植物生态学报 ›› 2016, Vol. 40 ›› Issue (12): 1276-1288.DOI: 10.17521/cjpe.2016.0187
张瑜, 金光泽*
出版日期:
2016-12-10
发布日期:
2016-12-30
通讯作者:
金光泽
基金资助:
Yu ZHANG, Guang-Ze JIN*
Online:
2016-12-10
Published:
2016-12-30
Contact:
Guang-Ze JIN
摘要:
倒木是森林生态系统的重要组成部分, 在地力维护、生物多样性保持以及碳(C)和养分循环等方面具有重要意义, 但倒木物理化学性质随其腐烂等级和径级而变化。为了深入理解腐烂等级和径级对倒木物理化学性质的影响, 该研究以典型阔叶红松林的建群种——红松(Pinus koraiensis)的倒木为研究对象, 将其每个腐烂等级(I-V)下的倒木分为4个径级(径级i ≤ 10.0 cm、径级ii 10.1-30.0 cm、径级iii 30.1-50.0 cm、径级iv >50.0 cm), 研究了不同腐烂等级、径级及两者交互作用对倒木心材和边材物理化学性质的影响。结果表明: 心材和边材具有相似的变化规律。倒木心材和边材含水率随着腐烂等级增加而增加, 而木材密度随腐烂等级和径级的增加均呈下降趋势; 边材C含量以及心材和边材的氮(N)、磷(P)含量随腐烂等级增加呈上升趋势, 心材N、P含量随径级增加呈先增加后减少的趋势; 纤维素含量随腐烂等级增加呈下降趋势, 而木质素含量呈上升趋势, 纤维素和木质素含量随径级增加没有明显变化规律。倒木含水率与C、N、P、木质素含量(除心材P含量)显著正相关, 与纤维素含量显著负相关; 木材密度与C、N、P、木质素含量显著负相关, 与纤维素含量显著正相关。由此可见, 倒木物理化学性质受不同腐烂等级和径级的影响有各自的变化规律, 且倒木的物理性质(含水率和木材密度)是影响化学含量变化的重要因素。
张瑜, 金光泽. 腐烂等级、径级对典型阔叶红松林红松倒木物理化学性质的影响. 植物生态学报, 2016, 40(12): 1276-1288. DOI: 10.17521/cjpe.2016.0187
Yu ZHANG, Guang-Ze JIN. Effects of decay classes and diameter classes on physico-chemical properties of Pinus koraiensis log in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 2016, 40(12): 1276-1288. DOI: 10.17521/cjpe.2016.0187
因子 Factor | 组分 Component | 含水率 Moisture content | 木材密度 Wood density | 碳含量 Carbon content | 氮含量 Nitrogen content | 磷含量 Phosphorus content | 纤维素含量 Cellulose content | 木质素含量 Lignin content |
---|---|---|---|---|---|---|---|---|
腐烂等级 | 心材 Heartwood | p < 0.001 | p < 0.001 | p > 0.05 | p = 0.024 | p = 0.009 | p < 0.001 | p < 0.001 |
Decay class | 边材 Sapwood | p < 0.001 | p < 0.001 | p = 0.012 | p = 0.003 | p < 0.001 | p < 0.001 | p < 0.001 |
径级 | 心材 Heartwood | p > 0.05 | p = 0.003 | p > 0.05 | p = 0.002 | p < 0.001 | p > 0.05 | p > 0.05 |
Diameter class | 边材 Sapwood | p > 0.05 | p = 0.045 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
腐烂等级×径级 | 心材 Heartwood | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p = 0.019 | p = 0.044 |
Decay class × diameter class | 边材 Sapwood | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p = 0.014 | p = 0.016 |
表1 影响倒木物理化学质量因子的方差分析
Table 1 ANOVA test of the factors affecting fallen logs physico-chemical quality
因子 Factor | 组分 Component | 含水率 Moisture content | 木材密度 Wood density | 碳含量 Carbon content | 氮含量 Nitrogen content | 磷含量 Phosphorus content | 纤维素含量 Cellulose content | 木质素含量 Lignin content |
---|---|---|---|---|---|---|---|---|
腐烂等级 | 心材 Heartwood | p < 0.001 | p < 0.001 | p > 0.05 | p = 0.024 | p = 0.009 | p < 0.001 | p < 0.001 |
Decay class | 边材 Sapwood | p < 0.001 | p < 0.001 | p = 0.012 | p = 0.003 | p < 0.001 | p < 0.001 | p < 0.001 |
径级 | 心材 Heartwood | p > 0.05 | p = 0.003 | p > 0.05 | p = 0.002 | p < 0.001 | p > 0.05 | p > 0.05 |
Diameter class | 边材 Sapwood | p > 0.05 | p = 0.045 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
腐烂等级×径级 | 心材 Heartwood | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p = 0.019 | p = 0.044 |
Decay class × diameter class | 边材 Sapwood | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p = 0.014 | p = 0.016 |
图1 不同腐烂等级和径级下红松倒木的含水率和木材密度(平均值±标准误差, n = 3)。Total表示不同腐烂等级和径级下倒木心材和边材含水率、木材密度的总体平均值。不同小写字母表示倒木心材及边材不同腐烂等级间和径级间差异显著(p < 0.05); 不同大写字母表示倒木心材和边材间差异显著(p < 0.05)。
Fig. 1 Moisture content and wood density of logs of Pinus koraiensis at different decay classes and diameter classes (mean ± SE, n = 3). Total indicates total average value of moisture content and wood density of both heartwood and sapwood at different decay classes and diameter classes. Different lowercase letters indicate significant differences among different decay classes and diameter classes in the heartwood and sapwood (p < 0.05). Different uppercase letters indicate significant differences between heartwood and sapwood (p < 0.05).
图2 不同腐烂等级下红松倒木的C、N、P、纤维素、木质素含量(平均值±标准误差, n = 3)。Total表示不同腐烂等级下倒木心材和边材C、N、P、纤维素和木质素的总体平均含量。不同小写字母表示倒木心材和边材在不同腐烂等级间差异显著(p < 0.05); 不同大写字母表示倒木心材和边材间差异显著(p < 0.05)。
Fig. 2 Contents of C, N, P, cellulose, lignin of logs of Pinus koraiensis at different decay classes (mean ± SE, n = 3). Total indicate total average content of C, N, P, cellulose and lignin of heartwood and sapwood at different decay classes. Different lowercase letters indicate significant differences among different decay classes in the heartwood and sapwood (p < 0.05). Different uppercase letters indicate significant differences between heartwood and sapwood (p < 0.05).
图3 在不同径级下红松倒木C、N、P、纤维素和木质素含量(平均值±标准误差, n = 3)。Total表示不同径级下倒木心材和边材C、N、P、纤维素和木质素的总体平均含量。不同小写字母表示倒木心材和边材在不同径级间差异显著(p < 0.05); 不同大写字母表示倒木心材和边材间差异显著(p < 0.05)。
Fig. 3 Contents of C, N, P, cellulose, lignin of logs of Pinus koraiensis at different diameter classes (mean ± SE, n = 3). Total indicate total average content of C, N, P, cellulose, lignin of heartwood and sapwood at different diameter classes. Different lowercase letters indicate significant differences among different diameter classes in the heartwood and sapwood (p < 0.05). Different uppercase letters indicate significant differences between heartwood and sapwood (p < 0.05).
组分 Component | 腐烂等级 Decay class | Total | |||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | |||
C:N | 心材 Heartwood | 467 ± 68aA | 317 ± 28abA | 333 ± 83abA | 264 ± 30bA | 275 ± 29bA | 336 ± 27A |
边材 Sapwood | 432 ± 88aA | 288 ± 29abA | 240 ± 41bA | 177 ± 25bA | 178 ± 18bA | 269 ± 25A | |
C:P | 心材 Heartwood | 8 916 ± 5 783aA | 9 667 ± 1 548aA | 4 952 ± 1 181aA | 3 135 ± 619aA | 3 970 ± 1 227aA | 6 220 ± 1 324A |
边材 Sapwood | 6 998 ± 1 153bA | 23 209 ± 8 640aA | 3 541 ± 725bA | 1 621 ± 251bB | 1 621 ± 244bB | 7 423 ± 1 964A | |
N:P | 心材 Heartwood | 22 ± 12.28aA | 31 ± 4.31aA | 20 ± 5.21aA | 18 ± 7.48aA | 15 ± 5.09aA | 21 ± 3.37A |
边材 Sapwood | 21 ± 3.32bA | 88 ± 31.54aA | 23 ± 7.71bA | 10 ± 1.32bA | 10 ± 1.5bA | 30 ± 7.27A | |
木质素:纤维素 | 心材 Heartwood | 0.91 ± 0.26bA | 0.89 ± 0.19bA | 1.44 ± 0.03bA | 1.90 ± 0.40bA | 3.22 ± 0.63aA | 1.67 ± 0.20A |
Lignin:cellulose | 边材 Sapwood | 0.56 ± 0.06cA | 0.65 ± 0.05cA | 1.07 ± 0.17bcA | 1.70 ± 0.22bA | 2.71 ± 0.50aA | 1.34 ± 0.15A |
表2 不同腐烂等级下红松倒木C:N、C:P、N:P、木质素:纤维素的变化特征(平均值±标准误差, n = 3)
Table 2 Variation characteristics of C:N, C:P, N:P and lignin:cellulose of logs of Pinus koraiensis at different decay classes (mean ± SE, n = 3)
组分 Component | 腐烂等级 Decay class | Total | |||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | |||
C:N | 心材 Heartwood | 467 ± 68aA | 317 ± 28abA | 333 ± 83abA | 264 ± 30bA | 275 ± 29bA | 336 ± 27A |
边材 Sapwood | 432 ± 88aA | 288 ± 29abA | 240 ± 41bA | 177 ± 25bA | 178 ± 18bA | 269 ± 25A | |
C:P | 心材 Heartwood | 8 916 ± 5 783aA | 9 667 ± 1 548aA | 4 952 ± 1 181aA | 3 135 ± 619aA | 3 970 ± 1 227aA | 6 220 ± 1 324A |
边材 Sapwood | 6 998 ± 1 153bA | 23 209 ± 8 640aA | 3 541 ± 725bA | 1 621 ± 251bB | 1 621 ± 244bB | 7 423 ± 1 964A | |
N:P | 心材 Heartwood | 22 ± 12.28aA | 31 ± 4.31aA | 20 ± 5.21aA | 18 ± 7.48aA | 15 ± 5.09aA | 21 ± 3.37A |
边材 Sapwood | 21 ± 3.32bA | 88 ± 31.54aA | 23 ± 7.71bA | 10 ± 1.32bA | 10 ± 1.5bA | 30 ± 7.27A | |
木质素:纤维素 | 心材 Heartwood | 0.91 ± 0.26bA | 0.89 ± 0.19bA | 1.44 ± 0.03bA | 1.90 ± 0.40bA | 3.22 ± 0.63aA | 1.67 ± 0.20A |
Lignin:cellulose | 边材 Sapwood | 0.56 ± 0.06cA | 0.65 ± 0.05cA | 1.07 ± 0.17bcA | 1.70 ± 0.22bA | 2.71 ± 0.50aA | 1.34 ± 0.15A |
组分 Component | 径级 Diameter class | Total | ||||
---|---|---|---|---|---|---|
ⅰ | ⅱ | ⅲ | ⅳ | |||
C:N | 心材 Heartwood | 492 ± 69aA | 276 ± 23bA | 214 ± 23bA | 355 ± 57abA | 336 ± 27A |
边材 Sapwood | 388 ± 92aA | 266 ± 27abA | 199 ± 30bA | 243 ± 38abA | 269 ± 25A | |
C:P | 心材 Heartwood | 12 672 ± 5 284aA | 6 320 ± 1 107abA | 2 853 ± 765bA | 3 788 ± 607bA | 6 220 ± 1 324A |
边材 Sapwood | 19 255 ± 7 772aA | 3 277 ± 514bB | 4 240 ± 1 165bA | 3 790 ± 973bA | 7 423 ± 1 964A | |
N:P | 心材 Heartwood | 29 ± 11.19aA | 29 ± 6.74aA | 14 ± 3.79aA | 15 ± 3.19aA | 21 ± 3.37A |
边材 Sapwood | 69 ± 28.81aA | 17 ± 5.89bA | 19 ± 3.72bA | 19 ± 4.32bA | 30 ± 7.27A | |
木质素:纤维素 | 心材 Heartwood | 2.03 ± 0.65aA | 1.20 ± 0.20aA | 2.01 ± 0.37aA | 1.44 ± 0.22aA | 1.67 ± 0.20A |
Lignin:cellulose | 边材 Sapwood | 1.74 ± 0.48aA | 1.18 ± 0.18aA | 1.33 ± 0.24aA | 1.13 ± 0.21aA | 1.34 ± 0.15A |
表3 不同径级下红松倒木C:N、C:P、N:P、木质素:纤维素的变化特征(平均值±标准误差, n = 3)
Table 3 Variation characteristic of C:N, C:P, N:P and lignin:cellulose of logs of Pinus koraiensis at different diameter classes (mean ± SE, n = 3)
组分 Component | 径级 Diameter class | Total | ||||
---|---|---|---|---|---|---|
ⅰ | ⅱ | ⅲ | ⅳ | |||
C:N | 心材 Heartwood | 492 ± 69aA | 276 ± 23bA | 214 ± 23bA | 355 ± 57abA | 336 ± 27A |
边材 Sapwood | 388 ± 92aA | 266 ± 27abA | 199 ± 30bA | 243 ± 38abA | 269 ± 25A | |
C:P | 心材 Heartwood | 12 672 ± 5 284aA | 6 320 ± 1 107abA | 2 853 ± 765bA | 3 788 ± 607bA | 6 220 ± 1 324A |
边材 Sapwood | 19 255 ± 7 772aA | 3 277 ± 514bB | 4 240 ± 1 165bA | 3 790 ± 973bA | 7 423 ± 1 964A | |
N:P | 心材 Heartwood | 29 ± 11.19aA | 29 ± 6.74aA | 14 ± 3.79aA | 15 ± 3.19aA | 21 ± 3.37A |
边材 Sapwood | 69 ± 28.81aA | 17 ± 5.89bA | 19 ± 3.72bA | 19 ± 4.32bA | 30 ± 7.27A | |
木质素:纤维素 | 心材 Heartwood | 2.03 ± 0.65aA | 1.20 ± 0.20aA | 2.01 ± 0.37aA | 1.44 ± 0.22aA | 1.67 ± 0.20A |
Lignin:cellulose | 边材 Sapwood | 1.74 ± 0.48aA | 1.18 ± 0.18aA | 1.33 ± 0.24aA | 1.13 ± 0.21aA | 1.34 ± 0.15A |
因子 Factor | C | N | P | 木质素 Lignin | 纤维素 Cellulose | |||||
---|---|---|---|---|---|---|---|---|---|---|
心材 Heartwood | 边材 Sapwood | 心材 Heartwood | 边材 Sapwood | 心材 Heartwood | 边材 Sapwood | 心材 Heartwood | 边材 Sapwood | 心材 Heartwood | 边材 Sapwood | |
含水率 Moisture content | 0.283* | 0.298* | 0.325* | 0.288* | 0.196 | 0.477** | 0.507** | 0.510** | -0.512** | -0.500** |
木材密度 Wood density | -0.553** | -0.211* | -0.394* | -0.433** | -0.397* | -0.592** | -0.454** | -0.478** | 0.458** | 0.512** |
表4 红松倒木物理性质与化学成分的Pearson相关性分析
Table 4 Pearson correlation analysis between physical properties and chemical component in logs of Pinus koraiensis
因子 Factor | C | N | P | 木质素 Lignin | 纤维素 Cellulose | |||||
---|---|---|---|---|---|---|---|---|---|---|
心材 Heartwood | 边材 Sapwood | 心材 Heartwood | 边材 Sapwood | 心材 Heartwood | 边材 Sapwood | 心材 Heartwood | 边材 Sapwood | 心材 Heartwood | 边材 Sapwood | |
含水率 Moisture content | 0.283* | 0.298* | 0.325* | 0.288* | 0.196 | 0.477** | 0.507** | 0.510** | -0.512** | -0.500** |
木材密度 Wood density | -0.553** | -0.211* | -0.394* | -0.433** | -0.397* | -0.592** | -0.454** | -0.478** | 0.458** | 0.512** |
1 | Austin AT, Ballaré CL (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems.Proceedings of the National Academy of Sciences of the United States of America, 107, 4618-4622. |
2 | Berg B, Johansson MB, Meentemeyer V (2000). Litter decomposition in a transect of Norway spruce forests: Substrate quality and climate control.Canadian Journal of Forest Research ,30, 1136-1147. |
3 | Bond-Lamberty B, Wang CK, Gower ST (2002). Annual carbon flux from woody debris for a boreal black spruce fire chronosequence.Journal of Geophysical Research ,108, 121-129. |
4 | Brandt LA, King JY, Hobbie SE, Milchunas DG, Sinsabaugh RL (2010). The role of photo degradation in surface litter decomposition across a grassland ecosystem precipitation gradient.Ecosystems, 13, 765-781. |
5 | Brin A, Bouget C, Brustel H, Jactel H (2011). Diameter of downed woody debris does matter for saproxylic beetle assemblages in temperate oak and pine forests.Journal of Insect Conservation ,15, 653-669. |
6 | Bütler R, Patty L, Bayon RCL, Guenat C, Schlaepfer R (2007). Log decay ofPicea abies in the Swiss Jura Mountains of central Europe. Forest Ecology and Management, 242, 791-799. |
7 | Chamber JQ, Schime JP, Nobre AD (2001). Respiration from coarse wood litter in centra Amazon forests.Biogeochemistry, 52, 115-131. |
8 | Chang CH, Wu FZ, Yang WQ, Tan B, Li H, Xiao S, Gou XL, He LN (2014). The dynamics of microbial community structure at different stages of log decay in an alpine forest of western Sichuan.Chinese Journal Applied and Environmental Biology, 20, 978-985.(in Chinese with English abstract) [常晨晖, 吴福忠, 杨万勤, 谭波, 李晗, 肖洒, 苟小林, 何丽娜 (2014). 川西高山森林倒木不同分解阶段的微生物群落变化特征. 应用与环境生物学报, 20, 978-985.] |
9 | Chang CH, Wu FZ, Yang WQ, Tan B, Xiao S, Li J, Gou XL (2015). Changes in log quality at different decay stages in an alpine forest.Chinese Journal of Plant Ecology, 39, 14-22.(in Chinese with English abstract) [常晨晖, 吴福忠, 杨万勤, 谭波, 肖洒, 李俊, 苟小林 (2015). 高寒森林倒木在不同分解阶段的质量变化. 植物生态学报, 39, 14-22.] |
10 | Clinton PW, Buchanan PK, Wilkie JP, Smaill SJ, Kimberley MO (2009). Decomposition ofNothofagus wood in vitro and nutrient mobilization by fungi. Canadian Journal of Forest Research, 39, 2193-2202. |
11 | Cowling EB, Merrill W (1966). Nitrogen in wood and its role in wood deterioration.Canadian Journal of Botany, 44, 1539-1554. |
12 | Dai LM, Xu ZB, Chen HS (2000). Storage dynamics of fallen trees in the broad-leaved and Korean pine mixed forest. Acta Ecologica Sinica, 20, 412-416.(in Chinese with English abstract) [代力民, 徐振邦, 陈华 (2000). 阔叶红松林倒木贮量的变化规律. 生态学报, 20, 412-416.] |
13 | de Aza CH, Turrión MB, Pando V, Bravo F (2011). Carbon in heartwood, sapwood and bark along the stem profile in three MediterraneanPinus species. Annals of Forest Science, 68, 1067-1076. |
14 | Fioretto A, Di Nardo C, Papa S, Fuggi A (2005). Lignin and cellulose degradation and nitrogen dynamics during de- composition of three leaf litter species in a Mediterranean ecosystem.Soil Biology & Biochemistry, 37, 1083-1091. |
15 | Ganjegunte GK, Condron LM, Clinton PW, Davis MR, Mahieu N (2004). Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Forest Ecology and Management, 187, 197-211. |
16 | Harmon ME, Fasth B, Woodall CW, Sexton J (2013). Carbon concentration of standing and downed woody detritus: Effects of tree taxa, decay class, position, and tissue type.Forest Ecology and Management, 291, 259-267. |
17 | Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack KJ, Cummins KW (1986). Ecology of coarse woody debris in temperate ecosystems.Advances in Ecological Research,15, 133-302. |
18 | He W, Wu F, Yang W, Tan B, Zhao Y, Wu Q, He M (2016). Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest.Ecosystems ,19, 115-128. |
19 | Herrmann S, Bauhus J (2013). Effects of moisture, temperature and decomposition stage on respirational carbon loss from coarse woody debris (CWD) of important European tree species.Scandinavian Journal of Forest Research, 28, 346-357. |
20 | Jin GZ, Xie XC, Tian YY, Kim JH (2006). The pattern of seed rain in the broadleaved-Korean pine mixed forest of Xiaoxing’an Mountains, China.Journal of Korean Forest Society, 95, 621-627. |
21 | Johnston JM, Crossley Jr DA (1996). The significance of coarse woody debris for the diversity of soil mites. Forest Service, 94, 82-87. |
22 | Juutilainen K, Halme P, Kotiranta H, Mönkkönen M (2011). Diameter matters in studies of dead wood and wood-inhabiting fungi.Fungal Ecology, 4, 342-349. |
23 | Köster K, Metslaid M, Engelhart J, Köster E (2015). Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests.Forest Ecology and Management, 354, 35-42. |
24 | Küffer N, Senn-Irlet B (2005). Influence of forest management on the species richness and composition of wood- inhabiting basidiomycetes in Swiss forests.Biodiversity and Conservation, 14, 2419-2435. |
25 | Laiho R, Prescott CE (2004). Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: A synthesis.Canadian Journal of Forest Research ,34, 763-777. |
26 | Liu YY, Jin GZ (2010a). Character of coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains, China. Scientia Silvae Sinicae, 46(4), 8-14.(in Chinese with English abstract) [刘妍妍, 金光泽 (2010a). 小兴安岭阔叶红松林粗木质残体基础特征. 林业科学, 46(4), 8-14.] |
27 | Liu YY, Jin GZ (2010b). Spatial point pattern analysis for coarse woody debris in a mixed broad-leaved Korean pine forest in Xiaoxing’an Mountains, China.Acta Ecologica Sinica, 22, 6072-6081.(in Chinese with English abstract) [刘妍妍, 金光泽 (2010b). 小兴安岭阔叶红松林粗木质残体空间分布的点格局分析. 生态学报, 22, 6072-6081.] |
28 | Lombardi F, Cherubini P, Tognetti R, Cocozza C, Lasserre B, Marchetti M (2013). Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean Mountain forests.Annals of Forest Science, 70, 101-111. |
29 | Lü MH, Zhou GY, Zhang DQ, Guan LL (2006). Decomposi- tion and nutrient release from coarse woody debris ofCastanopsis chinensis in Dinghushan forest ecosystem. Journal of Tropical and Subtropical Botany, 14, 107-112.(in Chinese with English abstract) [吕明和, 周国逸, 张德强, 官丽莉 (2006). 鼎湖山锥栗粗木质残体的分解和元素动态. 热带亚热带植物学报, 14, 107-112.] |
30 | Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosph- orus dynamics in decomposing litter.Ecological Monographs, 80, 89-106. |
31 | Moroni MT, Ryan DAJ (2010). Deadwood abundance in recently harvested and old Nova Scotia hardwood forests.Forestry, 83, 219-227. |
32 | Nordén B, Ryberg M, Götmark F, Olausson B (2004). Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests.Biological Conservation, 117, 1-10. |
33 | Palviainen M, Finér L, Laiho R, Shorohova E, Kapitsa E, Vanha-Majamaa I (2010). Phosphorus and base cation accumulation and release patterns in decomposing Scots pine, Norway spruce and silver birch stumps.Forest Ecology and Management, 260, 1478-1489. |
34 | Palviainen M, Laiho R, Mäkinen H, Finer L (2008). Do decomposing Scots pine, Norway spruce, and silver birch stems retain nitrogen?Canadian Journal of Forest Research, 38, 3047-3055. |
35 | Petrillo M, Cherubini P, Sartori G, Abiven S, Ascher J, Bertoldi D, Egli M (2015). Decomposition of Norway spruce and European larch coarse woody debris (CWD) in relation to different elevation and exposure in an Alpine setting.iForest-Biogeosciences and Forestry, 9, 154-164 . |
36 | Progar RA, Schowalter TD, Freitag CM, Morrell JJ (2000). Respiration from coarse woody debris as affected by moisture and saprotroph functional diversity in Western Oregon.Oecologia, 124, 426-431. |
37 | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America ,101, 11001-11006. |
38 | Repola J (2006). Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density.Silva Fennica, 40, 673-685. |
39 | Sakai Y, Ugawa S, Ishizuka S, Takahashi M, Takenaka C (2012). Wood density and carbon and nitrogen concentrations in deadwood ofChamaecyparis obtusa and Cryptomeria japonica. Soil Science and Plant Nutrition, 58, 526-537. |
40 | Sandström F, Petersson H, Kruys N, Ståhl G (2007). Biomass conversion factors (density and carbon concentration) by decay classes for dead wood ofPinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden. Forest Ecology and Management, 243, 19-27. |
41 | Schwarze FW (2007). Wood decay under the microscope.Fungal Biology Reviews, 21, 133-170. |
42 | Seedre M, Taylor A, Chen H, Jõgiste K (2013). Deadwood density of five boreal tree species in relation to field-assigned decay class.Forest Science ,59, 261-266. |
43 | Sefidi K, Etemad V (2015). Dead wood characteristics influ- enceing macrofungi species abundance and diversity in Caspian natural beech (Fagus orientalis Lipsky) forests. Forest Systems, 24, eSC03. |
44 | Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzy- matic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-799. |
45 | Sollins P (1982). Input and decay of coarse woody debris in coniferous stands in western Oregon and Washington.Canadian Journal of Forest Research ,12, 18-28. |
46 | Spears JD, Holub SM, Harmon ME, Lajtha K (2003). The influence of decomposing logs on soil biology and nutrient cycling in an old-growth mixed coniferous forest in Oregon, USA. Canadian Journal of Forest Research, 33, 2193-2201. |
47 | Spurr SH, Hsiung WY (1954). Growth rate and specific gravity in conifers.Journal of Forestry, 52, 191-200. |
48 | Stokland J, Kauserud H (2004). Phellinus nigrolimitatus—A wood-decomposing fungus highly influenced by forestry.Forest Ecology and Management, 187, 333-343. |
49 | van Geffen KG, Poorter L, Sass-Klaassen U, van Logtestijn RS, Cornelissen JH (2010). The trait contribution to wood decomposition rates of 15 neotropical tree species.Ecology, 91, 3686-3697. |
50 | Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005). Endangered plants persist under phosphorus limitation.Nature ,437, 547-550. |
51 | Xin WW, Tie N, Li ZF, Zhang DM, Zhang ZZ (2012). Da- xing’anlingLarix regeneration of fallen tree nutrient con- tent research. Forest Resources Management, (3), 94-99.(in Chinese with English abstract) [辛魏巍, 铁牛, 李卓凡, 张冬梅, 张最最 (2012). 大兴安岭兴安落叶松原始林倒木养分含量研究. 林业资源管理,(3), 94-99]. |
52 | Yan ER, Wang XH, Huang JJ (2005). Concept and classifica- tion of coarse woody debris in forest ecosystems.Acta Ecologica Sinica ,25, 158-167.(in Chinese with English abstract) [闫恩荣, 王希华, 黄建军 (2005). 森林粗死木质残体的概念及其分类. 生态学报, 25, 158-167.] |
53 | Yang FF, Li YL, Liu XZ (2009). Decomposition of coarse woody debris (CWD) of dominate speciesSchima superba in monsoonal evergreen broadleaved forest of Dinghushan Nature Reserve. Journal of Mountains Science, 27, 442-448.(in Chinese with English abstract) [杨方方, 李跃林, 刘兴诏 (2009). 鼎湖山木荷粗死木质残体的分解研究. 山地学报, 27, 442-448.] |
54 | Yang LY, Dai LM (2002). The decomposition and nutrient content of fallen woods in the moss-Pinus koraiensis dark-conifer forest at north slope of Changbai Mountain. Acta Ecologica Sinica ,22, 185-189.(in Chinese with English abstract) [杨丽韫, 代力民 (2002). 长白山北坡苔藓红松暗针叶林倒木分解及其养分含量. 生态学报, 22, 185-189.] |
55 | Yuan J, Zhang SX (2012). Characteristics of fallen wood den- sity and water content dynamics ofPinus tabulaeformis natural secondary forests in Huoditang region in Qinling Mountains. Journal of Central South University of Forestry & Technology, 32(11), 105-109.(in Chinese with English abstract) [袁杰, 张硕新 (2012). 秦岭火地塘天然次生油松林倒木密度与含水量变化特征研究. 中南林业科技大学学报, 32(11), 105-109.] |
56 | Zhang XY, Guan DS, Zhang HD (2009). Characteristics of storage and decomposition of coarse woody debris under three forests in Guangzhou.Acta Ecologica Sinica, 29, 5227-5236.(in Chinese with English abstract) [张修玉, 管东生, 张海东 (2009). 三种森林粗死木质残体 (CWD)的储量与分解特征. 生态学报, 29, 5227-5236.] |
57 | Zhou L, Dai LM, Gu HY, Zhong L (2007). Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. Journal of Forestry Research, 18, 48-54. |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 何春梅, 李雨姗, 尹秋龙, 贾仕宏, 郝占庆. 秦岭皇冠暖温性落叶阔叶林优势树种的径级结构和数量特征[J]. 植物生态学报, 2023, 47(12): 1658-1667. |
[3] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[4] | 宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J]. 植物生态学报, 2021, 45(9): 952-960. |
[5] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[6] | 哈努拉•塔斯肯, 蔡慧颖, 金光泽. 树冠结构对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2021, 45(1): 38-50. |
[7] | 刘凌, 樊英杰, 宋晓彤, 李敏, 邵小明, 王晓蕊. 色季拉山不同腐解等级华山松倒木上的苔藓植物组合[J]. 植物生态学报, 2020, 44(8): 842-853. |
[8] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[9] | 吴盼, 彭希强, 杨树仁, 高亚男, 白丰桦, 衣世杰, 杜宁, 郭卫华. 山东省滨海湿地柽柳种群的空间分布格局及其关联性[J]. 植物生态学报, 2019, 43(9): 817-824. |
[10] | 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429. |
[11] | 邢娟, 郑成洋, 冯婵莹, 曾发旭. 河北塞罕坝樟子松人工林生长及碳储量的变化[J]. 植物生态学报, 2017, 41(8): 840-849. |
[12] | 刘群, 庄丽燕, 杨万勤, 倪祥银, 李婷婷, 徐振锋. 川西亚高山两种树木不同径级根系腐殖化过程中胡敏酸和富里酸的累积特征[J]. 植物生态学报, 2017, 41(12): 1251-1261. |
[13] | 朱良军, 金光泽, 王晓春. 典型阔叶红松林干扰历史重建及干扰形成机制[J]. 植物生态学报, 2015, 39(2): 125-139. |
[14] | 常晨晖, 吴福忠, 杨万勤, 谭波, 肖洒, 李俊, 苟小林. 高寒森林倒木在不同分解阶段的质量变化[J]. 植物生态学报, 2015, 39(1): 14-22. |
[15] | 梁爽, 许涵, 林家怡, 李意德, 林明献. 尖峰岭热带山地雨林优势树种白颜树空间分布格局[J]. 植物生态学报, 2014, 38(12): 1273-1282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19