Chinese Science Bulletin (科学通报), 47, 1582-1587. (in Chinese) |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[3] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[4] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[5] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[6] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[7] | 张央, 安明态, 武建勇, 刘锋, 汪伟. 中国兜兰属宽瓣亚属植物地理分布格局及其主导气候因子[J]. 植物生态学报, 2022, 46(1): 40-50. |
[8] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[9] | 徐光来, 李爱娟, 徐晓华, 杨先成, 杨强强. 中国生态功能保护区归一化植被指数动态及气候因子驱动[J]. 植物生态学报, 2021, 45(3): 213-223. |
[10] | 王兆鹏, 张同文, 袁玉江, 张瑞波, 喻树龙, 刘蕊, 石仁娜•加汗, 郭冬, 王勇辉. 罗霄山南部4个针叶树种生长特征及其气候响应对比分析[J]. 植物生态学报, 2021, 45(12): 1303-1313. |
[11] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[12] | 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 863-876. |
[13] | 汪星, 宫兆宁, 井然, 张磊, 金点点. 基于连续统去除法的水生植物提取及其时空变化分析——以官厅水库库区为例[J]. 植物生态学报, 2018, 42(6): 640-652. |
[14] | 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞. 中国草地生态系统根系周转的空间格局和驱动因子[J]. 植物生态学报, 2018, 42(3): 337-348. |
[15] | 朱弘, 朱淑霞, 李涌福, 伊贤贵, 段一凡, 王贤荣. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报, 2018, 42(12): 1168-1178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19